Citation: | ZHANG Jun,YU Kun,DONG Jiaqiu,et al. Ecohydrological Response in Riparian Zone Under Intermittent Ecologic Water Conveyance in the Lower Reaches of Arid Inland Rivers in NW China: Progress and Prospect[J]. Northwestern Geology,2025,58(2):31−40. doi: 10.12401/j.nwg.2024067 |
Intermittent ecological water transport is an important engineering measure to restore the ecosystem in the lower reaches of arid inland rivers. Water desalination zones with dynamic balance of water and salt are developed in riparian zones under alternating water transport and cut-off, which become the basis for maintaining the health and stability of riparian ecosystems. The ecohydrological coupling mechanism behind these zones remains to be clarified. By reviewing the research progress of hydrological and ecological response of ecological water conveyance in the lower reaches of arid inland rivers in northwest China, this paper provides scientific basis for efficient utilization of water resources and ecological protection and restoration of arid inland river basins. The research on dynamic response of groundwater in riparian zone, water transport process and simulation, water use strategy and ecological response of vegetation in riparian zone are summarized. Further research prospects and suggestions were put forward from four aspects: groundwater dynamics and vegetation response law in riparian zone under ecological water conveyance, evolution of the relationship between rivers and groundwater, water storage, regulation and storage mechanism in riparian zone, water use strategy and water consumption changes in riparian forest under alternate water transport and cut off flow conditions, and optimization of ecological water transport schemes. Future research must focus on the "river-groundwater-vegetation system" groundwater dynamics mechanism, analyze the dynamic evolution of the relationship between rivers and groundwater under the intermittent ecological conveyance condition of the lower reaches of arid inland rivers, identify the influence range and formation and evolution law of the desalination zone, and clarify the role of water storage and regulation in the riparian zone. From the perspective of vegetation water strategy and changing ecological landscape patterns to reveal the rule of river bank vegetation ecological response. Multi-source information should be used to describe the structure and process of the "river-groundwater - vegetation system", simulate and predict the groundwater salt migration and ecological response process under different ecological water transport scenarios, and put forward optimization suggestions of ecological water transport scheduling schemes for maximum ecological benefits.
陈亚鹏, 周洪华, 朱成刚. 塔里木河下游胡杨水分传输过程研究综述[J]. 干旱区地理, 2021, 44(3): 612−619.
CHEN Yapeng, ZHOU Honghua, ZHU Chenggang. A review of water transport processes of Populus euphratica in the lower reaches of Tarim River[J]. Arid Land Geography,2021,44(3):612−619.
|
陈曦, 包安明, 王新平, 等. 塔里木河近期综合治理工程生态成效评估[J]. 中国科学院院刊, 2017, 32(1): 20−28.
CHEN Xi, BAO Anming, WANG Xinping, et al. Ecological Effect Evaluation of Comprehensive Control Project in Tarim River Basin[J]. Bulletin of Chinese Academy of Sciences,2017,32(1):20−28.
|
陈亚宁, 李卫红, 陈亚鹏, 等. 新疆塔里木河下游断流河道输水与生态恢复[J]. 生态学报, 2007, 27(2): 538−545.
CHEN Yaning, LI Weihong, CHEN Yapeng, et al. Water conveyance in dried-up riverway and ecological restoration in the lower reaches of Tarim River, China[J]. Acta Ecologica Sinica,2007,27(2):538−545.
|
陈永金, 陈亚宁, 李卫红. 输水作用下的地下水水质变化与胡杨林更新——以塔里木河下游英苏断面为例[J]. 干旱区研究, 2005, 22(1): 101−105.
CHEN Yongjin, CHEN Yaning, LI Weihong. Change of Groundwater Quality and Restoration of the Forests of Populus euphratica under Transfusing Stream Water to the Lower Reaches of the Tarim River: A Case Study along Yengisu Section[J]. Arid Zone Research,2005,22(1):101−105.
|
党学亚, 张俊, 常亮, 等. 西北地区水文地质调查与水资源安全[J]. 西北地质, 2022, 55(3): 81−95.
