ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
ZHAO Miao,GONG Lei,WU Xi,et al. Climate Changes of Late Pleistocene to Middle Holocene in Zhangye Basin, NW China: Evidence from Pollen and Heavy Mineral[J]. Northwestern Geology,2024,57(2):230−243. doi: 10.12401/j.nwg.2023067
Citation: ZHAO Miao,GONG Lei,WU Xi,et al. Climate Changes of Late Pleistocene to Middle Holocene in Zhangye Basin, NW China: Evidence from Pollen and Heavy Mineral[J]. Northwestern Geology,2024,57(2):230−243. doi: 10.12401/j.nwg.2023067

Climate Changes of Late Pleistocene to Middle Holocene in Zhangye Basin, NW China: Evidence from Pollen and Heavy Mineral

More Information
  • Received Date: August 25, 2022
  • Revised Date: December 28, 2022
  • Accepted Date: January 25, 2023
  • Available Online: March 19, 2024
  • In order to explore the paleoclimatic evolution characteristics and stratigraphic age of Zhangye basin, we reconstructed the climate change characteristics of the study area since the late Pleistocene by means of sporopollen analysis, heavy mineral analysis and optical luminescence dating, and confirmed the stratigraphic boundary between Holocene and late Pleistocene. The results show that the strata are divided into four spore–pollen assemblage zones, the vegetation types and climatic characteristics from bottom to top: ① the depth ranges from 56.8 m to 26.4 m (the age is 112.7~63.3 ka), which is the last interglacial period, the sporepollen assemblage is Pinus–Castanea–Chenopodiaceae–Compositae–Artemisia, coniferous and broad–leaved mixed forest steppe vegetation, which is the warm and humid climate in the late Pleistocene. ② the depth ramges from 26.4 m to 2.6 m (the age is 63.3~11.8 ka), which is the last glacial period, the sporepollen assemblage is Pinus–Ephedra–Chenopodiaceae–Artemisia, and the vegetation type is coniferous and broad–leaved mixed forest steppe vegetation, which is the dry and cold climate of late Pleistocene. ③ the depth ranges from 2.6 m to 0.8 m (the age is 11.8~8.9 ka), which is the postglacial,the sporepollen assemblage is Pinus–Chenopodiaceae–Artemisia, mixed broadleaf–conifer forest steppe vegetation, early Holocene cool and dry climate. ④ the depth ranges from 0.8 m to 0.15 m (the age is 8.9~7.8 ka), which is the postglacial, the sporepollen assemblage is Pinus–Chenopodiaceae–Compositae–Artemisia, broadleaf–conifer mixed forest steppe vegetation, which is the warmer and drier climate of Holocene. The late Pleistocene to mid–Holocene climate evolution characteristics revealed by the spore–pollen assemblages are of great significance for revealing the paleoclimate changes in the Zhangye basin and even the arid area of Northwest China.

  • 常婧. 黑河中游孢粉记录及第四纪环境变化研究[D]. 兰州: 兰州大学, 2016.

    CHANG Jing. Pollen records and the Quaternary environment change in the middle reach of Heihe River[D]. Lanzhou: Lanzhou University, 2016.
    陈雪梅. 黑河流域晚全新世农业活动及环境演变的孢粉学研究[D]. 兰州: 兰州大学, 2012.

    CHEN Xuemei. Palynological Study on Agricultural Activities and Environmental Evolution during the Late Holocene in Heihe River Basin, NW China[D]. Lanzhou: Lanzhou University, 2012.
    崔延华, 宋悦, 粟晓玲. 祁连山区气候变化对黑河出山径流的影响[J]. 人民黄河, 2017, 39(5): 15-20 doi: 10.3969/j.issn.1000-1379.2017.05.005

    CUI Yanhua, SONG Yue, SU Xiaoling. Impacts of Climate Change in Qilian Mountain Area on Run off in the Heihe River Basin[J]. Yellow River, 2017, 39(5): 15-20. doi: 10.3969/j.issn.1000-1379.2017.05.005
    冯嘉兴, 蒙琪, 王茜. 黑河干流中游地区近40年来地下水环境变化特征及其成因[J]. 西北地质, 2023, 56(4): 243−253.

