Citation: | HAN Chaohui, WANG Zhirui, TIAN Hui, et al. Hydrochemical Characteristics and Genesis of Groundwater in the Hanzhong Basin[J]. Northwestern Geology, 2023, 56(4): 263-273. DOI: 10.12401/j.nwg.2022024 |
In order to study the hydrochemical characteristics and genesis of the groundwater in the Hanzhong Basin, 56 unconfined groundwater samples were collected during the high water period to analyze the hydrogeochemical characteristics of groundwater, the spatial variation of each chemical parameter and control factors and sources of major ions by means of mathematical statistics, correlation analysis, Piper triangular diagrams, Gibbs model and ion ratio and other methods. The results show that Ca2+ is the main cation and the main anion is dominated by HCO3–. From the perspective of spatial variation, K+ fluctuates most violently, and gradually decreases from the middle and downstream. While Cl− and Na+ have the same change law, showing a fluctuation variation. The contents of HCO3−, Ca2+, Mg2+ and SO42− decrease gradually from the middle and upper reaches to the middle and lower reaches, and increase in the lower reaches. TDS ranges from 128.5 mg/L to 590 mg/L, with an average of 282.67 mg/L. The average value of pH is 7.17, showing weakly alkaline, which fluctuates violently in the middle and upper reaches, and gradually decreases in the lower reaches. The hydrochemical types of groundwater are mainly HCO3–Ca and HCO3–Ca·Mg, which are jointly controlled by the dissolution of carbonate rock and silicate rock. The cationic alternate adsorption is weak. Among all the chemical composition of groundwater, Na+ and K+ mainly come from the dissolution of aluminosilicate minerals such as potash feldspar and albite, and the weathering and dissolution of some salt rocks. In addition to the dissolution of carbonate rocks, Ca2+ also comes from the dissolution of a large amount of silicate rocks. Weathering and dissolution of carbonate rocks such as calcite and a small amount of dolomite have a greater contribution to Mg2+ and HCO3−. Identifying the hydrochemical characteristics and genetic mechanism of groundwater in the Hanzhong Basin can provide a strong scientific basis for groundwater drinking water safety in the Hanzhong area.
杜金龙. 潞安矿区中部煤矿补充水源水化学特征及水源识别意义[J]. 西北地质, 2022, 55(1): 208-215
DU Jinlong. Hydrochemical Characteristics of Water Filling Source in Central Lu’an Mining Area and Water Source Identification Significance[J]. Northwestern Geology, 2022, 55(1): 208-215.
|
党学亚, 张俊, 常亮, 等. 西北地区水文地质调查与水资源安全[J]. 西北地质, 2022, 55(3): 81−95.
DANG Xueya, ZHANG Jun, CHANG Liang, et al. Hydrogeological Survey and Water Resources Security in Northwest China[J]. Northwestern Geology, 2022, 55(3): 81−95.
|
韩朝辉, 朱一龙, 王郅睿, 等. 汉中盆地不同径流条件下地下水水化学特征研究[J]. 地下水, 2022a, 44(1): 26-29 doi: 10.19807/j.cnki.DXS.2022-01-007
HAN Chaohui, ZHU Yilong, WANG Zhirui, et al. Study on Hydrochemical Characteristics of Groundwater under Different Runoff Conditions in Hanzhong Basin[J]. Groung Water, 2022a, 44(1): 26-29. doi: 10.19807/j.cnki.DXS.2022-01-007
|
韩朝辉, 朱一龙, 赵超, 等. 汉中盆地西侧土关铺至大安镇一带山区泉水水化学特征及成因机制研究[J]. 吉林大学学报(地球科学版), 2022b, 52(06): 1−11.
HAN Chaohui, ZHU Yilong, ZHAO Chao, et al. Study on the Hydrochemical Characteristics and Genetic Mechanism of Spring Water in the Mountainous Area from Tuguanpu to Da'an Town on the West Side of Hanzhong Basin[J]. Journal of Jilin University (Earth Science Edition), 2022b, 52(06): 1−11.
|
王晓曦, 王文科, 王周锋, 等. 滦河下游河水及沿岸地下水水化学特征及其形成作用[J]. 水文地质工程地质, 2014, 41(1): 25-33, 73 doi: 10.16030/j.cnki.issn.1000-3665.2014.01.005
WANG Xiaoxi, WANG Wenke, WANG Zhoufeng, et al. Hydrochemical characteristics and formation mechanism of river water and groundwater along the downstream Luanhe River, northeastern China[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 25-33, 73. doi: 10.16030/j.cnki.issn.1000-3665.2014.01.005
|
张帆, 王广才, 张茂省, 等. 产出水识别及受污染地下水水化学和氢氧稳定同位素特征[J]. 西北地质, 2023, 56(3): 98−108.