DANG Xueya, ZHANG Jun, CHANG Liang, et al. Hydrogeological Survey and Water Resources Security in Northwest China[J]. Northwestern Geology,2022,55(3):81−95.
|
邓铭江, 黄强, 畅建霞, 等. 大尺度生态调度研究与实践[J]. 水利学报, 2020, 51(7): 757−773.
DENG Mingjiang, HUANG Qiang, CHANG Jianxia, et al. Large-scale ecological operation research and practice[J]. Journal of Hydraulic Engineering,2020,51(7):757−773.
|
董志玲, 徐先英, 金红喜, 等. 生态输水对石羊河尾闾湖区植被的影响[J]. 干旱区资源与环境, 2015, 29(7): 101−106.
DONG Zhiling, XU Xianying, JIN Hongxi, et al. The impact of eco- water transportation to the vegetation in tail lake of Shiyang River[J]. Journal of Arid Land Resources and Environment,2015,29(7):101−106.
|
狄振华, 谢正辉, 袁星, 等. 输水条件下考虑土壤水和地下水相互作用的河流剖面地下水埋深估计方法[J]. 中国科学: 地球科学, 2010, 40(10): 1420−1430.
DI Zhenhua, XIE Zhenghui, YUAN Xing, et al. Estimation method of Groundwater depth for river profile considering the interaction of soil water and groundwater under water transport condition[J]. Science China Earth Sciences,2010,40(10):1420−1430.
|
邓铭江. 塔里木河下游生态输水及植被恢复遥感监测评价[J]. 冰川冻土, 2007, 29(3): 380−386.
DENG Mingjiang. An Appraisal of Remote-Sensing Monitoring on Vegetation Restoration and Ecological Water-Conveying in the Lower Reaches of Tarim River[J]. Journal of Glaciology and Geocryology,2007,29(3):380−386.
|
冯嘉兴, 蒙琪, 王茜. 黑河干流中游地区近40年来地下水环境变化特征及其成因[J]. 西北地质, 2023, 56(4): 243−253.
FENG Jiaxing, MENG Qi, WANG Xi. Characteristics and Causes of Groundwater Environment Changes in the Middle Reaches of the Mainstream of the Heihe River in Recent 40 Years[J]. Northwestern Geology,2023,56(4):243−253.
|
古力米热∙哈那提, 张音, 关东海, 等. 生态输水条件下塔里木河下游断面尺度地下水流数值模拟[J]. 水科学进展, 2020, 31(1): 61−70.
GULIMIRE Hanati, ZHANG Yin, GUAN Donghai, at al. Numerical simulation of groundwater flow at cross-section scale in the lower reaches of Tarim River under the condition of ecological water conveyance[J]. Advances in Water Science,2020,31(1):61−70.
|
管文轲, 钟家骅, 霍艾迪, 等. 荒漠化地区水化学特性及其对胡杨林生长的影响[J]. 水土保持通报, 2018, 38(1): 36−40.
GUAN Wenke, ZHONG Jiahua, HUO Aidi, et al. Hydrochemical Characteristics and Their Effects on Growth of Populus Euphratica in Desertification Areas[J]. Bulletin of Soil and Water Conservation,2018,38(1):36−40.
|
胡顺, 凌抗, 王俊友, 等. 西北典型内陆流域地下水与湿地生态系统协同演化机制[J]. 水文地质工程地质, 2022, 49(5): 22−31.
HU Shun, LING Kang, WANG Junyou, et al. Co-evolution mechanism of groundwater and wetland ecosystem in a typical inland watershed in northwest China[J]. Hydrogeology and Engineering Geology,2022,49(5):22−31.
|
韩路, 王海珍, 于军. 河岸带生态学研究进展与展望[J]. 生态环境学报, 2013, 22(5): 879−886.