    FENG Jiaxing, MENG Qi, WANG Xi. Characteristics and Causes of Groundwater Environment Changes in the Middle Reaches of the Mainstream of the Heihe River in Recent 40 Years[J]. Northwestern Geology, 2023, 56(4): 243−253.
    赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013, 32(5): 683-693 doi: 10.11820/dlkxjz.2013.05.001

    LAI Zhongping, OU Xianjiao. Basic procedures of optically stimulated luminescence (OSL) dating[J]. PROGRESS IN GEOGRAPHY, 2013, 32(5): 683-693. doi: 10.11820/dlkxjz.2013.05.001
    李育, 王乃昂, 李卓仑, 等. 石羊河流域全新世孢粉记录及其对气候系统响应争论的启示[J]. 科学通报, 2011, 2: 161-173.

    LU K Q, GAN X, MIN L, et al. Pollen spectrum, a cornerstone for tracing the evolution of the eastern Central Asian desert[J]. Quaternary Science Reviews, 2018, 186: 111-122.
    李吉均. 青藏高原隆升与晚新生代环境变化[J]. 兰州大学学报 (自然科学版), 2013, 49(2): 154-159.

    LI Jijun. Uplift and late Cenozoic environmental changes of the Tibetan Plateau[J]. Journal of Lanzhou University (Natural Sciences), 2013, 49(2): 154–159.
    梁鹏飞, 辛惠娟, 李宗省, 等. 祁连山黑河径流变化特征及影响因素研究[J]. 干旱区地理, 2022, 4: 1-13 doi: 10.12118/j.issn.10006060.2021.535

    LIANG Pengfei, XIN Huijuan, LI Zongxing, et al. Runoff variation characteristics and influencing factors in the Heihe River Basin in the Qilian Mountains[J]. ARID LAND GEOGRAPHY, 2022, 4: 1-13. doi: 10.12118/j.issn.10006060.2021.535
    樊隽轩, 王向东, 陈中强, 等. 国际地层委员会动态与《国际年代地层表》(2021/07 版)[J]. . 地层学杂志, 2021, 45(3): 460-466.

    FAN Junxuan, WANG Xiangdong, CHEN Zhongqiang, et al. International Commission on Stratigraphy and International chronostratigraphic table (2021/07)[J]. Journal of Stratigraphy, 2021, 45(3): 460–466.
    刘瑾, 陈兴强, 王平, 等. 渭河-三门峡盆地三门组沉积充填特征、物源区及其构造意义[J]. 地球科学, 2020, 45(7): 2673-2683

    LIU Jin, CHEN Xingqiang, WANG Ping, et al. Sedimentary Characteristics, Provenance and Tectonic Significance of the Sanmen Formation in Weihe-Sanmenxia Basin[J]. Earth Science, 2020, 45(7): 2673-2683.
    刘淼, 张渝金, 孙守亮, 等. 辽西金羊盆地北票组孢粉组合及其时代和古气候意义[J]. 地球科学, 2019, 46(1): 287-292.

    LIU Miao,ZHANG Yujin,SUN Shouliang,et al.Palynological Assemblages of Beipiao Formation in Jinyang Basin of WestLiaoning, and Their Age and Paleoclimatic Significances[J].Earth Science,2019,46(1):287-292.
    李秉成, 孙建中. 黄土高原晚更新世的植被与气候环境[J]. 地理研究, 2004, 23(5): 641-648 doi: 10.3321/j.issn:1000-0585.2004.05.008

    LI Bingcheng, SUN Jianzhong. Vegetation and climate environment during the late Pleistocene in Loess Plateau‚China[J]. GEOGRAPHICAL RESEARCH, 2004, 23(5): 641-648. doi: 10.3321/j.issn:1000-0585.2004.05.008
    牛东风, 李保生, 王丰年, 等. 不同沉积相重矿物组成及其对气候的指示—以米浪沟湾全新统MGS1层段为例[J]. 实验室研究与探索, 2015, 34(7): 7-11.

