ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
ZHANG Maosheng, LIU Huaqiang, LIANG Guobing, et al. Earthquake Precursors and Short–impending Prediction of Strong Earthquakes Based on Dynamic Gravity Information[J]. Northwestern Geology, 2023, 56(3): 1-18. DOI: 10.12401/j.nwg.2023063
Citation: ZHANG Maosheng, LIU Huaqiang, LIANG Guobing, et al. Earthquake Precursors and Short–impending Prediction of Strong Earthquakes Based on Dynamic Gravity Information[J]. Northwestern Geology, 2023, 56(3): 1-18. DOI: 10.12401/j.nwg.2023063

Earthquake Precursors and Short–impending Prediction of Strong Earthquakes Based on Dynamic Gravity Information

More Information
  • Received Date: January 11, 2023
  • Revised Date: April 09, 2023
  • Available Online: April 17, 2023
  • How to accurately predict earthquake is a global scientific problem that needs to be solved at present, especially for short–impending earthquake prediction, which has been the hot topic of long–term attention in the earthquake field, and obtaining effective precursor information is the key to forecast this type of earthquake. Currently, it is difficult to predict short–impending earthquake because of the following reasons: firstly, there is lack of universal precursor information which can reflect the occurrence process of strong earthquake; second, the scientific community’s understanding of the earthquake initiation mechanism is not comprehensive enough; finally, the earthquake prediction theory and its technical methods have not reached the level of application. In this context, we found that the dynamics of gravitational field at ultra–low frequencies may be highly correlated with the occurrence of short–impending earthquake. Therefore, a high–precision dynamic solid tidal gravimeter and an atmospheric tidal gravimeter were developed to capture gravity anomaly, which can detect the gravitational field changes of 1~10 µGal at ultra–low frequencies (1~30 mHz). According to the monitoring, the dynamic gravity field changes of dozens of strong earthquakes from 2010 to 2023 were successfully captured, such as the Yushu earthquake in China (7.1–magnitude), the Turkey earthquake (7.8–magnitude), and Indonesia earthquake (7.4–magnitude), etc. These data have the potential to be used as the precursor information of short–impending earthquake prediction as they can reflect the whole process of earthquake from preparation to occurrence. Furthermore, the physical mechanism of "basic stability→occluded energy storage→pre–shock calm→energy release" for strong earthquake in short–impending stage was further verified. In addition, a plausible approach is proposed to achieve the time–space–intensity prediction for the short–impending earthquake, that means a prediction model of probability, time, location, and magnitude of strong earthquake is constructed based on high–density network observation and distributed precursor information database construction, and finally realize the release of early warning information several hours before the earthquake. This study remains still in the exploration stage, but the in–depth mining of precursor information hidden by the signal of gravity field changes before the earthquake will undoubtedly bring hope to the successful prediction of short–impending strong earthquake.

  • 毕金孟, 蒋长胜. 可操作的地震预测 (OEF) 国际研究动态综述[J]. 中国地震, 2017, 33(1): 1-13 doi: 10.3969/j.issn.1001-4683.2017.01.001

    BI Jinmeng, JIANG Changsheng. A review on the international research of the Operational Earthquake Forecasting(OEF)[J]. Earthquake Research In China, 2017, 33(1): 1-13. doi: 10.3969/j.issn.1001-4683.2017.01.001
    陈运泰. 地震预测: 回顾与展望[J]. 中国科学 (地球科学), 2009, 39(12): 1633-1658

    CHEN Yuntai. Earthquake prediction: Retrospect and prospect (in Chinese)[J]. Sci China Ser D-Earth Sci, 2009, 39(12): 1633-1658.
    陈石, 王谦身, 徐伟民, 等. 从重力异常研究岩石圈内部变形及力学特性进展[J].地球物理进展,2014,29(5):1996-2003.

