ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LIU Yong,ZHANG Wen,WEI Liangshuai. Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River[J]. Northwestern Geology,2024,57(1):44−54. doi: 10.12401/j.nwg.2023136
Citation: LIU Yong,ZHANG Wen,WEI Liangshuai. Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River[J]. Northwestern Geology,2024,57(1):44−54. doi: 10.12401/j.nwg.2023136

Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River

More Information
  • Received Date: March 22, 2023
  • Revised Date: July 17, 2023
  • Available Online: July 19, 2023
  • Rock glaciers are a type of ice-marginal landforms with creep-slip characteristics formed by gravity and freeze-thaw based on ice and rock mixtures, and they have a large distribution in the Qinghai-Tibet Plateau and Tianshan Mountains in China. Monitoring studies in recent years have found that a significant acceleration process of creep slip on the surface of rock glaciers has occurred under the influence of climate warming, and the risk of forming mudflows or landslides has increased. The Qinghai-Tibet Plateau is a sensitive area of global warming, and the geological disasters caused by climate warming have received wide attention. In view of this, this paper analyzes and discusses the development characteristics and potential disaster mechanisms of rock glaciers on both sides of the Sangri-Jiacha Gorge in the middle reaches of the Yarlung Zangbo River using field measurements, remote sensing interpretation and theoretical analysis. The results show that the formation and development of rock glaciers are related to the topography, climate and solar radiation of the nurturing environment, and that they are prone to form mudflows or landslides threatening the downstream under the effect of rising temperature, short-duration heavy rainfall or strong earthquakes, mainly manifested by the instability of the constituent materials of the downstream section of rock glaciers.

  • 丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(03): 209-216.

    CONG Kai, LI Ruidong, BI Yuanhong. Benefit evaluation of debris flow control engineering based on FLO-2D Model [J]. Northwestern Geology, 2019, 52 (03): 209-2016.
    郭志明. 雅鲁藏布江流域石冰川编目及空间分布特征研究[D]. 昆明: 云南大学, 2019

    GUO Zhiming. Study on the cataloguing and spatial distribution characteristics of rock glaciers in the Yarlung Tsangpo River basin [D]. Kunming: Yunnan University, 2019.
    刘耕年, 熊黑钢, 崔之久, 等. 天山石冰川的形态与发育条件[J]. 地理科学, 1995(3): 226-233+297 doi: 10.13249/j.cnki.sgs.1995.03.004

    LIU Gengnian, XIONG Heigang, CIU Zhijiu, et al. Morphology and development conditions of rock glaciers in the Tianshan Mountains[J]. Geoscience, 1995(3): 226-233+297. doi: 10.13249/j.cnki.sgs.1995.03.004
    刘勇. 内外动力耦合下雅鲁藏布江贡嘎-加查河段的成灾机制研究[D]. 成都: 成都理工大学, 2021

    LIU Yong. Study on the disaster mechanism of the Yarlung Tsangpo River Gongga-Jiacha section under the coupling of internal and external dynamics [D]. Chengdu: Chengdu University of Technology, 2021.
    马腾霄, 杨文光, 朱利东, 等. 雅鲁藏布江中游地貌参数特征及其构造地貌意义[J]. 成都理工大学学报(自然科学版), 2022, 49(4): 502−512.

    MA Tengxiao, YANG Wenguang, ZHU Lidong, et al. Geomorphic parameters and their tectonic geomorphic significance in the middle reaches of Yarlung Zangbo River, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(4): 502−512.
    王运生, 刘勇, 罗永红, 等. 深切峡谷斜坡地震动响应研究[M]. 北京: 科学出版社, 2019

    WANG Yunsheng, LIU Yong, LUO Yonghong, et al. Study on ground vibration response of deep-cut canyon slopes [M]. Beijing: Science Press, 2019.
    吴中海, 张永双, 胡道功, 等. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨[J]. 地质学报, 2007(10): 1328-1337+1449-1450.

