ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LIU Shengrong,LUO Xingang,GU Pingyang,et al. Deep Tectonic Framework of Gonghe Basin and Its Influence on Heat Source of Dry Hot Rock[J]. Northwestern Geology,2024,57(5):130−141. doi: 10.12401/j.nwg.2024068
Citation: LIU Shengrong,LUO Xingang,GU Pingyang,et al. Deep Tectonic Framework of Gonghe Basin and Its Influence on Heat Source of Dry Hot Rock[J]. Northwestern Geology,2024,57(5):130−141. doi: 10.12401/j.nwg.2024068

Deep Tectonic Framework of Gonghe Basin and Its Influence on Heat Source of Dry Hot Rock

More Information
  • Received Date: April 30, 2024
  • Revised Date: July 24, 2024
  • Accepted Date: July 25, 2024
  • Available Online: July 29, 2024
  • As a new type of geothermal resource, dry-hot geothermal resource is a type of clean energy with broad development prospects. The Gonghe basin in Qinghai Province is located in the northeastern margin of the Qinghai-Tibet Plateau. The regional geological activities are rich, which creates good conditions for the formation of hot dry rock. Therefore, it is of great significance to study the tectonic framework of the Gonghe Basin and the heat generation model of dry-hot rock for geothermal resource exploration. Based on the normalized vertical derivative of total horizontal derivative of gravity anomaly (NVDR-THDR) and the fusion method of gravity and magnetic anomalies, the fault tectonic framework of Gonghe basin has been divided. A total of 20 deep and large faults are identified, and 9 of them are not identified by predecessors. The inferred F1-15 fault is the east-west boundary fault of Gonghe basin, which is of great significance to the genesis of dry-hot rock in Gonghe basin. The results from the ultra-low frequency magnetotelluric sounding profile and the normalized total gradient inversion of gravity anomalies show that the mantle material of the Gonghe basin migrated upward, heated and eroded the bottom of the lithosphere, resulting in melting and thinning of the bottom of the lithosphere. The basin are subject to the thrust nappe of the Qinghai Nanshan and Guinan Nanshan, but there are obvious differences in the deep geological structure between the eastern part and western part. The degree of extrusion deformation of the geological body in the western part is stronger than that in the eastern part. The density structure of the deep geological body in the western basin is characterized by an ' eight ' shape, which is characterized by a depressed basin, but the faults are less developed. A large number of deep faults are developed in the eastern basin, which provides a transmission channel for deep heat source materials and heat. Therefore, it is considered that the heat source of dry-hot rock in Gonghe basin is dominated by mantle heat flow conduction and partial melting layer in the crust, supplemented by heat generation of radioactive element decay, and the eastern part of the basin has more dry-hot rock accumulation conditions than the western part.

  • 白奋飞, 魏登峰, 韩伟, 等. 鄂尔多斯盆地延长油气区地热资源赋存特征及开发利用建议[J]. 西北地质, 2023, 56(6): 329−339.

    BAI Fenfei, WEI Dengfeng, HAN Wei, et al. Occurrence Characteristics and Exploitation of Geothermal Resources in Yanchang Oil and Gas Area of Ordos Basin[J]. Northwestern Geology, 2023, 56(6): 329−339.
    杜威. 几种位场数据处理方法的研究及在青海共和地区干热岩勘探中的应用[D]. 吉林: 吉林大学, 2018.

    DU Wei. The research of several techniques in the potential-fielddata prosessing and application on dry hot rock explorationin Gonghe Qinghai[D]. Jilin: Jilin University, 2018.
    冯治汉, 刘宽厚, 郭培虹, 等. 西北地区重磁场特征及其应用研究[M]. 武汉: 中国地质大学出版社, 2018.

    FENG Zhihan, LIU Kuanhou, GUO Peihong, et al. Characteristics of gravity and magnetic field and their application in Northwest China [M]. Wuhan: China University of Geosciences Press, 2018.
    郭灿灿, 张凤旭, 王彦国, 等. 基于泰勒级数迭代的重力归一化总梯度[J]. 世界地质, 2012, 3104): 824830. doi: 10.3969/j.issn.1004-5589.2012.04.026

    GUO Cancan, ZHANG Fengxu, WANG Yanguo, et al. Calculating normalized full gradient of gravity anomalies using Taylor series iteration[J]. Global Geology, 2012, 3104): 824830. doi: 10.3969/j.issn.1004-5589.2012.04.026
    黄磊, 侯泽明, 韩萱, 等. 基于二维NLCG反演的水文地质结构辨识研究[J]. 西北地质, 2022, 551): 249254.

