ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146
Citation: LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58. doi: 10.12401/j.nwg.2023146

Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean

More Information
  • Received Date: May 28, 2023
  • Revised Date: July 15, 2023
  • Accepted Date: July 23, 2023
  • Available Online: March 25, 2024
  • Compared with the widespread magmatic events between the late Paleozoic and the early Mesozoic in Western Tianshan, the intrusive magmatic record of the early Paleozoic are preserved less, which conatrained our understanding on the early evolution of the Asian Ocean. Xiate gabbro is exposed in the north of the Southern Margin of the Central Tianshan, and zircon LA-ICPMS U-Pb dating shows that the formation age is 523±5 Ma, suggesting the Early Cambrian emplacement. Combined with the research on the regional igneous rocks, we believe that the Paleozoic subduction of the Paleo-Asian Ocean initiated in the west and then gradually expanded to the east, which may lay the foundation for the scissors closure (earlier in the west and later in the east) of the Tianshan Ocean. The geochemical characteristics of the Sodium and calcium alkaline rocks studied show that they have experienced the fractional crystallization of olivine, spinels, and the cumulation of plagioclase during their formation. The gabbro is a sodic and calc-alkaline series rocks, rich in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). Discrimination diagrams of tectonic magmatic environment indicate that it is a product of arc magmatism. The ε Hf (t) values range from +1.47 to +11.91, indicating a distinct mantle material source; the higher (Th/Nb)PM and lower Nb/La ratios imply the involvement of subduction materials during magmatic evolution. The formation age and petrogenetic characteristics of the Xiate gabbro indicate that the South Tianshan Ocean began to subduct towards the Central Tianshan Block in the Early Cambrian, and the initial arc magmatism was formed during the tectonic event.

  • 冯益民, 李智配, 陈隽璐, 等. 中国西北部大地构造图(1∶2 000 000)及说明书[M]. 北京: 地质出版社, 2021.
    高俊, 龙灵利, 钱青, 等. 南天山: 晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报, 2006, 225): 10491061.

    GAO Jun, LONG Lingli, QIAN Qing, et al. South Tianshan: a Late Paleozoic or a Triassic orogen?[J]. Acta Petrologica Sinica, 2006, 225): 10491061.
    李平, 王洪亮, 徐学义, 等. 西准噶尔早泥盆世马拉苏组火山岩岩石成因研究[J]. 岩石学报, 2014, 3012): 35533568.

    LI Ping, WANG Hongliang, XU Xueyi, et al. Petrogenesis of volcanic rocks from Early Devonian Marasu Formation, West Junggar[J]. Acta Petrologica Sinica, 2014, 3012): 35533568.
    李平, 徐学义, 王洪亮, 等. 中天山南缘那拉提碱性花岗岩岩石成因——来自锆石微量元素和Hf同位素的证据[J]. 地质通报, 2012, 3112): 19491964.

    LI Ping, XU Xueyi, WANG Hongliang, et al. Petrogenesis of Nalati alkali granites in South Central Tianshan Mountains: Evidence from zircon trace elements and Hf isotope[J]. Geological Bulletin of China, 2012, 3112): 19491964.
    李平. 中天山中西段古生代花岗岩成因及对天山洋陆转换时限的制约[D]. 西安: 长安大学, 2011.

    LI Ping. The Petrogenesis of Paleozoic Granites in the Middle and West Segment of the Central Tianshan and Constrain to the Process of the Ocean-continent Transition of the Tianshan [D]. Xi’an: Chang’an University, 2011.
    李舢, 王涛, 肖文交, 等. 中亚造山带东南缘从俯冲-增生到碰撞的构造-岩浆演化记录[J]. 岩石学报, 2023, 39(5): 1261-1275.

    LI Shan, WANG Tao, XIAO WenJiao, et al. Tectono-magmatic evolution from accretion to collision in the southern margin of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 2023, 39(5): 1261-1275.
    龙灵利, 高俊, 熊贤明, 等. 新疆中天山南缘比开(地区)花岗岩地球化学特征及年代学研究[J]. 岩石学报, 2007, 234): 719732.

    LONG Lingli, GAO Jun, XIONG Xianming, et al. Geochemistry and geochronology of granitoids in Bikai region, southern Central-Tianshan mountains, Xinjiang[J]. Acta Petrologica Sinica, 2007, 234): 719732.
    钱青, 徐守礼, 何国琦, 等. 那拉提山北缘寒武纪玄武岩的元素地球化学特征及构造意义[J]. 岩石学报, 2007, 23(7): 1708-1720.

    QIAN Qing, XU Shouli, HE Guoqi, et al. Elemental geochemistry and tectonic significance of Cambrian basalts from basalts fron the northern side of the Nalati Mountain. Acta Petrologica Sinica, 2007, 23(7): 1708-1720.
    茹艳娇. 西天山大哈拉军山组火山岩地层序列、岩石成因与构造环境[D]. 西安: 长安大学, 2012.