    CHEN Shi, WANG Qiansheng, XU Weimin, et al. Progress in studying internal deformation and mechanical properties of the lithosphere from gravity anomalies[J]. Advances in Geophysics, 2014, 29(5): 1996-2003.
    陈石,王谦身,祝意青,等. 从重力异常研究岩石圈内部变形及力学特性进展[J].地球物理进展,2011, 26(4): 1147-1156.

    CHEN Shi, WANG Qiansheng, ZHU Yiqing, et al. Advances in deformation and mechanical properties of lithospheric interior from gravity anomalies[J]. Geophysical Progress, 2011, 26(4): 1147-1156.
    刘代芹, 陈石, 王晓强, 等. 2021伽师6.4级地震前后震源区视密度变化及其构造意义[J]. 地震地质,2021,43(2):311-328.

    LIU Daiqin, CHEN Shi, WANG Xiaoqiang, et al. Changes in apparent density in the source area before and after the 2021 Gashi 6.4 magnitude earthquake and its tectonic significance[J]. Earthquake Geology, 2021,43(2):311-328.
    马瑾. 地震预测战略中若干问题的讨论− 纪念为地震事业奉献一生的梅世蓉先生座谈会[J]. 国际地震动态, 2018, 22-24

    MA Jin. Discussion on Some Issues in Earthquake Prediction Strategies-Symposium to commemorate Mr. Shiyong Mei who has dedicated his life to the earthquake industry[J]. Recent Developments in World Seismology, 2018, 22-24.
    马宗晋, 傅征祥, 张郢珍, 等. 1966-1976中国九大地震[M]. 北京: 地震出版社, 1982, 1−5.

    MA Zongjin, FU Zhengxiang, ZHANG Yingzhen, et al. Nine major earthquakes in China from 1966 to 1976[M]. Beijing: Seismological Press, 1982, 1−5.
    毛经伦, 祝意青. 地面重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展, 2018, 33(3): 236-247 doi: 10.11867/j.issn.1001-8166.2018.03.0236

    MAO Jinglun, ZHU Yiqing. Progress in the application of ground gravity observation data in earthquake prediction[J]. Advances in Earth Science, 2018, 33(3): 236-247. doi: 10.11867/j.issn.1001-8166.2018.03.0236
    王武星, 石耀霖, 顾国华, 等. GRACE卫星观测到的与汶川Ms8.0地震有关的重力变化[J].地球物理学报,2010,53(8):1767-1777.

    WANG Wuxing, SHI Yaolin, GU Guohua, et al. Gravity changes associated with the Wenchuan Ms8.0 earthquake as observed by GRACE satellite[J]. Journal of Geophysics, 2010, 53(8): 1767-1777.
    王同庆, 陈石, 梁伟锋, 等. 2016年门源MS6.4地震前的区域重力场变化与定量参数分析[J]. 地震地质, 2018, 40(2): 349-360.

    WANG Tongqing, CHEN Shi, LIANG Weifeng, et al. Regional gravity field changes and quantitative parameter analysis before the 2016 Menyuan MS6.4 earthquake[J]. Earthquake Geology, 2018,40(2):349-360.
    许忠淮. 应重视大地震预测物理基础的研究[J]. 地震, 2019, 39(2): 11-18 doi: 10.3969/j.issn.1000-3274.2019.02.002

    XU Zhonghuai. In Search of a New Physical Basis for Large Earthquake Prediction[J]. Earthquake, 2019, 39(2): 11-18. doi: 10.3969/j.issn.1000-3274.2019.02.002
    尹凤玲, 蒋长胜, 姜丛. 年尺度地震预测模型的国际研究现状[J]. 地球与行星物理论评, 2021, 52(1): 54-60

    YIN Fengling, JIANG Changsheng, JIANG Cong. Research progress of next-year earthquakeforecasts in the world[J]. Reviews of Geophysics and Planetary Physics. 2021, 52(1): 54-60.
    张茂省. 地质灾害风险管理理论方法与实践[M]. 北京: 科学出版社, 2021: 1−412