    HUANG Lei, HOU Zeming, HAN Xuan, et al. Study on Aquifer Structure Identification based on 2D Magnetotelluric NLCG Inversion[J]. Northwestern Geology, 2022, 551): 249254.
    郭森, 马致远, 李劲彬, 等. 我国地热供暖的现状及展望[J]. 西北地质, 2015, 484): 204209. doi: 10.3969/j.issn.1009-6248.2015.04.020

    GUO Sen, MA Zhiyuan, LI Jinbin, et al. Status and Prospects of Geothermal Heating in China[J]. Northwestern Geology, 2015, 484): 204209. doi: 10.3969/j.issn.1009-6248.2015.04.020
    何涛, 王万银, 黄金明, 等. 正则化方法在比值类位场边缘识别方法中的研究[J]. 物探与化探, 2019, 432): 308319.

    HE Tao, WANG Wanyin, HUANG Jinming, et al. The research of the regularization method in the ratio methods of edge recognition by potential field[J]. Geophysical and Geochemical Exploration, 2019, 432): 308319.
    侯增谦, 许博, 郑远川, 等. 地幔通道流: 青藏高原大规模生长的深部机制[J]. 科学通报, 2021, 66: 26712690. doi: 10.1360/TB-2020-0817

    HOU Zengqian, XU Bo, ZHENG Yuanchuan, et al. Mante low: The deepmechanism oflarge-scale growth in Tbetan Plateau[J]. Chinese Science Bulletin, 2021, 66: 26712690. doi: 10.1360/TB-2020-0817
    纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 5803): 10421058.

    JI Xiaolin, WANG Wanyin, QIU Zhiyun. The research to the minimum curvature technique for potential field data separation[J]. Chinese Journal of Geophysics, 2015, 5803): 10421058.
    鲁宝亮, 马涛, 熊盛青, 等. 基于重磁异常相关分析的场源位置及属性识别方法[J]. 地球物理学报, 2020, 634): 16631674. doi: 10.6038/cjg2020N0355

    LU Baoliang, MA Tao, XIONG Shengqing, et al. A new recognition method for source locations and attributes based on correlation analysis of gravity and magnetic anomalies[J]. Chinese Journal of Geophysics, 2020, 634): 16631674. doi: 10.6038/cjg2020N0355
    刘春雷, 杨会峰, 曹文庚. 利用环境同位素识别共和盆地地下水补给特征及其环境指示意义[J]. 西北地质, 2022, 552): 227236.

    LIU Chunlei, YANG Huifeng, CAO Wengeng. Identify Groundwater Recharge Characteristics and Environmental Implications in Gonghe Basin Using Environmental Isotopes in Gonghe Basin[J]. Northwestern Geology, 2022, 552): 227236.
    毛翔, 国殿斌, 罗璐, 等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 2019, 6506): 14621472.

    MAO Xiang, GUO Dianbin, LUO Lu, et al. The global development process of hot dry rock(enhanced geothermal system) and its geological background[J]. Geological Review, 2019, 6506): 14621472.
    沈显杰, 张文仁, 杨淑贞, 等. 青藏高原南北地体壳幔热结构差异的大地热流证据[J]. 中国地质科学院院报, 1990, 2102): 203214.

    SHEN Xianjie, ZHANG Wenren, YANG Shuzhen, et al. Heat flow evidence for the differentiated crust-mantle thermal structures of the northern and southern terranes of the Qinghai-Xizang plateau[J]. Bulletin of The Chinese Academy of Geological Sciences, 1990, 2102): 203214.
    沈显杰, 朱元清, 石耀霖. 青藏热流与构造热演化模型研究[J]. 中国科学(B辑 化学 生命科学 地学), 199203): 311321.

    SHEN Xianjie, ZHU Yuanqing, SHI Yaolin. Study on the model of heat flow and tectonic thermal evolution in Qinghai-Tibet[J]. Science in China (Series B Chemical Life Sciences Geoscience), 199203): 311321.
    石宝颐, 张峻太. 论秦—昆构造带的共和“缺口”[J]. 青海地质, 1982, (3): 2029.