    RU Yanjiao. The Stratigraphic Sequanence, Petrogenesis and Tectonic Setting of the Volcanic Rocks of the Dahalajunshan Formation, Western Tianshan Mountain, China [D]. Xi’an: Chang’an University, 2012.
    夏林圻, 夏祖春, 徐学义, 等. 天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J]. 西北地质, 2008, 414): 168.

    XIA Linqi, XIA Zuchun, XU Xueyi, et al. Petrogenesis of Caboniferous-Early Permian Rift-Related Volcanic Rocks in the Tianshan and its Neighboring Areas, Northwestern China[J]. Northwestern Geology, 2008, 414): 168.
    夏林圻, 夏祖春, 徐学义, 等. 天山岩浆作用[M]. 北京: 地质出版社, 2007.
    肖文交, 宋东方, WINDLEY BF, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 4910): 15121545.

    XIAO Wenjiao, SONG Dongfang, WINDLEY BF, et al. Research progresses of the accretionary processes andmetallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2019, 4910): 15121545.
    新疆维吾尔自治区地质局. 1∶20万汗腾格里峰幅(K-44XV)地质矿产图[R].1981.
    徐学义, 王洪亮, 马国林, 等. 西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志, 2010, 296): 691706.

    XU Xueyi, WANG Hongliang, MA Guolin, et al. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area, West Tianshan Mountains[J]. Acta Petrologica et Mineralogical, 2010, 296): 691706.
    徐义刚, 王强, 唐功建, 等. 弧玄武岩的成因: 进展与问题[J]. 中国科学(地球科学), 2020, 6312): 19691991.

    XU Yigang, WANG Qiang, TANG Gongjian, et al. The origin of arc basalts: New advances and remaining questions[J]. Science China Earth Sciences, 2020, 6312): 19691991.
    张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 564): 139.

    ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 564): 139.
    Allen M B, Windley B F, Zhang C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J]. Tectonophysics, 1993, 220: 89115. doi: 10.1016/0040-1951(93)90225-9
    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192: 5979. doi: 10.1016/S0009-2541(02)00195-X
    Belousova E, Griffin W, Oreilly S, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
    Blichert T, Albarède. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planet Science Letters, 1997, 148: 243258. doi: 10.1016/S0012-821X(97)00040-X
    Chen W, Zhang G, Ruan M, et al. Genesis of intermediate and silicic arc magmas constrained by Nb/Ta fractionation[J]. Journal of Geophysical Research Solid Earth, 2021, 126.
    Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research[J]. Lithos, 2005, 79: 271297. doi: 10.1016/j.lithos.2004.09.004
    Ewart A, Collerson K D, Regelous M, et al. Geochemical evolution within the Tonga–Kermadec–Lau arc–back-arc systems: the role of varying mantle wedge composition in space and time[J]. Journal of Petrology, 1998, 39: 331368. doi: 10.1093/petroj/39.3.331
    Frisch W, Meschede M, Blakey R. Plate tectonics: Continental drift and mountain building [M]. Berlin Heidelberg: Springer, 2011.
    Gao Jun, Long Lingli, Klemd R, et al. Tectonic evolution of the South Tianshan Orogen, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal Of Earth Sciences, 2009, 98: 12211238. doi: 10.1007/s00531-008-0370-8
    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64: 133147. doi: 10.1016/S0016-7037(99)00343-9
    Handley H K, Macpherson C G, Davidson J P, et al. Constraining Fluid and Sediment to Subduction-Related Magmatism in Indonesia: IjenVolcanic Complex[J]. Journal of Petrology, 2007, 48: 11551183. doi: 10.1093/petrology/egm013
    Huang He, Wang Tao, Tong Ying, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103255. doi: 10.1016/j.earscirev.2020.103255
    Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90: 297314. doi: 10.1016/0012-821X(88)90132-X
    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523548. doi: 10.1139/e71-055
    Hoskin P, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Rev Mineral Geochem, 2003, 53: 2762.
    Lizuka T, Hirata T. Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220: 121137. doi: 10.1016/j.chemgeo.2005.03.010
    Long Lingli, Gao Jun, Klemd R, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen: Implications for continental growth in the southwestern Central Asian Orogenic Belt[J]. Lithos, 2011, 126: 321340. doi: 10.1016/j.lithos.2011.07.015
    Ludwig K R. User's Manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel[J]. Be rkeley Geochronological Center Special Publication, 2003, 4: 2532.
    Marini J C, Chauvel C, Maury R C. Hf isotope compositions of northern Luzonarc lavas suggest involvement of pelagic sediments in their source[J]. Contributions to Mineralogy and Petrology, 2005, 149: 216232. doi: 10.1007/s00410-004-0645-4
    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79: 124. doi: 10.1016/j.lithos.2004.04.048
    Mccarthy A, Yogodzinski G M, Bizimis M, et al. Volcaniclastic sandstones record the influence of subducted Pacific MORB on magmatism at the early Izu-Bonin arc[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2021, 296: 170188. doi: 10.1016/j.gca.2021.01.006
    Middlemost E A H. Naming materials in magma-igneous rock system[J]. Earth-Science Reviews, 1994, 7: 215224.
    Miyashiro A. Classification, characteristics, and origin of ophiolites[J]. The Journal of Geology, 1975, 83: 249281. doi: 10.1086/628085
    Mullen E D. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 1983, 62: 5362. doi: 10.1016/0012-821X(83)90070-5
    Niu Y L, O’Hara M J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle[J]. Lithos, 2009, 112: 117.
    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[A]. In: Hawkesworth C J, Norry M J (eds.). Continental Basalts and Mantle Xenoliths[M]. Cambridge: Shiva Publishing Ltd., 1983.
    PLANK T. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents[J]. Journal of Petrology, 2005, 46: 921944. doi: 10.1093/petrology/egi005
    Qian Qing, Gao Jun, Klemd R, et al. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: constraints from SHRIMP zircon U–Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China[J]. International Journal Of Earth Sciences, 2009, 98: 551569. doi: 10.1007/s00531-007-0268-x
    Scherer E, Münker C, Mezger K. Calibration of the Lutetium-Hafnium clock[J]. Science, 2001: 683687.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313345. doi: 10.1144/GSL.SP.1989.042.01.19
    Tang M, Lee C T A, Chen K, et al. Nb/Ta systematics in arcmagma differentiation and the role of arclogites in continent formation[J]. Nature Communications, 2019, 10: 235. doi: 10.1038/s41467-018-08198-3
    Wang Tao, Tong Ying, Huang He, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023, 237: 104298. doi: 10.1016/j.earscirev.2022.104298
    Windley B F, Alexeiev D, Xiao WJ, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164: 3147. doi: 10.1144/0016-76492006-022
    Wood D A. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 1980, 50: 1130. doi: 10.1016/0012-821X(80)90116-8
    Xia Linqi, Xu Xueyi, Xia Zuchun, et al. Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, Northwestern China[J]. Geol. Soc. Am. Bull., 2004, 116: 419433. doi: 10.1130/B25243.1
    Xia Linqi. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139: 195212. doi: 10.1016/j.earscirev.2014.09.006
    Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32: 102117. doi: 10.1016/j.jseaes.2007.10.008
    Xu Xueyi, Wang Hongliang, Li Ping, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: Implications for Paleozoic tectonic evolution[J]. Journal Fwaof Asian Earth Sciences, 2013, 72: 3362. doi: 10.1016/j.jseaes.2012.11.023
    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasmas mass spectrometry[J]. Geostandard and Geoanalytical Research, 2004, 28: 353370. doi: 10.1111/j.1751-908X.2004.tb00755.x
    Zhu M S, Yan H Y, Pastor G D, et al. Do microcontinents nucleate subduction initiation?[J]. Geology, 2023, 7: 668672.
  • Cited by

    Periodical cited type(6)

    1. 王建坡,汪啸风. 中国奥陶纪地理分区的再认识. 古地理学报. 2025(01): 16-31 .
    2. 何佳乐,唐卫东,刘天航,高永宝,魏立勇,范堡程,于锴. 龙首山构造带罗城花岗闪长岩地质年代学、岩石成因和构造背景研究. 西北地质. 2025(01): 52-67 . 本站查看
    3. 弓汶琪,弓虎军,王苏里,罗芬红,王苗苗. 鄂尔多斯盆地东南部延长组中期物源分析及其对秦岭造山带隆升作用的指示. 西北地质. 2025(01): 118-134 . 本站查看
    4. 向浩予,刘松,康波,陈昌军,邓伟,邓修林,陈浩如. 班公湖-怒江成矿带西段白板地北部晚侏罗世花岗闪长岩锆石U-Pb年龄、微量元素组成及地质意义. 西北地质. 2025(01): 43-51 . 本站查看
    5. 谢应波,褚刚,罗华,郭盼. 鄂东南铁铜金钨钼多金属矿集区基底属性:来自继承锆石年龄和Hf同位素的约束. 西北地质. 2024(05): 283-297 . 本站查看
    6. 黄河,王涛,童英,张建军,王朝阳. 中国西天山古生代岩浆岩时空架构、源区特征及构造背景. 西北地质. 2024(06): 25-43 . 本站查看

    Other cited types(0)

Catalog

    Article views (194) PDF downloads (63) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return