HAN Lu, WANG Haizhen, YU Jun. Research progress and prospects on riparian zone ecology[J]. Ecology and Environmental Sciences,2013,22(5):879−886.
|
李丽君, 张小清, 陈长清, 等. 近20a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018, 41(2): 238−247.
LI Lijun, ZHANG Xiaoqing, CHEN Changqing, et al. Ecological effects of water conveyance on the lower reaches of TarimRiver in recent twenty years[J]. Arid Land Geography,2018,41(2):238−247.
|
刘迁迁, 古力米热∙哈那提, 王光焰, 等. 间歇性生态输水塔里木河下游断面地下水位变化模拟[J]. 生态学报, 2018, 38(15): 5519−5528.
LIU Qianqian, GULIMIRE·Hanati, WANG Guangyan, et al. Simulation of sectional groundwater level variation in the lower reaches of Tarim River under intermittent ecological water conveyance[J]. Acta Ecologica Sinica,2018,38(15):5519−5528.
|
靳孟贵, 鲜阳, 刘延锋. 脱节型河流与地下水相互作用研究进展[J]. 水科学进展, 2017, 28(1): 149−160.
JIN Menggui, XIAN Yang, LIU Yanfeng. Research progress on Disconnected stream and groundwater interaction[J]. Advances in Water Science,2017,28(1):149−160.
|
李小雁. 干旱地区土壤-植被-水文耦合、响应与适应机制[J]. 中国科学: 地球科学, 2011, 41(12): 1721−1730.
LI Xiaoyan. Mechanism of coupling, response and adaptation between soil, vegetation and hydrology in arid and semiarid regions[J]. Scientia Sinica (Terrae),2011,41(12):1721−1730.
|
马建新, 吾买尔江·吾布力, 黄湘, 等. 孔雀河应急输水后的地下水响应研究[J]. 新疆环境保护, 2017, 39(1): 13−17.
MA Jianxin, WUMAIERJIANG Wubuli, HUANG Xiang, et al. Research on Groundwater Responses after Emergency Water Conveyance of Peacock River[J]. Environmental Protection of Xinjiang,2017,39(1):13−17.
|
马瑞, 启明, 孙自永, 等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J]. 地质科技情报, 2013, 32(2): 131−137.
MA Rui,QI Ming,SUN Ziyong,et al. Using Heat to Trace and Model the Surface Water-Groundwater Interactions: A Review[J]. Geological Science and Technology Information,2013,32(2): 131−137.
|
孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别: 研究进展、面临挑战及未来研究展望[J]. 地质科技通报, 2020, 39(1): 11−20.
SUN Ziyong, WANG Junyou, GE Mengyan, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation: Progress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology,2020,39(1):11−20.
|
王化齐, 黎志恒, 张茂省, 等. 石羊河流域水资源开发的生态环境效应与国土空间优化[J]. 西北地质, 2019, 52(2): 207−217.
WANG Huaqi, LI Zhiheng, ZHANG Maosheng, et al. Eco-environmental Impact Caused by Water Resources Exploration and Land Space Optimization in Shiyang River Basin[J]. Northwestern Geology,2019,52(2):207−217.
|
王玉阳, 陈亚鹏, 李卫红, 等. 塔里木河下游典型荒漠河岸植物水分来源[J]. 中国沙漠, 2017, 37(6): 1150−1157.
WANG Yuyang, CHEN Yapeng, LI Weihong, et al. Water Sources of Typical Desert Riparian Plants in the Lower Reaches of Tarim River[J]. Journal of Desert Research,2017,37(6):1150−1157.
|
湾疆辉, 陈亚宁, 李卫红, 等. 塔里木河下游断流河道输水后潜水埋深变化规律研究[J]. 干旱区地理, 2008, 31(3): 428−435.
WAN Jianghui, CHEN Yaning, LI Weihong, et al. Variation of groundwater level after ecological water transport in the lower reaches of the Tarim River in recent six years[J]. Arid Land Geography,2008,31(3):428−435.
|
鱼腾飞, 冯起, 刘蔚, 等. 黑河下游土壤水盐对生态输水的响应及其与植被生长的关系[J]. 生态学报, 2012, 33(22): 7009−7017.
