ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
ZHA Xianfeng,HUANG Botao,LUO Keyong,et al. Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091
Citation: ZHA Xianfeng,HUANG Botao,LUO Keyong,et al. Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt[J]. Northwestern Geology,2024,57(6):58−77. doi: 10.12401/j.nwg.2024091

Identification of the Permian Arc-Related Magmatic Rocks and Its Significance in Panjiajingzi Area, Southern Margin of Beishan Orogenic Belt

More Information
  • Received Date: February 27, 2024
  • Revised Date: August 26, 2024
  • Accepted Date: October 07, 2024
  • Available Online: October 20, 2024
  • The Beishan Orogenic Belt, located at the southern margin of the Central Asian Orogenic Belt, is important for understanding the tectonic affinity and evolutionary history, in terms of the accurate determination or disintegration of the namely Precambrian basement rocks. The originally defined Dunhuang Group in Panjiajingzi area is composed mainly of leptynite, leptite, meta-conglomerate, minor amphibolite, and mica quartz schist, and is characterized by strong deformation and low-grade metamorphosed pyroclastic rocks, based on regional geological investigation. Zircon U-Pb ages of 294~285 Ma for leptynite, mica quartz schist, and leptite samples, as well as the minimum age of (272±6) Ma for gravel sample from meta-conglomerate have been obtained with no ancient geochronological information. All these dating data indicate that these mata pyroclastic rocks were deposited later than Middle Permian. In addition, the meta basic volcanic samples have high TiO2 and Na2O contents with obvious Nb-Ta trough, and display right-sloping chondrite-nomalized REE patterns, resembling that of the arc basalts. Combining our data and regional geology, it is reasonable to believe that these meta pyroclastic rocks were formed in a local extension setting during the subduction process during Early to Middle Permian, and thus these rocks should be disintegrated from the Dunhuang Group.

  • 卜涛, 王国强, 黄博涛, 等. 北山北带新元古代A型花岗岩: Rodinia超大陆裂解早期的地质响应[J]. 岩石学报, 2022, 38(10): 2988–3002.

    BU Tao, WANG Guoqiang, HUANG Botao, et al. Neoproterozoic A type granites in northern Beishan Orogenic Belt: Early response of the Rodinia supercontinent break-up [J]. Acta Petrologica Sinica, 38(10): 2988–3002.
    陈言飞, 邵兆刚, 陈宣华, 等. 北山古堡泉地区榴辉岩变质作用P-T-t轨迹及构造意义[J]. 地球学报, 2022, 436): 895908.

    CHEN Yanfei, SHAO Zhaogang, CHEN Xuanhua, et al. P-T-t Path and Tectonic Implications of Gubaoquan Eclogite from Beishan Region[J]. Acta Geoscientica Sinica, 2022, 436): 895908.
    董云鹏, 周鼎武, 张国伟, 等. 中天山南缘乌瓦门蛇绿岩形成构造环境[J]. 岩石学报, 2005, 21(1): 37–44.

    DONG Yunpeng, ZHOU Dingwu, ZHANG Guowei, et al. Tectonic setting of the Wuwamen ophiolite at the southern margin of middle Tianshan Belt [J]. Acta Petologica Sinica, 21(1): 37–44.
    高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 2812): 18041816.

    GAO Jun, QIAN Qing, LONG Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 2009, 2812): 18041816.
    何世平, 任秉琛, 姚文光, 等. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 2002, 354): 3040.

    HE Shiping, REN Bingchen, YAO Wenguang, et al. The division of tectonic units of Beishan area, Gansu-Inner Mongolia[J]. Northwestern Geology, 2002, 354): 3040.
    贺振宇, 孙立新, 毛玲娟, 等. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb 定年和Hf 同位素: 中元古代的岩浆作用与地壳生长[J]. 科学通报, 2015, 604): 389399. doi: 10.1360/N972014-00898

    HE Zhenyu, SUN Lixin, MAO Lingjuan, et al. Zircon U-Pb and Hf sotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth[J]. Chinese Science Bulletin, 2015, 604): 389399. doi: 10.1360/N972014-00898
    贺振宇, 宗克清, 姜洪颖, 等. 北山造山带南部早古生代构造演化: 来自花岗岩的约束[J]. 岩石学报, 2014, 308): 23242338.

    HE Zhen, ZONG Keqiong, JIANG Hongying, et al. Early Paleozoic tectonic evolution of the southern Beishan orogenic collage: Insights from the granitoids[J]. Acta Petrologica Sinica, 2014, 308): 23242338.
    计文化, 李荣社, 陈奋宁, 等. 中国西北地区南华纪—古生代构造重建及关键问题讨论[J]. 地质力学学报, 2020, 265): 634655.

