ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    Advance Search
    DING Kun, LIANG Ting, Zhou Yi, et al. Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope[J]. Northwestern Geology, 2020, 53(1): 24-34. DOI: 10.19751/j.cnki.61-1149/p.2020.01.003
    Citation: DING Kun, LIANG Ting, Zhou Yi, et al. Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope[J]. Northwestern Geology, 2020, 53(1): 24-34. DOI: 10.19751/j.cnki.61-1149/p.2020.01.003

    Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope

    More Information
    • Received Date: August 13, 2019
    • Revised Date: November 17, 2019
    • Available Online: July 28, 2022
    • Published Date: March 04, 2020
    • The Dahongliutan pluton is located in the eastern part of the West Kunlun Orogenic Belt and is mainly consisted of biotite monzonitic granite, monzonitic granite and two mica granite. The Zircon LA-ICP-MS U-Pb dating of biotite monzonitic granite in the southeastern part of Dahongliutan intrusion shows that the emplacement age of biotite monzonitic granite is 214+1.8 Ma, indicating that the Dahongliutan pluton was formed in the Late Indosinian. The Dahongliutan pluton has higher value of δ7Li(0.76‰~3.25‰) and lower content of lithium(5.04~52.22)×10-6. The biotite monzonitic granite has zircon εHf(t) values of -1.86 to 2.16, and the two-stage mode age ranged between 1113 and 1368 Ma. In the εHf(t) vs. age diagram,all the data points lie near the chondrite evolution line. The comprehensive research shows that the Dahongliutan pluton has derived from a mixed magma of mesoproterozoic crust and mantle.
    • 陈海云,孙妍,包平,等.西昆仑上其木干岩体岩石成因及地质意义-地球化学及U-Pb年代学证据[J].岩石矿物学杂志,2014,33(04):657-670.
      CHEN Haiyun, SUN Yan, BAO ping, et al. Petrogenesis and geological significance of the Mugan intrusion in the western Kunlun Mountains-Evidence from geochemistry and U-Pb chronology[J]. Journal of Petrology and Mineralogy, 2014, 33(04):657-670.
      韩芳林. 西昆仑增生造山带演化及成矿背景(博士学位论文)[D]. 北京:中国地质大学:2006.
      HAN Fanglin. Evolution and metallogenic background of the West Kunlun orogenic belt (PhD thesis)[D]. Beijing:China University of Geosciences, 2006.
      康磊,校培喜,高晓峰,等.西昆仑慕士塔格岩体的LA-ICP-MS锆石U-Pb定年:对古特提斯碰撞时限的制约[J]. 地质论评,2012,58(4), 763-774.
      KANG Lei, XIAO Peixi, GAO Xiaofeng, et al. Geochemical characteristics and petrogenesis of Muztagata intrusion in Western Kunlun orogenic belt and their tectonic significance[J]. Gelogical Review, 2012, 58(4), 763-774.
      康磊, 校培喜, 高晓峰,等. 西昆仑西段晚古生代-中生代花岗质岩浆作用及构造演化过程[J]. 中国地质, 2015, 42(3):533-552.
      KANG Lei, XUE Peixi, GAO Xiaofeng, et al. Late Paleozoic-Mesozoic granitic magmatism and tectonic evolution in the western segment of West Kunlun[J]. Geology of China, 2015, 42(3):533-552.
      李侃,滕家欣,高永宝,等. 新疆大红柳滩地区花岗伟晶岩型稀有金属矿成矿特征[A]. 第八届全国成矿理论与找矿方法学术讨论会:2017:1.
      LI Kan, TENG Jiaxin, GAO Yongbao, et al., Metallogenic characteristics of granitic pegmatite-type rare metal deposits in Dahongliutan area, Xinjiang[A]. The Eighth National Symposium on metallogenic theory and prospecting methods, 2017:1.
      刘函, 王国灿, 曹凯,等. 西昆仑及邻区区域构造演化的碎屑锆石裂变径迹年龄记录[J]. 地学前缘, 2010, 17(3):64-78.
      LIU Han, WANG Guocan, CAO Kai, et al. Clastic zircon fission track age records of regional tectonic evolution in West Kunlun and its adjacent areas[J].Geoscience Frontiers, 2010, 17(3):64-78.
      乔耿彪, 张汉德, 伍跃中, 等.西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 89(7):1180-1194.
      QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al.Geological and geochemical characteristics of the Dahongliutan rock mass in the West Kunlun Mountains and its constraints on the genesis of rocks[J].Acta Geologica Sinica, 2015, 89(7):1180-1194.
      魏小鹏, 王核, 胡军,等. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J]. 地球化学,2017,46(1), 66-80.
      WEI Xiaopeng, WANG Ke, HU Jun, et al. Geochemistry and geochronology of the Dahongliutan mica granite in West Kunlun and its geological significance[J]. Geochemistry, 2017, 46(1), 66-80.
      吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007, 23(2):185-220.
      WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic system and Its Petrological application[J]. Journal of Petrology, 2007, 23(2):185-220.
      许志琴, 戚学祥, 杨经绥, 等. 西昆仑康西瓦韧性走滑剪切带的两类剪切指向、形成时限及其构造意义[J]. 地质通报, 2007, 26(10):1252-1261.
      XU Zhiqin, QI Xuexiang, YANG Jingsui, et al. Two types of shear direction, formation time and tectonic significance of Kangxiwa ductile strike-slip shear zone in West Kunlun[J].Geological Bulletin of China, 2007, 26(10):1252-1261.