    NIU Dong-feng, LI Bao-sheng, WANG Feng-nian, et al. CHEN Min. Heavy Mineral Composition and Its Climatic Indication for the MGS1Segment in the Holocene in Milanggouwan[J]. RESEARCH AND EXPLORATION IN LABORATORY. 2015, 34(7): 7-1
    彭卫. 孢粉记录的黄土高原西部更新世晚期人类活动的环境背景研究. [D]兰州: 兰州大学, 2018.

    PENG Wei. Environmental background of human activities during the late Pleistocene revealed by pollen records from the western Loess Plateau.[D]. Lanzhou: Lanzhou University, 2018.
    祁晓凡, 李文鹏, 崔虎群, 等. 黑河流域中游盆地地表水与地下水转化机制研究[J]. 水文地质工程地质, 2022, 49(3): 29-43 doi: 10.16030/j.cnki.issn.1000-3665.202202003

    QI Xiaofan, LI Wenpeng, CUI Huqun, et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. HYDROGEOLOGY & ENGINEERING GEOLOGY, 2022, 49(3): 29-43. doi: 10.16030/j.cnki.issn.1000-3665.202202003
    祁晓凡, 李文鹏, 李海涛, 等. 黑河流域气象要素与全球性大气环流特征量的多尺度遥相关分析[J]. 干旱区地理, 2017, 40(3): 564-572

    QI Xiaofan, LI Wenpeng, LI Haitao, et al. Multi-scale teleconnections between meteorological elements of Heihe River Basin and global climate indices[J]. Arid Land Geography, 2017, 40(3): 564-572.
    施雅风, 刘晓东, 李炳元, 等. 距今40- 30 ka青藏高原特强季风事件及其发差周期关系[J]. , 科学通报, 1997, 44(14) : 1475-1480.

    SHI Yafeng, LIU Xiaodong, LI Bingyuan, et al. The relationship between extra-strong monsoon events and their periodicity over the Qinghai-Tibet Plateau 40-30 ka ago[J]. Chinese Science Bulletin, 1997, 44(14): 1475–1480.
    苏建平, 仵彦卿, 李麒麟, 等. 第四纪以来酒泉盆地环境演变与祁连山隆升[J]. 地球学报, 2005, 26(5): 443-448

    SU Jianping, WU Yanqing, LI Qilin, et al. Environmental Evolution of the Jiuquan Basin and Its Relation with the Uplift of the Qilian Mountains since the Quaternary[J]. ACTA GEOSCIENTICA SINICA, 2005, 26(5): 443-448.
    唐领余, 李春海, 安成邦, 等. 黄土高原西部4万多年以来植被与环境变化的孢粉记录[J]. 古生物学报‚2007, 46(1): 45-61

    TANG Lingyu, LI Chunhai‚AN Chengbang, et al. VEGETATION HISTORY OF THE WESTERN LOESS PLATEAU OF CHINA DURING THE LAST40ka BASED ON POLLEN RECORD[J]. Acta Palaeontologica Sinica‚2007, 46(1): 45-61.
    韦一, 杨兵, 夏浩东, 等. 抚顺盆地中—晚始新世古植被与古气候[J]. 地球科学, 2021, 46(5): 1848-1861

    WEI Yi, YANG Bing, XIA Haodong, et al. Paleovegetation and Paleoclimate during Mid-Late Eocene in Fushun Basin[J]. Earth Science, 2021, 46(5): 1848-1861.
    王具文, 张旭儒, 宁天祥, 等. 张掖盆地地热资源流体化学特征研究[J]. 地下水, 2019, 41(4): 17-19

    WANG Juwen, ZHANG Xuru, NING Tianxiang, et al. Study on Fluid Chemical Characteristics of Geothermal Resources in Zhangye Basin[J]. Ground water, 2019, 41(4): 17-19.
    王文祥, 李文鹏, 蔡月梅, 等. 黑河流域中游盆地水文地球化学演化规律研究[J]. 地学前缘, 2021, 28(4): 184-193