    ZHANG Maosheng. Geological hazard risk management theory and practice[M]. Beijing: Science Press, 2021: 1−412.
    张茂省, 贾俊, 王毅等. 基于人工智能(AI)的地质灾害防控体系建设[J]. 西北地质, 2019, 52(2): 103-116 doi: 10.19751/j.cnki.61-1149/p.2019.02.011

    Zhang Maosheng, Jia Jun, Wang Yi et al. Construction of geological disaster prevention and control system based on AI[J]. Northwest Geology, 2019, 52(2): 103-116. doi: 10.19751/j.cnki.61-1149/p.2019.02.011
    张茂省. 再谈地灾调查评估是移民搬迁的关键[A]. 秦巴山区地质灾害与防治学术研讨会论文集[C]. 2015: 8−9

    ZHANG Maosheng. Re-talking about geological disaster survey and assessment as the key to migration relocation[A]. Proceedings of the Symposium on Geological Disasters and Prevention in the Qinba Mountains[C]. 2015: 8−9.
    祝意青,梁伟锋,湛飞并,等.中国大陆重力场动态变化研究[J].地球物理学报, 2012,55(3):804-813.

    ZHU Yiqing, LIANG Weifeng, ZHAN Feibing, et al. Study on the dynamics of gravity field in mainland China[J]. Journal of Geophysics, 2012,55(3):804-813.
    祝意青, 梁伟锋, 赵云峰, 等. 2017年四川九寨沟Ms 7.0地震前区域重力场变化[J].地球物理学报, 2017,60(10):4124-4131.

    ZHU Yiqing, LIANG Weifeng, ZHAO Yunfeng, et al. Regional gravity field changes before the 2017 Jiuzhaigou Ms 7.0 earthquake in Sichuan[J]. Journal of Geophysics, 2017,60(10):4124-4131.
    祝意青, 申重阳, 张国庆等. 我国流动重力监测预报发展之再思考[J]. 大地测量与地球动力学, 2018, 38(5): 441-446 doi: 10.14075/j.jgg.2018.05.001

    ZHU Yiqing, SHEN Chongyang, ZHANG Guoqing. Rethinking the Development of Earthquake Monitoring and Prediction in Mobile Gravity[J]. Journal of Geodesy and Geodynamics, 2018, 38(5): 441-446. doi: 10.14075/j.jgg.2018.05.001
    祝意青, 闻学泽, 孙和平等. 2013年四川芦山Ms7.0地震前的重力变化[J]. 地球物理学报, 2013, 56(06): 1887-1894