YU Tengfei, FENG Qi, LIU Wei, et al. Soil water and salinity in response to water deliveries and the relationship with plant growth at the lower reaches of Heihe River, Northwestern China[J]. Acta Ecologica Sinica,2012,33(22):7009−7017.
|
杨鹏年, 邓铭江, 李霞, 等. 塔里木河下游间歇输水下地下水响应宽度—以塔里木河下游英苏断面为例[J]. 干旱区研究, 2008, 25(3): 331−335.
YANG Pengnian, DENG Mingjiang, LI Xia, et al. Respond Width of Groundwater Level after Conveying Stream Water to the Lower Reaches of the Tarim River, Xinjiang: A case Study along the Yengisu Section in the Lower Reaches of Tarim River[J]. Arid Zone Research,2008,25(3):331−335.
|
张光辉, 聂振龙, 崔浩浩, 等. 西北内陆流域下游区天然绿洲退变主因与机制[J]. 水文地质工程地质, 2022, 49(5): 1−11.
ZHANG Guanghui, NIE Zhenlong, CUI Haohao, et al. Main causes and mechanism for the natural oasis degeneration in the lower reaches of northwest inland basins[J]. Hydrogeology and Engineering Geology,2022,49(5):1−11.
|
朱成刚, 艾克热木·阿布拉, 李卫红, 等. 塔里木河下游生态输水条件下胡杨林生态系统恢复研究[J]. 干旱区地理, 2021, 44(3): 629−636.
ZHU Chenggang, AIKEREMU Abula, LI Weihong, et al. Ecosystem restoration of Populus euphratica forest under the ecological water conveyance in the lower reaches of Tarim River[J]. Arid Land Geography,2021,44(3):629−636.
|
张学静, 王平, 王田野, 等. 输水条件下额济纳绿洲浅层地下水水化学特征与水位埋深关系[J]. 南水北调与水利科技, 2019, 17(6): 86−94.
ZHANG Xuejing, WANG Ping, WANG Tianye, et al. Relationship between chemical characteristics of shallow groundwater and water level depth in Ejina Oasis under water conveyance conditions[J]. South-to-North Water Transfers and Water Science & Technology,2019,17(6):86−94.
|
张江, 李桂芳, 贺亚玲, 等. 基于稳定同位素技术的塔里木河下游不同林龄胡杨的水分利用来源[J]. 生物多样性, 2018, 26(6): 564−571. doi: 10.17520/biods.2017342
ZHANG Jiang, LI Guifang, HE Yaling, et al. Water utilization sources of Populus euphratica trees of different ages in the lower reaches of Tarim River[J]. Biodiversity Science,2018,26(6):564−571. doi: 10.17520/biods.2017342
|
赵军, 杨建霞, 朱国锋. 生态输水对青土湖周边区域植被覆盖度的影响[J]. 干旱区研究, 2018, 35(6): 1251−1261.
ZHAO Jun, YANG Jianxia, ZHU Guofeng. Effect of Ecological Water Conveyance on Vegetation Coverage in Surrounding Area of the Qingtu Lake[J]. Arid Zone Research,2018,35(6):1251−1261.
|
张建锋, 李国敏, 张元, 等. 塔河下游间歇性输水河道附近地下水位动态响应[J]. 地球物理学报, 2012, 55(2): 622−630.
ZHANG Jianfeng, LI Guomin, ZHANG Yuan, et al. Responses of groundwater levels to intermittent water transfer in the lower Tarim River[J]. Chinese Journal of Geophysics,2012,55(2):622−630.
|
张一驰, 于静洁, 乔茂云, 等. 黑河流域生态输水对下游植被变化影响研究[J]. 水利学报, 2011, 42(7): 757−765.