    WU Zhonghai, ZHANG Yongshuang, HU Daogong, et al. Exploration of Quaternary normal fault activity and its mechanism in the Woka graben, Sangri County, Tibet[J]. Journal of Geology, 2007(10): 1328-1337+1449-1450.
    徐瑾昊. 基于深度学习的石冰川遥感识别研究[D]. 西安: 西北大学, 2020

    XU Jinhao. Research on remote sensing identification of rock glaciers based on deep learning[D]. Xi’an: Northwestern University, 2020.
    杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(01): 1-10

    YANG Yaoxian, HU Zeyong, LU Fuquan, et al. Progress of climate change and its environmental impact on Qinghai-Tibet Plateau in the past 60 years[J]. Highland Meteorology, 2022, 41(01): 1-10.
    张升林, 江在雄. 1915年西藏桑日7.0级地震[J]. 东北地震研究, 1991(01): 131-132

    ZHANG Shenglin, JIANG Zaixiong. The magnitude 7.0 earthquake in Sangri, Tibet, 1915[J]. Northeast Earthquake Research, 1991(01): 131-132.
    朱诚. 现代冰缘地貌研究[M]. 南京: 江苏科学技术出版社, 1994

    ZHU Cheng. Studies on modern ice margin landforms[M]. Nanjing: Jiangsu Science and Technology Press, 1994.
    周敖日格勒, 王英, 唐菊兴, 等. 冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响[J]. 西北地质, 2022, 55(03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023

    ZHOUAORIGELE, WANG Ying, TANG Juxing, et al. Early miocene exhumation history in the eastern porphyry copper belt and its influence on the spatial and temporal distribution of Oligocene- Miocene porphyry deposits[J]. Northwestern Geology, 2022, 55 (03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023
    Buchli T, Kosa A, Limpach P, et al. Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland [J]. Permafrost and Periglacial Processes, 2018, 29(1): 3-20. doi: 10.1002/ppp.1968
    Brencher G, Handwerger A, Munroe J. InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA [J]. Cryosphere, 2021, 15(10): 4823-4844. doi: 10.5194/tc-15-4823-2021
    Benn D I, Ballantyne C K. Reconstructing the transport history of glacigenic sediments: a new approach based on the co-variance of clast form indices[J]. Sedimentary Geology, 1994, 91(1-4): 215-227. doi: 10.1016/0037-0738(94)90130-9
    Barsch D. Rock glaciers- Indicators for the Present and Former Geoecology in High Mountain Environments [J]. Springer-Verlag, Berlin, 1996, 269–271.
    Brozovic N, Burbank D W, Meigs A J. Climatic limits on landscape development in the Northwestern Himalaya[J]. Science, 1997, 276(5312): 571-574. doi: 10.1126/science.276.5312.571
    Corte A. The hydrological significance of rock glaciers[J]. Journal of Glaciology, 1976, 17(75): 157-158. doi: 10.3189/S0022143000030859
    Cicoira A, Marcer M, Gartner-Roer I, et al. A general theory of rock glacier creep based on in-situ and remote sensing observations[J]. Permafrost and Periglacial Processes, 2020, 32(1): 139-153.
    Eriksen H, Rouyet L, Lauknes T R, et al. Recent Acceleration of a Rock Glacier Complex, Adept, Norway, Documented by 62 Years of Remote Sensing Observations[J]. Geophysical Research Letters, 2018, 45(16): 8314-8323. doi: 10.1029/2018GL077605
    Fey C, Krainer K. Analyses of UAV and GNSS based flow velocity variations of the rock glacier Lazaun (Ötztal Alps, South Tyrol, Italy) [J]. Geomorphology, 2020, 365: 107261. doi: 10.1016/j.geomorph.2020.107261
    Haeberli W, Hallet B, Arenson L, et al. Permafrost creep and rock glacier dynamics [J]. Permafrost and Periglacial Processes, 2006, 17(3): 189-214. doi: 10.1002/ppp.561
    Jankea J R, Bellisarioa A C, Ferrandobl F A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile [J]. Geomorphology, 2015, 98–121.
    Jones D B, Harrison S, Anderson K, et al. Mountain rock glaciers contain globally significant waterstores [J]. Scientific Reports, 2018, 8 (1): 28-34. doi: 10.1038/s41598-017-18341-7
    Müller J, Vieli A, Gartner-Roer I. Rock glaciers on the run - understanding rock glacier landform evolution and recent changes from numerical flow modeling[J]. Cryosphere, 2016, 10(6): 2865-2886. doi: 10.5194/tc-10-2865-2016
    Onaca A, Ardelean F, Urdea P, et al. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors [J]. Geomorphology, 2017, 293(B): 391-404.
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 杜军,高佳佳,陈涛,次旺,巴果卓玛. 1981—2023年雅鲁藏布江流域大气饱和水汽压差变化及影响因素. 气候变化研究进展. 2024(05): 544-557 .

    Other cited types(0)

Catalog

    Article views (197) PDF downloads (65) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return