ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LIU Feng, ZHANG Maosheng, DONG Ying, et al. Analysis of Spatial and Temporal Distribution of Geological Disasters in Yulin City Based on the Records from 1984 to 2022[J]. Northwestern Geology, 2023, 56(3): 204-213. DOI: 10.12401/j.nwg.2023102
Citation: LIU Feng, ZHANG Maosheng, DONG Ying, et al. Analysis of Spatial and Temporal Distribution of Geological Disasters in Yulin City Based on the Records from 1984 to 2022[J]. Northwestern Geology, 2023, 56(3): 204-213. DOI: 10.12401/j.nwg.2023102

Analysis of Spatial and Temporal Distribution of Geological Disasters in Yulin City Based on the Records from 1984 to 2022

More Information
  • Received Date: December 28, 2022
  • Revised Date: March 16, 2023
  • Available Online: May 24, 2023
  • The study of the spatial and temporal distribution of geological disasters is an important basis for formulating geological disaster prevention plans and implementing disaster prevention and mitigation measures. This paper systematically analyzes 527 sets of geological disaster data recorded in Yulin City from 1984 to 2022. The spatial and temporal distribution rules of geological disasters in Yulin City has been summarized. Spatially, the geological disasters in Yulin City mainly occur in Qingjian, Zizhou, Mizhi Counties, and are mainly distributed in the earth−rock mountainous areas along the Yellow River and the loess hilly and gully areas. In terms of time, the number of geological disasters takes 5 years as a cycle, the flood season is frequent, concentrated on July 11~15, the freeze−thaw period is evenly distributed and the number of deaths is the largest. The more the number of disasters and deaths, the longer the return period. Zizhou County had the highest annual probability of death from geological disasters, 16.5%, followed by Mizhi County, 9.8%, and Fugu County, 5.6%. Therefore, the following suggestions are put forward: ① Strengthen the quantitative relationship between rainfall in flood season and the probability of geological disasters, and improve the meteorological warning threshold of geological disasters. ② Strengthen the study of freeze−thaw mechanism and establish a freeze−thaw geological disaster prevention plan. ③ Strengthen the research on the dual control mechanism of "risk point + risk area".

  • 白永健, 铁永波, 倪化勇, 等. 鲜水河流域地质灾害时空分布规律及孕灾环境研究[J]. 灾害学, 2014, 29(04): 69-75 doi: 10.3969/j.issn.1000-811X.2014.04.014

    BAI Yongjian, TIE Yongbo, NI Huayong, et al. Temporal-Spatial Distribution and Environment Pregnant of Geohazards in Xianshui River of Sichuan, China[J]. Journal of Catastrophology, 2014, 29 (4): 69-75. doi: 10.3969/j.issn.1000-811X.2014.04.014
    崔鹏, 胡凯衡, 陈华勇, 等. 丝绸之路经济带自然灾害与重大工程风险[J]. 科学通报, 2018, 63(11): 989-997 doi: 10.1360/N972017-00867

    CUI Peng, HU Kaiheng, CHEN Huayong, et al. Risks along the Silk Road Economic Belt owing to natural hazards and construction of major projects[J]. Chinese Science Bulletin, 2018, 63(11): 989-997. doi: 10.1360/N972017-00867
    樊芷吟, 苟晓峰, 秦明月, 等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报, 2018, 26(02): 340-347 doi: 10.13544/j.cnki.jeg.2017-052

    FAN Zhiyin, GOU Xiaofeng, QIN Mingyue, et al. Information and Logistic Regression Models Based Coupling Analysis for Susceptibility of Geological Hazards[J]. Journal of Engineering Geology, 2018, 26(02): 340-347. doi: 10.13544/j.cnki.jeg.2017-052
    何佳阳, 巨能攀, 解明礼, 等. 高山峡谷地区地质灾害隐患InSAR识别技术对比[J/OL]. 地球科学, 2023: 1–20. http://kns.cnki.net/kcms/detail/42.1874.P.20220829.1632.004.html

    HE Jiayang, JU Nengpan, JIE Mingli, et al. Comparison of InSAR Technology for Identification of Hidden Dangers of Geological Hazards in Alpine and Canyon Areas[J]. Earth Science, 2023: 1-20. http://kns.cnki.net/kcms/detail/42.1874.P.20220829.1632.004.html
    冷艳秋. 黄土水敏特性及其灾变机制研究[D]. 西安: 长安大学, 2018

    LENG Yanqiu. Research on water sensitivity characteristics and disaster mechanism of loess[D]. Xi’an: Chang’an University, 2018.
    李守定, 乔华, 马世伟, 等. 基于温度-降雨双参数的新疆地质灾害预警模型[J]. 水利水电技术(中英文), 2021, 52(11): 207-218

    LI Shouding, QIAO Hua, MA Shiwei, et al. Temperature-rainfall dual parameter-based early warming model for geological disasters in Xinjiang[J]. Water Resources and Hydropower Engineering, 2021, 52(11): 207-218.
    林两位, 王莉萍. 用Pearson-Ⅲ概率分布推算重现期年最大日雨量[J]. 气象科技, 2005(04): 314-317 doi: 10.3969/j.issn.1671-6345.2005.04.006

    LIN Liangwei, WANG Liping. Estimation of Annual Maximum Diurnal Precipitation for Reappearance Periods with Pearson-Ⅲ Distribution[J]. Meteorological Science and Technology, 2005(04): 314-317. doi: 10.3969/j.issn.1671-6345.2005.04.006
    刘文红. 黄土高原滑坡发育背景与成灾模式研究[D]. 西安: 长安大学, 2016.