    JI Wenhua, LI Rongshe, CHEN Fenning, et al. Tectonic reconstruction of northwest China in the Nanhua-Paleozoic and discussions on key issues[J]. Journal of Geomechanics, 2020, 265): 634655.
    姜洪颖, 贺振宇, 宗克清, 等. 北山造山带南缘北山杂岩的锆石U-Pb 定年和Hf同位素研究[J]. 岩石学报, 2013, 29(11): 3949–3467.

    JIANG Hongying, HE Zhenyu, ZONG Keqiong, et al. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt [J]. Acta Petrologic Sinica, 2013, 29(11): 3949–3967.
    姜洪颖, 贺振宇. 北山造山带南部晚古生代花岗岩‒闪长岩的成因与构造意义[J]. 地球科学, 2022, 47(9): 3270–3284.

    JIANG Hongying, HE Zhenyu. Petrogenesis and Tectonic Implications of Late Paleozoic Granite-Diorite from the Southern Beishan Orogen [J]. Earth Science, 47(9): 3270–3284.
    李锦轶, 王克卓, 李亚萍, 等. 天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报, 2006, 25(8): 896–909.

    LI Jingyi, WANG Kezhuo, LI Yaping, et al., Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains [J]. Geological Bulletin of China, 2006, 25(8): 896–909.
    李炜, 陈隽璐, 董云鹏, 等. 早古生代古亚洲洋俯冲记录: 来自东天山卡拉塔格高镁安山岩的年代学、地球化学证据[J]. 岩石学报, 2016, 322): 505521.

    LI Wei, CHEN Junlu, DONG Yunpeng, et al. Early Paleozoic subduction of the Paleo-Asian Ocean: Zircon U-Pb geochronological and geochemical evidence from the Kalatag high-Mg andesites, East Tianshan[J]. Acta Petrologica Sinica, 2016, 322): 505521.
    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 564): 274282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 564): 274282.
    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 8912): 24002418.

    LI Yanguang, WANG Shuangshuang, LIU Mingwu, et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica, 2015, 8912): 24002418.
    李沅柏, 李海泉, 周文孝, 等. 北山造山带新元古代热事件及其构造意义: 来自甘肃北山南带两期花岗质岩的地球化学和年代学证据[J]. 地质通报, 2021, 407): 11171139.

    LI Yuanbo, LI Haiquan, ZHOU Wenxiao, et al. Neoproterozoic thermal events and tectonic implications in the Beishan orogenic belt: Geochemical and geochronological evidence from two sets of granitic rocks from southern Beishan orogenic belt, Gansu Province[J]. Geological Bulletin of China, 2021, 407): 11171139.
    李智佩, 吴亮, 颜玲丽. 中国西北地区蛇绿岩时空分布与构造演化[J]. 地质通报, 2020, 396): 783871.

    LI Zhipei, WU Liang, YAN Lingli. Saptial and temporal distribution of ophiolites and regional tectonic evolution in Northwest China[J]. Geological Bulletin of China, 2020, 396): 783871.
    牛文超, 辛后田, 段连峰, 等. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1: 5万清河沟幅地质图的新认识[J]. 中国地质, 2019, 465): 977994.

    NIU Wenchao, XIN Houtian, DUAN Lianfeng, et al. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia: New understanding based on the geological map of Qinghegou Sheet (1∶50000)[J]. Geology in China , 2019, 465): 977994.
    牛亚卓. 新甘蒙北山地区晚古生代古沉积面貌及构造属性[D]. 西安: 西北大学, 2019, 1–142.

    NIU Yazhuo. Late Paleozoic paleogeographic reconstruction and tectonic implication of the Beishan region, NW China [D]. Xi’an: Northwest University, 2019, 1–142.
    甘肃省地质矿产局酒泉地质矿产调查队. 1∶50000西涧泉幅(K47E019003)区域地质图[R]. 甘肃省地质矿产局酒泉地质矿产调查队, 1993.
    甘肃省地质调查院. 1∶25万红宝石幅区域地质调查报告[R]. 甘肃省地质调查院, 2005.
    甘肃省地质调查院. 1∶25万马鬃山幅区域地质调查报告[R]. 甘肃省地质调查院, 2001.
    汪云亮, 张成江, 修淑芝. 玄武岩形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413–421.