ZHANG Yichi, YU Jingjie, QIAO Maoyun, et al. Effects of eco-water transfer on changes of vegetation in the lower Heihe River basin[J]. Journal of Hydraulic Engineering,2011,42(7):757−765.
|
Beetle-Moorcroft F, Shanafield M, Singha K. Exploring conceptual models of infiltration and groundwater recharge on an intermittent river: The role of geologic controls[J]. Journal of Hydrology: Regional Studies,2021,35:100814. doi: 10.1016/j.ejrh.2021.100814
|
Brunner P, Cook P G, Simmons C T. Disconnected surface water and groundwater: From theory to practice[J]. Ground Water,2011,49(4):460−467. doi: 10.1111/j.1745-6584.2010.00752.x
|
Brunner P, Cook P G, Simmons C T. Hydrogeologic controls on disconnection between surface water and groundwater[J]. Water Resources Research, 2009, 45(1): W01422.
|
Chen H, Yang C, Ren A, et al. The Evapotranspiration of Tamarix and Its Response to Environmental Factors in Coastal Saline Land of China[J]. Water,2019,11(11):2273. doi: 10.3390/w11112273
|
Chunyu X Z, Huang F, Xia Z Q, et al. Assessing the Ecological Effects ofWater Transport to a Lake in Arid Regions: A Case Study of Qingtu Lake in Shiyang River Basin, Northwest China[J]. International Journal of Environmental Research and Public Health,2019,16:145. doi: 10.3390/ijerph16010145
|
Chen Y P, Chen Y N, Xu C C, et al. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosis- sima in the hyperarid region of northwestern China[J]. Environmental Science and Pollution Research,2016,23(17):1740417412.
|
Chen Y, Chen Y, Xu C, et al. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China[J]. Hydrological Processes,2010,24:170−177. doi: 10.1002/hyp.7429
|
Datry T, Larned S T, Tockner K. Intermittent Rivers: A Challenge for Freshwater Ecology[J]. BioScience,2014,64(3):229−235. doi: 10.1093/biosci/bit027
|
Dawson T E. Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the roles of tree size and hydraulic lift[J]. Tree Physiology,1996,16(1−2):263−272. doi: 10.1093/treephys/16.1-2.263
|
Feng Q, Liu W, Si J, et al. Environmental effects of water resources development and use in the Tarim River basin of northwestern China[J]. Environmental Geology, 2005, 48: 202–210.
|
Goodrich D C, Kepner W G, Levick L R, et al. Southwestern Intermittent and Ephemeral Stream Connectivity[J]. Journal of the American Water Resources Association,2018,54(2):400−422. doi: 10.1111/1752-1688.12636
|
Guo Q L, Feng Q, Li J L. Environmental changes after ecological water conveyance in the lower reaches of Heihe River, northwest China[J]. Environmental Geology,2009,58(7):1387−1396. doi: 10.1007/s00254-008-1641-1
|
Hao X M, Li W H. Impacts of ecological water conveyance on groundwater dynamics and vegetation recovery in the lower reaches of the Tarim River in northwest China[J]. Environmental Monitoring and Assessment,2014,186:7605−7616. doi: 10.1007/s10661-014-3952-x
|
He Z B, Zhao W Z. Characterizing the Spatial Structures of Riparian Plant Communities in the Lower Reaches of the Heihe River in China Using Geostatistical Techniques[J]. Ecological Research. 2006, 21 (4): 551–559.
|
Liao S, Xue L, Dong Z, et al. Cumulative ecohydrological response to hydrological processes in arid basins[J]. Ecological Indicators,2020,111:106005. doi: 10.1016/j.ecolind.2019.106005
|
Ling H, Guo B, Yan J, et al. Enhancing the positive effects of ecological water conservancy engineering on desert riparian forest growth in an arid basin[J]. Ecological Indicators,2020,118:106797. doi: 10.1016/j.ecolind.2020.106797
|
Ma J X, Huang X, Li W H, et al. Sap flow and trunk maximum daily shrinkage (MDS) measurements for diagnosing water status of Populus euphratica in an inland river basin of Northwest China[J]. Ecohydrology,2013,6(6):994−1000. doi: 10.1002/eco.1439
|
Ma J, Wang X, Edmunds W M. The characteristics of groundwater resources and their changes under the impacts of human activity in the arid North-West China: a case study of the Shiyang River Basin[J]. Journal of Arid Environments,2005,61:277−295.
