ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    Advance Search
    LI Chenglin, WANG Jiading, GU Tianfeng. A Study on the Prediction Model of High Filling Foundation Settlement in Northwest China[J]. Northwestern Geology, 2022, 55(1): 225-235. DOI: 10.19751/j.cnki.61-1149/p.2022.01.019
    Citation: LI Chenglin, WANG Jiading, GU Tianfeng. A Study on the Prediction Model of High Filling Foundation Settlement in Northwest China[J]. Northwestern Geology, 2022, 55(1): 225-235. DOI: 10.19751/j.cnki.61-1149/p.2022.01.019

    A Study on the Prediction Model of High Filling Foundation Settlement in Northwest China

    More Information
    • Received Date: April 11, 2021
    • Revised Date: June 21, 2021
    • Available Online: July 28, 2022
    • Published Date: March 04, 2022
    • Settlement deformation has always been a key problem in filling projects. The presence of wet-set loess and pulverized clay in the original foundation leads to increased and uneven settlement.Therefore, settlement monitoring and post-work prediction are essential to ensure the stability of high filling foundations. Based on the settlement monitoring data of high fill in an airport relocation project in northwest China, this paper applies hyperbolic, logarithmic and exponential fitting curves to predict the settlement of the fill foundation, analyzing and comparing them, and summarizes the fitting characteristics of each model. A settlement prediction model is established for high filling foundations using the gray system theory GM (1, 1), while a joint GM (1, 1)-BP neural network prediction model is proposed aimed at solving the problem of the deviation of the GM (1, 1) gray model from the measured curve in later stage. Finally the authors combine the gray GM (1, 1) model and the curve model with unequal weight coefficients in order to maximize the prediction accuracy of the GM (1, 1) gray model.The study provides reference for the prediction of similar foundation settlement in northwest China.
    • 董英,张茂省,刘洁,等.西安市地下水与地面沉降地裂缝耦合关系及风险防控技术[J].西北地质,2019,52(02):95-102.
      DONG Ying, ZHANG Maosheng, LIU Jie,et al.Coupling Relationship between Groundwater and Ground Fissures of Land Subsidence in Xi'an City and Risk Prevention and Control Technology[J]. Northwestern Geology, 2019,52(02):95-102.
      王志亮.沉降预测中的Asaoka法中的应用[J].岩土力学,2006,27(11):2025-2032.
      WANG Zhiliang. Study on application of Asaoka's method to settlement prediction[J]. Rock and Soil Mechanics,2006,27(11):2025-2032.
      张成良,刘小泉.三次样条插值曲线在Asaoka法中的应用[J]. 岩土工程技术, 2006, 20(1):21-24.
      ZHANG Chengliang, LIU Xiaoquan. Application of Cubic Spline Interpoliation in Asaoka's Method[J]. Geotechnical Engineering Technology, 2006, 20(1):21-24.
      伍素兰,张发明.大同市地面沉降预测预报系统的设计[J].西北地质,1995(04):72-73+60.
      WU Sulun, ZHANG Faming. Design of Land Subsidence Prediction and Forecast System in Datong City[J]. Northwestern Geology, 1995(04):72-73+60.
      郭云开,崔晓如,李亮.基于小波神经网络组合模型的高填方地基沉降预测[J]. 长沙理工大学学报(自然科学版),2010,7(2):6-11.
      GUO Yunkai, CUI Xiaoru, LI Liang. Combined forecasting model based on wavelet neural network for prediction of high fill subgradeSettlement[J]. Journal of Changsha University of Science and Technology (Natural Science Edition),2010,7(2):6-11.
      李建初.遂资眉高速公路软土地基不同沉降预测方法对比研究及应用[D]. 成都:成都理工大学, 2012.
      LI Jianchu. Research and application of the different method to predict settlement on Sui-Zi-Mei expressway soft foundation[D].Chengdu:Chengdu Univerisity of Technology,2012.
      李广信.高等土力学[M].北京,清华大学出版社, 2004.
      LI Guangxin. Advanced Soil Mechanics[M].Beijing:Tsinghua University Press,2004.
      秦亚琼.基于实测数据的路基沉降预测方法研究及工程应用[D]. 长沙:中南大学, 2008.