    WANG Yunliang, ZHANG Chengjiang, XIU Shuzhi. Th/Hf-Ta/Hf identification of tectonic setting of basalts [J]. Acta Petrological Sinica, 2001, 17(3): 413–421.
    王国强, 李向民, 徐学义, 等. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 2021, 401): 7181.

    WANG Guoqiang, LI Xiangmin, XU Xueyi, et al. Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 2021, 401): 7181.
    吴妍蓉, 周海, 赵国春, 等. 中亚造山带南蒙古地区石炭纪—二叠纪岩浆活动及其构造意义[J]. 西北地质, 2024, 57(3): 11−28.

    WU Yanrong, ZHOU Hai, ZHAO Guochun, et al. Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 11−28.
    王洪亮, 徐学义, 何世平, 等. 1∶1000000中国天山及邻区地质图[M]. 北京: 地质出版社, 2007.

    WANG Hongliang, XU Xueyi, HE Shipping, et al. 1∶1000000 Geological Map of Chinese Tianshan and Adjacent Areas [M]. Beijing: Geological Publishing House, 2007.
    王文宝, 李卫星, 雷聪聪, 等. 中亚造山带中段早—中三叠世埃达克岩和A型花岗岩成因及构造意义[J]. 西北地质, 2024, 57(3): 29−43.

    WANG Wenbao, LI Weixing, LEI Congcong, et al. Early-Middle Triassic Adakitic and A-type Granite in Middle Segment of Central Asian Orogenic Belt: Petrogenesis and Tectonic Implications[J]. Northwestern Geology, 2024, 57(3): 29−43.
    徐学义, 李荣社, 陈隽璐, 等. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 2014, 30(6): 1521–1534.

    XU Xueyi, LI Rongshe, CHEN Junlu, et al., New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area [J]. Acta Petrologica Sinica, 2014, 30(6): 1521–1534.
    许伟, 徐学义, 牛亚卓, 等. 北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义[J]. 岩石学报, 2018, 3410): 30113022.

    XU Wei, XU Xueyi, NIU Yazhuo, et al. Geochronology, petrogenesis and tectonic implications of the Early Permian A-type rhyolite from southern Beishan orogen, NW China[J]. Acta Petrologica Sinica, 2018, 3410): 30113022.
    许伟. 北山南部晚古生代构造格局与演化: 来自古地磁与岩浆作用的制约[D]. 西安: 长安大学, 2019, 1–194.

    XU Wei. The Late Paleozoic tectonic framework and evolution in southern Beishan: constraints from paleomagnetism and magmatism [D]. Xi’an: Chan’an University, 2019, 1–194.
    杨高学, 刘晓宇, 朱钊, 等. 中亚造山带西准噶尔地区达尔布特蛇绿岩研究进展与展望[J]. 西北地质, 2024, 57(3): 1−10.

    YANG Gaoxue, LIU Xiaoyu, ZHU Zhao, et al. Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt[J]. Northwestern Geology, 2024, 57(3): 1−10.
    余吉远, 李向民, 王国强, 等. 北山地区辉铜山、帐房山蛇绿岩U-Pb年龄及其意义[J]. 地质通报, 2012, 31(12): 2038–2045.

    YU Jiyuan, LI Xiangmin, WANG Guoqiang, et al. Zircon U-Pb ages of Huitongshan and Zhangfangshan ophiolite in Beishan of Gansu-Inner Mongolia border area and their significance [J]. Geological Bulletin of China, 2012, 31(12): 2038–2045.
    俞胜, 赵斌斌, 贾轩, 等. 北山造山带南缘一条山北闪长岩地球化学、年代学特征及其构造意义[J]. 西北地质, 2022, 554): 267279.

    YU Sheng, ZHAO Binbin, JIA Xuan, et al. Geochemistry, geochronology characteristics and tectonic significance of Yitiaoshan diorite in the southern margin of Beishan Orogenic Belt[J]. Northwestern Geology, 2022, 554): 267279.
    袁禹. 北山造山带大陆地壳的形成与演化[D]. 武汉: 中国地质大学, 2019, 1–144.

    YUAN Yu. The continental crust formation and evolution of the Beishan Orogenic Belt [D]. Wuhan: China University of Geosciences, 2019, 1–144.
    张海迪, 陈博, 吕鹏瑞, 等. 东天山黄山西角闪辉长岩成因及其地质意义: 来自锆石U-Pb年代学及地球化学的证据[J]. 西北地质, 2021, 54: 5165.