|
Nippert J B, Butler Jr J J, Kluitenberg G J, et al. Patterns of Tamarix water use during a record drought[J]. Oecologia,2010,162(2):283−292. doi: 10.1007/s00442-009-1455-1
|
Niels T, Stefan Z, Martin S, et, al. Structure, reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River In Xinjiang, NW China[J]. Forestry,2008,81(1):45−57. doi: 10.1093/forestry/cpm043
|
Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature,2016,540(7633):418−422. doi: 10.1038/nature20584
|
Poff N L, Brown C M, Grantham T E, et al. Sustainable water management under future uncertainty with eco-engineering decision scaling[J]. Nature Climate Change,2016,6(1):25−34. doi: 10.1038/nclimate2765
|
Pool D R. Variations in climate and ephemeral channel recharge in southeastern Arizona, United States[J]. Water Resources Research,2005,41:1−24.
|
Peterson D M, Wilson J L. Variably saturated f low between streams and aquifers[R]. New Mexico: New Mexico Water Resources Research Institute, 1988: 10–37.
|
Richardson D M, Holmes P M, Esler K J, et al. Riparian vegetation: degradation, alien plant invasions, and restoration prospects[J]. Diversity and Distributions,2007,13:126−139. doi: 10.1111/j.1366-9516.2006.00314.x
|
Thorburn P J, Walker G R. Variations in stream water uptake by Eucalyptus camaldulensis with differing access to stream water[J]. Oecologia,1994,100(3):293−301. doi: 10.1007/BF00316957
|
Villeneuve S, Cook P G, Shanafield M, et a1. Groundwater recharge via inf iltration through an ephemeral riverbed, central Australia[J]. Journal of Arid Environments,2015,117:47−58. doi: 10.1016/j.jaridenv.2015.02.009
|
Wang P, Yu J J, Zhang Y C, et al. Impacts of environmental flow controls on the water table and groundwater chemistry in the Ejina Delta, northwestern China[J]. Environmental Earth Sciences,2011a,64(1):15−24. doi: 10.1007/s12665-010-0811-0
|
Wang P, Zhang Y C, Yu J J, et al. Vegetation Dynamics Induced by Groundwater Fluctuations in the Lower Heihe River Basin, Northwestern China[J]. Journal of Plant Ecology,2011b,4(1–2):77−90.
|
Xie Y, Cook P G, Brunner P, et a1. When can inverted water tables occur beneath streams?[J]. Groundwater,2014,52(5):769−774. doi: 10.1111/gwat.12109
|
Xu H L, Ye M, Song Y D, et al. The Natural Vegetation Responses to the Groundwater Change Resulting from Ecological Water Conveyances to the Lower Tarim River[J]. Environmental Monitoring and Assessment,2007,131:37−48.
|
Ye Z X, Chen Y N, Li W H, et al. Effect of the ecological water conveyance project on environment in the Lower Tarim River, Xinjiang, China[J]. Environmental Monitoring and Assessment,2009,149:9−17. doi: 10.1007/s10661-008-0178-9
|
Zhu C G, Li W H, Chen Y N, et al. Characteristics of water physio logical integration and its ecological significance for Populus eu- phratica young ramets in an extremely drought environment[J]. Journal of Geophysical Research: Atmospheres, 2018, 123: 56575666.
|
Zhang S H, Ye Z X, Chen Y N, et al. Vegetation responses to an ecological water conveyance project in the lower reaches of the Heihe River Basin[J]. Ecohydrology,2017,10:e1866. doi: 10.1002/eco.1866
|
Zalewski, M. Ecohydrology-the use of ecological and hydrological processes for sustainable management of water resources[J]. Hydrological Sciences Journal,2002,47(5):23−832.
|