      QIN Yaqiong. Research and engineering application of subgrade settlement prediction Method based on measured data[D].Changsha:Central South University,2008.
      杨涛,李国维,杨伟清.基于双曲线法的分级填筑路堤沉降预测[J]. 岩土力学, 2004, 25(10):1551-1554.
      YANG Tao, LI Guowei, YANG Weiqing.Settlement prediction of stage constructed embankment on soft groundbased on the hyperbolic method[J].Rock and Soil Mechanics,2004,25(10):1551-1554.
      杨涛,戴济群,李国维.基于指数法的分级填筑路堤沉降预测方法研究[J]. 土木工程学报, 2005, 38(005):92-95.
      YANG Tao, DAI Jiqun, LI Guowei.Settlement Prediction of Stage-Constructed Embankment on Soft Ground Using the Exponent Fitting Method[J].China Civil Engineering Journal,2005,38(005):92-95.
      李帅,宋振柏,张胜伟.基于曲线拟合法的沉降分析与变形可视化[J]. 山东理工大学学报(自然科学版), 2012(05):72-75.
      LI Shuai, SONG Zhenbo, ZHANG Shengwei.Settlement analysis and visualization based on curve fitting[J]. Journal of Shandong University of Technology:Science and Technology,2012(05):72-75.
      邓聚龙.灰色系统基本方法[M]. 武汉:华中理工大学出版社, 1987.
      DENG Junlong.The basic methodology gray system[M]. Wuhan:Huazhong University of Technology Press, 1987.
      高宁,崔希民,高彩云.灰时序GM-AR模型在建筑物沉降变形预测中的应用[J]. 测绘科学, 2013, 38(1):139-141.
      GAO Ning, CUI Ximing, GAO Caiyun.Application of grey-time series combined model in subsidence deformation prediction[J].Science of Surveying and Mapping,2013,38(1):139-141.
      Edward B, Magrab著,高会生译.MATLAB原理与工程应用[M].北京:电子工业出版社, 2006.
      肖太平,汪福源.灰色预测模型GM(1,1)在沉降预测建模中的应用[J]. 江西科学, 2017(6):933-936.
      XIAO Taiping, WANG Fuyuan.Application of Grey System Theory in Modeling of Settlement Prediction[J].Jiangxi Science,2017(6):933-936.
      邱维蓉,吴帮玉,潘学树,等.几种聚类优化的机器学习方法在灵台县滑坡易发性评价中的应用[J].西北地质,2020,53(01):222-233.
      QIU Weirong,WU Bangyu,PAN Xueshu, et al. Application of Several Cluster-optimization-based Machine Learning Methods in Evaluation of Landslide Susceptibility in Lingtai County[J].Northwestern Geology,2020,53(01):222-233.
      陈明. MATLAB神经网络原理与实例精解[M]. 北京:清华大学出版社, 2013.
      CHEN Ming.Principle and example of MATLAB neural network[M].Beijing:Qinghua University Press,2013.
      张德丰. MATLAB神经网络应用设计[M]. 北京:机械工业出版社, 2012.
      ZHANG Defeng. MATLAB Neural network application design[M].Beijing:China Machine Press,2012.
      袁景凌,钟珞,李小燕.灰色神经网络的研究及发展[J].武汉理工大学学报,2009,31(03):91-93.
      YUAN Jingling, ZHONG Luo, LI Xiaoyan,The Research and Development of Grey Neural Network[J],Journal of Wuhan University of Technology, 2009,31(03):91-93.
      冯钱桢,黄腾.灰色BP神经网络组合模型在大坝沉降监测中的应用[J]. 甘肃科学学报, 2020,32(1).
      FENG Qianzhen, HUANG Teng.Application of Gray BP Neural Network Combination Model in Dam Settlement Monitoring[J].Journal of Gansu Sciences,2020,32(1).
      马苑菲,文鸿雁.灰色理论和回归分析组合模型在变形分析中的应用[J]. 地理空间信息, 2013(01):111-113.
      MA Yuanfei,WEN Hongyan.Application of grey theory and regression analysis combined model in deformation analysis[J].Geospatial Information,2013(01):111-113.
      Li yun,Liu Zheng,Du Xiuli. Improvement of Analytic Hierarchy Process Based on Grey Correlation Model and Its EngineeringApplication[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:Civil Engineering,2021,7(2).
      Moon Sungwoo,Munira Chowdhury Ayesha. Utilization of Prior Information in Neural Network Training for Improving 28-Day Concrete Strength Prediction[J]. Journal of Construction Engineering and Management,2021,147(5).
      KerhT, Hu Y G, Wu C H. Estimation of consolidation settlement caused by groundwater drawdown using artificial neural networks[J]. Advances in Engineering Software, 2004, 35(9):125-126.
      Zhu Wenying,Wang Haiwen,Zhang Xiaheng. Synergy evaluation model of container multimodal transport based on BP neural network[J]. Neural Computing and Applications,2021(prepublish).
    • Related Articles