    WANG Wenxiang, LI Wenpeng, CAI Yuemei, et al. The hydrogeochemical evolution of groundwater in the middle reaches of the Heihe River Basin[J]. Earth Science Frontiers, 2021, 28(4): 184-193.
    王丽媛, 程捷, 韩金, 等. 河西走廊民乐盆地晚更新世以来的气候变迁[J]. 中国矿业, 2018, 27: 80-89 doi: 10.12075/j.issn.1004-4051.2018.S1.020

    WANG Liyuan, CHENG Jie, HAN Jin, et al. Climate changes during the Late Pleistocene of Minle basin in Hexi corridor [J]. CHINA MINING MAGAZINE, 2018, 27: 80-89. doi: 10.12075/j.issn.1004-4051.2018.S1.020
    袁林旺, 陈晔, 周春林, 等. 柴达木盆地自然伽玛曲线与古里雅冰芯记录的末次间冰期以来气候环境变化过程的对比[J]. 冰川冻土, 2000, 22(4): 327-332

    YUAN Linwang, CHEN Ye, ZHOU Chunlin‚et al. Correlation of Environmental and Climatic Change Between Qaidam Basin Gamma Ray Logging Curve and Guliya Ice Core δ18 O Record Since the Last Interglacial Cycle[J]. JOURNAL OF GLACIOLOGY AND GEOCRYOLOGY, 2000, 22(4): 327-332.
    姚檀栋. 古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学, 1997, 27(5): 447-452.

    YAO Tandong, SHI Yafeng, QIN Dahe, et al. Climate change records since the last interglacial period in the Gurya ice core[J]. Sciencese in China, 1997, 27(5): 447-452.
    张克旗, 吴中海, 吕同艳, 等. 光释光测年法-综述及进展[J]. 地质通报, 2015, 34(1): 183-203

    ZHANG Keqi, WY Zhonghai, LV Tongyan, et al. Review and progress of OSL dating. Geological Bulletin of China, 2015, 34(1): 183-203
    IGOR O, LARS W, ACHIM B, et al. An annually resolved record of Western European vegetation response to Younger Dryas cooling[J]. Quaternary Science Reviews, 2020, 231: 1-15.
    LI M Y, ZHANG S R , XU Q H, et al. Spatial patterns of vegetation and climate in the North China Plain during the Last Glacial Maximum and Holocene climatic optimum[J]. Science China Earth Sciences, 2019, 8: 1279-1287.
    LI XQ, Sun N, DODSON J, et al. The impact of early smelting on the environment of Huoshiliang in Hexi Corridor, NW China, as recorded by fossil charcoal and chemical elements[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2011, 305: 329-336. doi: 10.1016/j.palaeo.2011.03.015
    MA Q F, ZHU L P, WANG X M, et al. Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau[J]. Global and Planetary Change, 2019, 174 : 16-25. doi: 10.1016/j.gloplacha.2019.01.004
    MA Z B, CHENG H, TAN M, et al. Timing and structure of the Younger Dryas event in northern China[J]. Quaternary Science Review, 2012, 4: 83-93.
    Morton A C, Hallsworth R C. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124: 3−29.
    Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2−3): 497−500.
    Thompson L G, Mosley-Thompson E, Davis M E, et al. Holocene-Late Pleistocene Climate Ice Core Records from Qinghai-Tibetan Plateau[J]. Science,1989, 246(4929): 474−477.
    WANG L S, WANG X Q, SHEN J H, et al. Late Pleistocene environmental information on the Die xi paleodammed lake of the upper Minjiang River in the eastern margin of the Tibetan Plateau. China[J]. J. Mt. Sci, 2020, 17(5): 1172-1187. doi: 10.1007/s11629-019-5573-x
    WU F L, FANG X M, MIAO Y F, et al. Environmental indicators from comparison of sporopollen in early Pleistocene lacustrine sediments from different climatic zones[J]. Chinese Science Bulletin, 2010, 55: 2981-2988. doi: 10.1007/s11434-010-4002-x
  • Related Articles

Catalog

    Article views (100) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return