    SHI Baoyi, ZHANG Juntai. On the Republic "Gap" in Qin-Kun Structural Belt[J]. Geology of Qinghai, 1982, (3): 2029.
    苏超, 杜晓娟, 马国庆, 等. 几何平均重力归一化总梯度在山东招远金矿采空区的应用[J]. 世界地质, 2014, 334): 889894. doi: 10.3969/j.issn.1004-5589.2014.04.017

    SU Chao, DU Xiaojuan, MA Guoqing, et al. Appication of normalized full gradient method with geometric mean in mined-out area of Zhaoyuan gold deposit in Shandong[J]. Global Geology, 2014, 334): 889894. doi: 10.3969/j.issn.1004-5589.2014.04.017
    孙知新, 李百祥, 王志林. 青海共和盆地存在干热岩可能性探讨[J]. 水文地质工程地质, 2011, 3802): 119124+129. doi: 10.3969/j.issn.1000-3665.2011.02.021

    SUN Zhixin, LI Baixiang, WANG Zhilin. Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin[J]. Hydrogeology & Engineering Geology, 2011, 3802): 119124+129. doi: 10.3969/j.issn.1000-3665.2011.02.021
    唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 947): 20522065. doi: 10.3969/j.issn.0001-5717.2020.07.013

    TANG Xianchun, WANG Guiling, MA Yan, et al. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 2020, 947): 20522065. doi: 10.3969/j.issn.0001-5717.2020.07.013
    王斌, 李百祥, 马新华. 青海共和—贵德干热岩勘查评价中热储温度与深度预测[J]. 地下水, 2015, 373): 2830, 72. doi: 10.3969/j.issn.1004-1184.2015.03.011

    WANG Bin, LI Baixiang, MA Xinhua. Prediction of heat storage temperature and depth in Gonghe-Guide dry hot rock exploration and evaluation in Qinghai Province[J]. Ground Water, 2015, 373): 2830,72. doi: 10.3969/j.issn.1004-1184.2015.03.011
    王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 3804): 449450+134+451−459.

    WANG Guiling, ZHANG We, LIANG Jiyun, et al. Evaluation of Geothermal Resources Potential in China[J]. Acta Geoscientica Sinica, 2017, 3804): 449450+134+451−459.
    王洪, 王成虎, 高桂云, 等. 青海共和盆地地应力状态与断层稳定性分析[J]. 震灾防御技术, 2021, 161): 123133. doi: 10.11899/zzfy20210113

    WANG Hong, WANG Chenghu, GAO Guiyun. The State ofthe In-situ Stress and Fault Slide Evaluation of Gonghe Basin, Qinghai Province[J]. Technology for Earthquake Disaster Prevention, 2021, 161): 123133. doi: 10.11899/zzfy20210113
    王坤. 干热岩勘查中大地电磁测深正反演及其应用研究[D]. 吉林: 吉林大学, 2019.

    WANG Kun. Research on Simulation and Inversion of Magnetotelluricfor Hot Dry Rock Exploration and Its Application[D]. Jilin: Jilin University, 2019.
    许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 9209): 19361947. doi: 10.3969/j.issn.0001-5717.2018.09.012

    XU Tianfu, HU Zixu, LI Shengtao, et al. Enhanced Geothermal System: International Progresses and Research Status of China[J]. Acta Geologica Sinica, 2018, 9209): 19361947. doi: 10.3969/j.issn.0001-5717.2018.09.012
    薛建球, 甘斌, 李百祥, 等. 青海共和—贵德盆地增强型地热系统(干热岩)地质—地球物理特征[J]. 物探与化探, 2013, 371): 3541.