    • Cited by

      Periodical cited type(14)

      1. 张天宇,李林翠,刘凡,洪增林,钱法桥,胡斌,张淼. 基于优化最大熵模型的黄土滑坡易发性评价:以陕西省吴起县为例. 西北地质. 2025(02): 172-185 . 本站查看
      2. 贾丽娜,陈世昌. 基于AHP和GIS的舟曲地质灾害易发性评价. 西北地质. 2024(01): 23-33 . 本站查看
      3. 许烈,巨能攀,邓明东,解明礼,周福军,李朝纲,唐颍. 不同评价单元的滑坡易发性评价精度对比分析. 工程地质学报. 2024(05): 1640-1653 .
      4. 马敏,王江立,陈琦,李景富. 基于随机森林赋权信息量的区域滑坡易发性评价——以三峡库区秭归至巴东段为例. 华南地质. 2024(04): 749-763 .
      5. 黄煜,谢婉丽,刘琦琦,杨惠,朱荣森,李嘉昊,穆柯,严明,肖金存,何高锐. 基于GIS与MaxEnt模型的滑坡易发性评价——以铜川市中部城区为例. 西北地质. 2023(01): 266-275 . 本站查看
      6. 王成楠,吴琳伟,宋勇,贺婷,王彪,赵影,胡旭东. 江西省寻乌县滑坡易发性评价模型及精度对比研究. 资源环境与工程. 2023(02): 171-182 .
      7. 王高峰,李浩,田运涛,陈宗良,徐友宁,高幼龙,叶振南,李瑞冬,谢兴隆. 甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测. 岩石力学与工程学报. 2023(04): 1003-1018 .
      8. 李成林,刘严松,赖思翰,王地,何星慧,刘琦,何博宇. 基于BP神经网络模型的滑坡易发性评价方法. 科学技术与工程. 2023(13): 5481-5492 .
      9. 苗长伟. 地铁变形监测小波去噪与灰色-时序模型研究. 地理空间信息. 2023(10): 76-79 .
      10. 孟晓捷,张新社,曾庆铭,王冬. 基于加权信息量法的黄土滑坡易发性评价——以1∶5万天水市麦积幅为例. 西北地质. 2022(02): 249-259 . 本站查看
      11. 郭郑曦,康必均,齐实,伍冰晨,王鑫皓. 考虑植被因素的林地浅表层滑坡易发性评价——以川东华蓥市山地为例. 灾害学. 2022(02): 182-189 .
      12. 李俊,王克峰,韦开行,李业,吉辉,唐甜. 渝西典型丘陵区地质灾害易发性评价. 河南科学. 2022(07): 1125-1133 .
      13. 马啸,王念秦,李晓抗,严冬,李嘉琳. 基于RF-FR模型的滑坡易发性评价——以略阳县为例. 西北地质. 2022(03): 335-344 . 本站查看
      14. 白光顺,杨雪梅,朱杰勇,张世涛,祝传兵,康晓波,孙滨,周琰嵩. 基于证据权法的昆明五华区地质灾害易发性评价. 中国地质灾害与防治学报. 2022(05): 128-138 .

      Other cited types(12)

    Catalog

      Article views (383) PDF downloads (352) Cited by(26)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return