    ZHANG Haidi, CHEN Bo, LÜ Pengrui, et al. The Petrogenesis and Geological Significance of the Hornblende Gabbro in Western Huangshan of East Tianshan: Evidence from Zircon U-Pb Chronology and Geochemistry[J]. Northwestern Geology, 2021, 54: 5165.
    张立飞, 艾永亮, 李强, 等. 新疆西南天山超高压变质带的形成与演化[J]. 岩石学报, 2005, 214): 10291038.

    ZHANG Lifei, AI Yongliang, LI Qiang, et al. The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2005, 214): 10291038.
    张招崇, 董书云. 大火成岩省是地幔柱作用引起的吗?[J]. 现代地质, 2007, 212): 247254.

    ZHANG Zhaochong, DONG Shuyun. Were large igneous provinces caused by mantle plumes?[J]. Geoscience, 2007, 212): 247254.
    赵泽辉, 郭召杰, 韩宝福, 等. 新疆东部-甘肃北山地区二叠纪玄武岩对比研究及其构造意义[J]. 岩石学报, 2006, 225): 12791293.

    ZHAO Zehui, GUO Zhaojie, HAN Baofu, et al. Comparative study on Permian basalts from eastern Xinjiang-Beishan area of Gansu province and its tectonic implications[J]. Acta Petrologica Sinica, 2006, 225): 12791293.
    左国朝, 何国琦. 北山板块构造及成矿规律[M]. 北京: 北京大学出版社, 1990, 1–226.