ZHANG Fan, WANG Guangcai, ZHANG Maosheng, et al. Identification of Produced Water and Characteristics of Hydrochemistry and Stable Hydrogen−Oxygen Isotopes of Contaminated Groundwater[J]. Northwestern Geology, 2023, 56(3): 98−108.
|
张俊, 尹立河, 顾小凡, 等. 同位素水化学指示的新疆孔雀河流域地下水与地表水关系[J]. 西北地质, 2021, 54(1): 185−195.
ZHANG Jun, YIN Lihe, GU Xiaofan, et al. Study on the Relationship Between Groundwater and Surface Water in Xinjiang Kongque River Basin Using Isotopes and Hydrochemistry method[J]. Northwestern Geology, 2021, 54(1): 185−195.
|
张艳, 吴勇, 杨军, 等. 阆中市思依镇水化学特征及其成因分析[J]. 环境科学, 2015, 36(9): 3230-3237 doi: 10.13227/j.hjkx.2015.09.014
ZHANG Yan, WU Yong, YANG Jun, et al. Hydrochemical characteristic and reasoning analysis in Siyi Town, Langzhong City[J]. Environment Science, 2015, 36(9): 3230-3237. doi: 10.13227/j.hjkx.2015.09.014
|
周嘉欣, 丁永建, 曾国雄, 等. 疏勒河上游地表水水化学主离子特征及其控制因素[J]. 环境科学, 2014, 35(9): 3315-3324 doi: 10.13227/j.hjkx.2014.09.011
ZHOU Jiaxin, DING Yongjian, ZENG Guoxiong, et al. Major ion chemistry of surface water in the upper reach of Shule River basin and the possible controls[J]. Environmental Science, 2014, 35(9): 3315-3324. doi: 10.13227/j.hjkx.2014.09.011
|
祝虎林. 汉中盆地环境水文地质条件及地下水水质评价[J]. 应用能源技术, 2019, 5: 22-24 doi: 10.3969/j.issn.1009-3230.2019.05.006
ZHU Hulin. Environmental Hydrogeological Conditions and Groundwater Quality Assessment in Hanzhong Basin[J]. Applied Energy Technology, 2019, 5: 22-24. doi: 10.3969/j.issn.1009-3230.2019.05.006
|
Ayadi Y, Mokadem N, Besser H, et al. Hydrochemistry and stable isotopes (δ18O andδ2H) tools applied to the study of karst aquifers in southern Mediterranean basin (Teboursouk area, NW Tunisia)[J]. Journal of African Earth Sciences, 2018, 137: 208-217. doi: 10.1016/j.jafrearsci.2017.10.018
|
Bouderbala A, Remini B, Saaed Hamoudi A, et al. Assessment of groundwater vulnerability and quality in coastal aquifers: a case study (Tipaza, North Algeria)[J]. Arabian Journal of Geosciences, 2016, 9(3): 181. doi: 10.1007/s12517-015-2151-6
|
Chen J S, Wang F Y, Xia X H, et al. Major element chemistry of the Changjiang (Yangtze River)[J]. Chemical Geology, 2002, 187(3-4): 231-255. doi: 10.1016/S0009-2541(02)00032-3
|
Chetelat B, Liu C Q, Zhao Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin Rivers: anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4254-4277. doi: 10.1016/j.gca.2008.06.013
|
Fu C C, Li X Q, Ma J F, et al. A hydrochemistry and multi-isotopic study of groundwater origin and hydrochemical evolution in the middle reaches of the Kuye River basin[J]. Applied Geochemistry, 2018, 98: 82-93. doi: 10.1016/j.apgeochem.2018.08.030
|
Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088
|
Gibbs R J. Water chemistry of the Amazon River[J]. Geochimica et Cosmochimica Acta, 1972, 36(9): 1061-1066. doi: 10.1016/0016-7037(72)90021-X
|
Hu M H, Stallard R F, Edmond J M. Major ion chemistry of some large Chinese rivers[J]. Nature, 1982, 298(5): 550-553.
|
Liu J T, Gao Z J, Wang M, et al. Hydrochemical characteristics and possible controls in the groundwater of the Yarlung Zangbo River Valley, China[J]. Environmental Earth Sciences, 2019, 78(3): 1.