    XUE Jianqiu, GAN Bing, LI Baixiang, et al. Geological-geophysical characteristics of enhanced geothermal systems(hot dry rocks) in Gonghe-Guide basin[J]. Geophysical & Geochemical Exploration, 2013, 371): 3541.
    严维德, 王焰新, 高学忠, 等. 共和盆地地热能分布特征与聚集机制分析[J]. 西北地质, 2013, 464): 223230. doi: 10.3969/j.issn.1009-6248.2013.04.022

    YAN Weide, GAO Xuezhong, GAO Xuezhong, et al. Distribution and aggregation mechanism of geothermal energy in Gonghe basin[J]. Northwestern Geology, 2013, 464): 223230. doi: 10.3969/j.issn.1009-6248.2013.04.022
    贠晓瑞, 陈希节, 蔡志慧, 等. 青海共和盆地东北部干热岩岩浆侵位结晶条件及深部结构初探[J]. 岩石学报, 2020, 3610): 31713191. doi: 10.18654/1000-0569/2020.10.14

    YUN Xiaorun, CHEN Xijie, CAI Zhihui, et al. Preliminary study on magmatic emplacementand crystallization conditions and deep structure of hot dry rock in the northeastern Gonghe basin, Qinghai Province[J]. Acta Petrologica Sinica, 2020, 3610): 31713191. doi: 10.18654/1000-0569/2020.10.14
    张超, 张盛生, 李胜涛, 等. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理报, 2018, 6111): 45454557.

    ZHANG Chao, ZHANG Shengsheng, LI Shentao, et al. Geothermal characteristics of the Qiabugia geothermal area in the Gonghe basin, northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2018, 6111): 45454557.
    张森琦, 付雷, 张杨, 等. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定. 天然气工业, 2020, 40(9): 156-169.

    ZHANG Senqi, FU Lei, ZHANG Yang, et al. Delineation of hot dry rock exploration target area in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natural Gas Industry, 2020, 40(9): 156-169.
    张森琦, 严维德, 黎敦朋等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 2018, 456): 10871102. doi: 10.12029/gc20180601

    ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabugia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 2018, 456): 10871102. doi: 10.12029/gc20180601
    张雪亭, 杨生德, 杨站君. 青海省板块构造研究—1∶100 万青海省大地构造图说明书[M]. 北京: 地质出版社, 2007.
    赵维俊, 颜廷杰, 高智超. 大地电磁非线性共轭梯度反演试验—以内蒙古扎鲁特盆地数据为例[J]. 地球物理学进展, 2014, 2905): 21282135.

    ZHAO Weijun, YAN Tingjie, GAO Zhichao. Magnetotellu-ric nonlinear conjugate gradient inversion experiments: an example from data acquired in the Jarud Basin, Inner Mongolia, China[J]. Progress in Geophysics, 2014, 2905): 21282135.
    张昆, 魏文博, 吕庆田, 等. 井地大地电磁非线性共轭梯度二维反演研究[J]. 地质学报, 2011, 8505): 915924.

    ZHANG Kun, WEI Wenbo, LV Qingtian. The study of 2-Dnonlinear conjugate gradients inversion of borehole-to-surface magnetotelluric[J]. Acta Geologica Sinica, 2011, 8505): 915924.
    赵振明, 刘百篪. 对龙羊峡形成的初步认识[J]. 西北地质, 2005, 382): 2432. doi: 10.3969/j.issn.1009-6248.2005.02.003

    ZHAO Zhenming, LIU Baichi. The primary perspective of Longyang Gorge formation[J]. Northwestern Geology, 2005, 382): 2432. doi: 10.3969/j.issn.1009-6248.2005.02.003
    Chen D, Wyborn D. Habanero field tests in the cooper Basin, Australia: A proof of concept for EGS[J]. Transactions Geothermal Resources Council, 2009, 33: 140145.
    Feng Y F, zhang X X, Zhaang B, et al. Thegeothermal formation mechanismin the Gonghe basin: Discussion and analysis from the geological background[J]. China Geology, 2018, 1: 331345. doi: 10.31035/cg2018043
    Gao J, Zhang H J, Zhang H P, et al. Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe basin, Northeast Tibetan Plateau[J]. Geothermic, 2020, 76: 1525.
    Springer M. Interpretation of heatrflow density in the Central Andes[J]. Tectonophysics, 1999, 3063-4): 377395. doi: 10.1016/S0040-1951(99)00067-0
    Wang W Y, Pan Y, Qiu Z Y. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009, 63): 226233. doi: 10.1007/s11770-009-0026-x
    Zhu Y J, Wang W Y, Farquharson C G, et al. Normalized vertical derivatives in the edge enhancement of maximum-edge-recognition methods in potential fields[J]. Geophysics, 2021, 864): G23G34. doi: 10.1190/geo2020-0165.1
  • Related Articles

Catalog

    Article views (108) PDF downloads (54) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return