    ZUO Guochao, HE Guoqi. Plate Tectonics and Metallogenic Regularities in Beishan Region [M]. Beijing: Peking University Press, 1990, 1–226.
    Ao S J, Xiao W J, Windley B F, et al. Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology [J]. Gondwana Research, 2015, 30: 224–235.
    He Z Y, Klemdb R, Yana L L, et al. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt [J]. Earth-Science Reviews, 2018. 185: 1–14.
    He Z Y, Zhang Z M, Zong K Q, et al. Metamorphic P–T–t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for early Paleozoic continental subduction [J]. Lithos, 2014, 196–197: 1–13.
    Hong T, Santos G S, Van Staal C R, et al. Mapping uncovered a multi-phase arc-back-arc system in the southern Beishan during the Permian [J]. National Science Review, 2023, 10: nwac204.
    Huang B T, Wang G Q, Li X M, et al. Precambrian tectonic affinity of the Beishan Orogenic Belt: Constraints from Proterozoic metasedimentary rocks [J]. Precambrian Research, 2022, 376: 106686.
    Kang W B, Li W, Kang L, et al. Metamorphism and geochronology of garnet amphibolite from the Beishan Orogen, southern Central Asian Orogenic Belt: Constraints from P-T path and zircon U-Pb dating[J]. Geoscience Frontiers, 2020, 11: 11891201.
    Li J, Wu C, Chen X H, et al. Tectonic evolution of the Beishan orogen in central Asia: Subduction, accretion, and continent-continent collision during the closure of the Paleo-Asian Ocean [J]. Geological Society of America Bulletin, 2023. doi: 10.1130/B36451.1.
    Li S, Wilde S A, Wang T. Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications[J]. Lithos, 2013, 179: 99119.
    Liu X C, Chen B L, Jahn B M, et al. Early Paleozoic (ca. 465 Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern central Asian orogenic belt [J]. Journal of Asian Earth Sciences, 2011, 42, 715–731.
    Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size [J]. Chinese Science Bulletin, 2007, 52(9), 1257–1264.
    Mao Q, Xiao W, Windley B F, et al. The Liuyuan complex in the Beishan, NW China: a Carboniferous-Permian ophioliteic fore-arc silver in the southern Altaids [J]. Geological Magazine, 2012, 149: 483–509.
    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207218. doi: 10.1016/0009-2541(86)90004-5
    Miyashiro A. Volcanic rock series in island arcs and active continental margins [J]. American Journal of Science, 1974, 274: 321–355.
    Niu Y Z, Liu C Y, Shi G R, et al. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure [J]. Journal of Asian Earth Sciences, 2018, 167: 11–32.
    Niu Y Z, Shi G R, Wang J Q, et al. The closing of the southern branch of the Paleo-Asian Ocean: Constraints from sedimentary records in the southern Beishan region of the Central Asian Orogenic Belt, NW China [J]. Marine and Petroleum Geology, 2021, 124: 104791.
    Polat A, Hofmann A W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland [J] Precambrian Research, 2003, 126(3–4): 197–218.
    Qin K Z, Su B X, Sakyi P A, et al. SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Ma mantle plume[J]. American Journal of Science, 2011, 311: 237–260.
    Saktura W M, Buckman S, Nutman A P, et al. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China [J]. Litos, 2017, 294–295: 20–38.
    Santos G S, Hong T, Van Staal C R, et al. Permian back-arc basin formation and arc migration in the southern Central Asian Orogenic Belt, NW China [J]. Geological Journal, 2022. doi: 10.1002/gj.4609.
    Schmidt M W, Jagoutz O. The global systematics of primitive arc melts [J]. Geochemistry Geophysics Geosystems, 2017, 18: 2817–2854.
    Şengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia [J]. Nature, 1993, 364: 299–307.
    Şengör A M C, Sunal G, Natal'in B A, et al. The Altaids: A review of twenty-five years of knowledge accumulation [J]. Earth-Science Reviews, 2022. doi: org/10.1016/j.earscirev.2022.104013.
    Smithies R H, Jwanic T J, Lowrey J R, et al. Two distinct origins for Archean greenstone belts [J]. Earth and Planetary Science Letters, 2018, 487: 106–116.
    Song D F, Xiao W J, Han C M, et al. Geochronological and geochemical study of gneiss–schist complexes and associated granitoids, Beishan Orogen, southern Altaids [J]. International Geology Review, 2013, 55(14): 1705–1727.
    Su B X, Qin K Z, Sakyi P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 20(2–3): 516–531.
    Sun S S, Mc Donough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processed [J]. Magmatism in Ocean Basins, Geological Society of London Special Publication, 1989, 42: 313–345.
    Tian Z H, Xiao W J. An Andean-type arc transferred into a Japanese-type arc at final closure stage of the Palaeo-Asian Ocean in the southernmost of Altaids [J]. Geological Journal, 2020, 55: 1613–1619.
    Wang B, Yang X S, Li S C, et al. Geochronology, geochemistry, and tectonic implications of early Neoproterozoic granitic rocks from the eastern Beishan Orogenic Belt, southern Central Asian Orogenic Belt [J]. Precambrian Research, 2021, 352, 106016.
    Wang K, Xiao W J, Windley B F, et al. The Dashui subduction complex in the Eastern Tianshan Beishan Orogen (NW China): Long-Lasting subduction accretion terminated by unique Mid-Triassic strike-slip juxtaposition of arcs in the Southern Altaids [J]. Tectonics, 2022, 41, e2021TC007190.
    Winchester J A, and Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325343. doi: 10.1016/0009-2541(77)90057-2
    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age [J]. Chinese Science Bulletin, 2004, 49(15): 1554–1569.
    Xia L Q, Xia Z C, Xu X Y, et al. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China[J]. Journal of Asian Earth Sciences, 2008, 31(4–6): 357–378.
    Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia [J]. Journal of Asian Earth Sciences, 2008, 32(2–4): 102–117.
    Xiao W J, Mao Q G, Windley B F, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage [J]. American Journal of Science, 2010, 310(10): 1553–1594.
    Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477–507.
    Yuan Y, Zong K Q, He Z Y, et al. Geochemical and geochronological evidence for a former early Neoproterozoic microcontinent in the south Beishan orogenic belt, southernmost central Asian orogenic belt [J]. Precambrian Research, 2015, 266, 409–424.
    Zhang Q W L, Chen Y C, Li Z M G, et al. Identification of continental fragments in orogen: an example from Dunhuang Orogenic Belt, NW China [J]. Science Bulletin, 2022, 67, 1549–1552.
    Zhang Y Y, Dostal J, Zhao Z H, et al. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust-mantle interaction[J]. Gondwana Research, 2011, 20(4): 816–830.
    Zhang Y Y, Yuan C, Sun M, et al. Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere-lithosphere interaction in response to slab break-off[J]. Lithos, 2015, 233: 174–192.
    Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea [J]. Earth-Science Reviews, 2018, 186: 262–286.
    Zheng R G, Wu T R, Zhang W, et al. Geochronology and geochemistry of late Paleozoic magmatic rocks in the Yinwaxia area, Beishan: Implications for rift magmatism in the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2014, 91: 39–55.
    Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 2017, 290, 32–48.
    Zong K Q, Liu Y S, Zhang Z M, et al. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China [J]. Precambrian Research, 2013, 235(34): 251–263.
  • Related Articles

Catalog

    Article views (146) PDF downloads (51) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return