|
Maurya P, Kumari R, Mukherjee S. Hydrochemistry in integration with stable isotopes (δ18O and δD) to assess seawater intrusion in coastal aquifers of Kachchh district, Gujarat, India[J]. Journal of Geochemical Exploration, 2019, 196: 42-56. doi: 10.1016/j.gexplo.2018.09.013
|
Thomas J, Joseph S, Thrivikramji K. P. Hydrochemical variations of a tropical mountain river system in a rain shadow region of the southern Western Ghats, Kerala, India[J]. Applied Geochemistry, 2015, 63: 456-471. doi: 10.1016/j.apgeochem.2015.03.018
|
Xiao J, Jin Z D, Wang J, et al. Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau[J]. Quaternary International, 2015, 380-381: 237-246. doi: 10.1016/j.quaint.2015.01.021
|
Xiao J, Jin Z D, Zhang F, et al. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau[J]. Environmental Earth Sciences, 2012, 67(5): 1331-1344. doi: 10.1007/s12665-012-1576-4
|
Yetiş R, Atasoy AD, Demir Yetiş A, et al. Hydrogeochemical characteristics and quality assessment of groundwater in Balikligol Basin, Sanliurfa, Turkey[J]. Environmental Earth Sciences, 2019, 78(11): 331. doi: 10.1007/s12665-019-8330-0
|
1. |
李祥,李全,杨晓晨,杨慆,甘乔侨,马婷,高歌. 新疆库拜地区地下水化学特征及其来源识别. 地下水. 2025(01): 22-25 .
![]() | |
2. |
肖富强,邹勇军,章双龙,祁星,肖卫东. 赣南寻乌—石城断裂带温泉流体地球化学特征. 水文地质工程地质. 2025(02): 203-216 .
![]() | |
3. |
朱娅娣,王瑞媛,李东泽,许志平,孙康. 浐河流域汛期地表水水化学组成特征及其成因. 西北地质. 2024(02): 254-261 .
![]() | |
4. |
江宇威,李巧,陶洪飞,马合木江·艾合买提. 奎屯河流域地下水水化学特征及成因分析. 人民长江. 2024(05): 66-74 .
![]() | |
5. |
王道明,雷倩,王朋,纪冬平,代韦熜. 汉阴县地下水化学特征分析研究. 山西化工. 2024(05): 54-56 .
![]() | |
6. |
吴志豪,高燕燕,温芮,钱会,洪敏. 秦岭北麓沣河流域地下水-地表水化学特征及转化关系. 地球科学与环境学报. 2024(03): 334-350 .
![]() | |
7. |
李波,李常锁,王楠,高帅,王昱玮,康玉潇,胥芹,吴迪,毕雯雯. 山东莱芜地区泉水水化学特征及形成机制. 环境化学. 2024(05): 1621-1631 .
![]() | |
8. |
刘小玉,李士杰,何海洋,秦昊洋,王思琪,孙旭. 基于InVEST和PLUS模型下的土地利用变化及生境质量演变分析:以汉中盆地为例. 西北地质. 2024(04): 271-284 .
![]() | |
9. |
周施阳,董好刚,李立湘,袁东方,卢丽,姚飞延,向翻,陈林,王震威,吴鑫. 浙南仙居盆地水化学特征及成因分析. 中国岩溶. 2024(03): 527-537 .
![]() | |
10. |
徐祥宇,皇甫萌娜,马梦婷,李东宸,郭永强,徐智敏. 浸水煤样强度劣化机理与防隔水煤柱留设公式优化方法探讨. 煤炭科技. 2024(05): 56-62 .
![]() | |
11. |
赵浩,李晓明,赵立磊,乔龙潭,王郅睿,赵倩卓,李新斌. 商丹盆地地下水水化学特征及成因机制. 人民黄河. 2024(12): 98-104 .
![]() | |
12. |
邵杰,陈喜庆,滕超,杨欣杰,易锦俊,李晓明,董美玲,曹军,汪艳芸,毕海超,井德刚,纪广轩,吕菲. 藏东昌都地区典型地热温泉水化学和同位素特征及其成因. 环境科学与技术. 2024(11): 127-140 .
![]() | |
13. |
黄金廷,宁博涵,孙魁,李宗泽,王嘉玮,宋歌. 神南矿区直罗组含水层对矿井涌水贡献量预测分析. 西北地质. 2023(06): 176-185 .
![]() | |
14. |
杨明远,赵佳怡,马超,李鑫. 新疆博阿断裂附近地表水和地下水的水化学和同位素特征及水质评价. 西北地质. 2023(06): 186-197 .
![]() |