      闫庆贺,王核,邱增旺,等. 西昆仑大红柳滩稀有金属伟晶岩矿床锡石及铌钽铁矿年代学及其地质意义[A]. 中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会文集[C].中国矿物岩石地球化学学会:2017:802-803.
      YAN Qinghe, WANG He, QIU Zengwang, et al. Geochronology and geological significance of cassiterite and niobium-tantalum iron deposits in Dahongliutan rare metal pegmatite deposit, Western Kunlun[A]. Works of the Ninth National Congress and 16th Annual Academic Conference of China Mineral and Petrological Geochemistry Society[C]. China Mineral and Petrological Geochemistry Society:2017:802-803.
      张泽,梁婷,凤永刚,等. 新疆西昆仑造山带康西瓦含绿柱石白云母伟晶岩的地质特征与年代学研究[J].西北地质,2019,52(01):75-88.
      ZHANG Ze, LIANG Ting, FENG Yonggang, et al. Geological feature and chronology study of Kangxiwa beryl-bearing Muscovite pegmatite in West Kunlun orogenic belt, Xinjiang[J]. Northwestern Geology, 2019, 52(01):75-88
      张传林,陆松年,于海峰,等.青藏高原北缘西昆仑造山带构造演化:来自锆石SHRIMP及LA-ICP-MS测年的证据[J].中国科学(D辑),2007,37(2):145-154.
      ZHANG Chuanlin, LU Songnian, YU Haifeng, et al. Tectonic evolution of the West Kunlun orogenic belt on the northern margin of the Qinghai-Xizang Plateau:evidence from zircon SHRIMP and LA-ICP-MS dating[J]. Chinese Science (Series D), 2007, 37(2):145-154.
      郑永飞,陈仁旭,张少兵,等. 大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究[J].岩石学报, 2007, 23(2):317-330.
      ZHENG Yongfei, CHEN Renxu, ZHANG Shaobing, et al. Zircon Lu-Hf isotope studies in ultrahigh pressure eclogites and granitic gneisses from the Dabie Mountains[J]. Journal of Petrology, 2007, 23(2):317-330.
      BRANT C, COOGAN L A, GILLIS K M, et al. Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacifc Rise[J]. Geochimica Cosmochimica Acta, 2012, 96(11):272-293.
      CHAN L H, LEEMAN W P, YOU C F. Lithium isotopic composition of Central American volcanic arc lavas:Implications for modification of subarc mantle by slab-derived fluids:Correction[J]. Chemical Geology, 2002, 182(2):293-300.
      CHAN L H, EDMOND J M, THOMPSON G, et al. Lithium isotopic composition of submarine basalts:implications for the lithium cycle in the oceans[J]. Earth Planet.sci.lett, 1992, 108(1-3):151-160.
      DING Kun, LIANG Ting, YANG Xiuqing, et al. Geochronology, petrogenesis and tectonic significance of the Dahongliutan pluton in the Western Kunlun orogenic belt, NW China[J]. Journal of Central South University,2020(Waiting for publication)
      GRIFFIN W L, PEARSON N J, BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle:LA -MC-ICPMS analysis of zircons megacrysts in kimberlites-Kimberlites and related rocks[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147.
      LIU Y H, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.
      LUDWIG K R. User's Manual for Isoplot 3.0:A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronological Center, Special Publication 4, 2003:1-71.
      MORIGUTI T, NAKAMURA E. Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones[J]. Earthand Planetary Science Letters, 1998,163(1-4):167-174.
      RYAN J G, KYLE P R. Lithium abundance and lithium isotope variations in mantle sources:insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands[J]. Chemical Geology, 2004, 212(1):125-142.
      TANG Y J, ZHANG H F, YING J F. Review of the Lithium Isotope System as a Geochemical Tracer[J]. International Geology Review, 2007, 49(4):374-388.
      TOMASCAK P B. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences[J]. Geochemistry of Non-Traditional Stable Isotopes, 2004, 55(1):153-195.
      YUAN H L, GAO S, DAI M N, et al.Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology,2008,247(1-2):0-118.
      WANG C, LIU L, KORHONEN F, et al. Origins of Early Mesozoic granitoids and their enclaves from West Kunlun, NW China:Implications for evolving magmatism related to closure of the Paleo-Tethys ocean[J]. International Journal of Earth Sciences, 2015, 105(3):1-24.
      ZACK T, TOMASCAK P B, RUDNICK R L, et al. Extremely light Li in orogenic eclogites:The role of isotope fractionation during dehydration in subducted oceanic crust[J]. Earth and Planetary Science Letters,2003, 208(3):279-290.
      ZHANG Q, LIU Y, WU Z, et al. Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example:petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys[J]. International Geology Review,2019, 61(2):175-194.
    • Related Articles

    Catalog

      Article views (1556) PDF downloads (1759) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return