    ZHU Yiqing, WEN Xueze, SUN Heping. Gravity changes before the Lushan, Sichuan, Ms=7.0 Earthquake of 2013[J]. Chinese Journal of Geophysics, 2013, 56(06): 1887-1894.
    Bolton, D. C. , Shreedharan, S. , Rivière, J. , Marone, C. Acoustic Energy Release During the Laboratory Seismic Cycle: Insights on Laboratory Earthquake Precursors and Prediction[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(8), e2019JB018975.
    Chen, S. , Liu, M. , Xing, L. , Xu, W. , Wang, W. , Zhu, Y. , Li, H. . Gravity increase before the 2015 Mw 7.8 Nepal earthquake[J]. Geophysical Research Letters, 2017, 43(1): 111-117.
    Evans R. . Assessment of schemes for earthquake prediction[J]. Geophysical Journal International, 1997, 131(3): 413-420. doi: 10.1111/j.1365-246X.1997.tb06585.x
    Geller, R. J. . Earthquake prediction: a critical review[J]. Geophysical Journal International, 1997, 131(3): 425-450. doi: 10.1111/j.1365-246X.1997.tb06588.x
    Geller R J, Jackson D D, Kagan Y Y, et al. Earthquakes cannot be predicted. Science, 1997b, 275(5306): 1616−1616.
    Kagan, Y. Y. , Knopoff, L. . Statistical short-term earthquake prediction[J]. Science, 1987, 236(4808): 1563-1567. doi: 10.1126/science.236.4808.1563
    Keilis-Borok, V. . Earthquake prediction: State-of-the-art and emerging possibilities[J]. Annual review of earth and planetary sciences, 2002, 30(1): 1-33. doi: 10.1146/annurev.earth.30.100301.083856
    Lomnitz C. Fundamentals of earthquake prediction[M]. John Wiley & Sons, 1994.
    Ouzounov D, Pulinets S, Jann-Yenq L, et al. Multiparameter Assessment of Pre-Earthquake Atmospheric Signals[M]. Washington D C: Amer Geophysical Union, 2018: 339−359.
    Panet I , Bonvalot S , Narteau C , et al. Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data[J]. Nature Geoscience, 2018, 11(5): 367−373.
    Sykes, L. R. , Shaw, B. E. , Scholz, C. H. . Rethinking earthquake prediction[J]. Pure and Applied Geophysics, 1999, 155(2): 207-232.
    Tozzi, R. , Masci, F. , Pezzopane, M. . A stress test to evaluate the usefulness of Akaike information criterion in short-term earthquake prediction[J]. Scientific reports, 2020, 10(1): 1-9. doi: 10.1038/s41598-019-56847-4
    Wyss, M. , Aceves, R. L. , Park, S. K. , Geller, R. J. , Jackson, D. D. , Kagan, Y. Y. , &Mulargia, F. . Cannot earthquakes be predicted[J]. Science, 1997, 278(5337): 487-490. doi: 10.1126/science.278.5337.487
  • Related Articles

  • Cited by

    Periodical cited type(11)

    1. 赵婕. 基于多源遥感的土壤有机碳预测方法研究. 中国资源综合利用. 2025(02): 46-49 .
    2. 林琴,郭永刚,吴升杰,臧烨祺,王国闻. 基于梯度提升的优化集成机器学习算法对滑坡易发性评价:以雅鲁藏布江与尼洋河两岸为例. 西北地质. 2024(01): 12-22 . 本站查看
    3. 贾丽娜,陈世昌. 基于AHP和GIS的舟曲地质灾害易发性评价. 西北地质. 2024(01): 23-33 . 本站查看
    4. 王本栋,李四全,许万忠,杨勇,李永云. 基于3种不同机器学习算法的滑坡易发性评价对比研究. 西北地质. 2024(01): 34-43 . 本站查看
    5. 蔡文权,李建颖. 开挖和降雨耦合诱发工程边坡地质隐患易发性分析. 云南地质. 2024(01): 98-104 .
    6. 王郭艳 ,林建平 ,王阳 . 基于可解释随机森林的场地放大系数估算方法研究. 河南城建学院学报. 2024(03): 29-36 .
    7. 王宇栋,刘娟,解晋航,李章杰,张小亮,张杰,梁形形. 半山区滑坡灾害易发性评价——GIS支持下基于CF与Logistic耦合模型. 华北地质. 2024(02): 45-53 .
    8. 党政西. 基于随机森林算法的淠河总干渠河湖生态系统健康评价方法. 水利技术监督. 2024(07): 155-158 .
    9. 周浩,朱平华,蒋宏伟,俞宏艳,沈心怡. 逻辑回归优化的静—动态耦合模型在滑坡位移预测中的应用. 资源环境与工程. 2024(04): 446-456 .
    10. 杨冰颖,缪海波,马闯,崔玉龙. 基于多模型耦合的永嘉县滑坡易发性评价. 河南城建学院学报. 2024(04): 91-99+127 .
    11. 刘金沧,王欢欢,李云,杨婷. 基于支持向量机的华南斜坡类地质灾害易发性评价:以肇庆市怀集县为例. 时空信息学报. 2024(06): 785-794 .

    Other cited types(7)

Catalog

    Article views (915) PDF downloads (218) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return