    LIU Wenhong. Study on the development background and disaster model of landslide in the Loess PlateauD]. Xi’an: Chang’an University, 2016.
    马田田, 韦昌富, 陈盼, 等. 非饱和土毛细滞回与变形耦合弹塑性本构模型[J]. 岩土力学, 2012, 33(11): 3263-3270

    MA Tiantian, WEI Changfu, CHEN Pan, et al. An elastoplastic constitutive model of unsaturated soils with capillary hysteresis and deformation coupling[J]. Rock and Soil Mechanics, 2012, 33(11): 3263-3270.
    彭建兵, 吴迪, 段钊, 等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报, 2016, 51(05): 971-980 doi: 10.3969/j.issn.0258-2724.2016.05.021

    PENG Jianbing, WU Di, DUAN Zhao, et al. Disaster Characteristics and Destructive Mechanism of Typical Loess Landslide Cases Triggered by Human Engineering Activities[J]. Journal of Southwest Jiaotong University, 2016, 51(05): 971-980. doi: 10.3969/j.issn.0258-2724.2016.05.021
    彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 26(05): 714-730

    PENG Jianbing, WANG Qiyao, ZHUANG Jianqi, et al. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics, 2020, 26(05): 714-730.
    申艳军, 杨更社, 荣腾龙, 等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析[J]. 岩石力学与工程学报, 2017, 36(03): 562-570

    SHEN Yanjun, YANG Gengshe, RONG Tenglong, et al. Localized damage effects of quasi-sandstone with single fracture and fracture behaviors of joint end under cyclic freezing and thawing [J], Chinese Journal of Rock Mechanics and Engineering, 2017, 36(03): 562-570.
    孙萍萍, 张茂省, 冯立, 等. 黄土水敏性及其时空分布规律[J]. 西北地质, 2019, 52(02): 117-124

    SUN Pingping, ZHANG Maosheng, FENG Li, et al. Water Sensitivity of Loess and lts Spatial-Temporal Distribution on the Loess Plateau[J]. Northwestern Geology, 2019, 52(02): 117-124.
    孙萍萍, 张茂省, 贾俊等. 中国西部黄土区地质灾害调查研究进展[J]. 西北地质, 2022, 55(03): 96-107 doi: 10.19751/j.cnki.61-1149/p.2022.03.007

    SUN Pingping, ZHANG Maosheng, JIA Jun, et al. Geo-hazards Research and Investigation in the Loess Regions of Western China [J], Northwestern Geology, 2022, 55(03): 96-107. doi: 10.19751/j.cnki.61-1149/p.2022.03.007
    王潇. 冻融循环条件下陕北府谷地区砂岩物理力学性质研究[D]. 西安: 西安科技大学, 2014.

    WANG Xiao. Study on the physical and mechanical properties of sandstone in Fugu region of Northern Shaanxi under the conditions of freeze-thaw cycles [D]. Xi’an: Xi’an University of Science and Technology, 2014.
    王雁林, 任超, 李永红, 等. 关于构建陕西省地质灾害防治新机制的思考[J]. 西北大学学报(自然科学版), 2020, 50(03): 403-410

    WANG Yanlin, REN Chao, LI Yonghong, et al. The construction of a new geological hazard prevention mechanism in Shaanxi Province [J]. Journal of Northwest University (Natural Science Edition), 2020, 50(03): 403-410.
    伍艳, 蔡怀森, 刘慧, 等. 砒砂岩抗剪强度与其结构特征关系[J]. 水利水电科技进展, 2019, 39(05): 21-26

    WU Yan, CAI Huaisen, LIU Hui, et al. Relationship between shear strength and structural characteristics of Pisha sandstone [J]. Advances in Science and Technology of Water Resources, 2019, 39(05): 21-26.
    熊德清, 崔笑烽. 喜马拉雅山脉地震带主要地质灾害与地形地貌关系——以西藏日喀则地区为例[J]. 地质通报, 2021, 40(11): 1967-1980 doi: 10.12097/j.issn.1671-2552.2021.11.014

    XIONG Deqing, CUI Xiaofeng. The relationship between main geological hazard and topography in the Himalayan seismic belt: A case study in the Xigaze area, Tibet[J]. Geological Bulletin of China, 2021, 40(11): 1967-1980. doi: 10.12097/j.issn.1671-2552.2021.11.014
    张卜平, 朱兴华, 成玉祥, 等. 黄土潜蚀机理及其致灾效应研究综述[J]. 中国地质灾害与防治学报, 2021, 32(06): 41-52

    ZHANG Buping, ZHU Xinghua, CHENG Yuxiang, et al. A review on loess subsurface-erosion mechanism and it's hazard effects [J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(06): 41-52.
    张林梵, 王佳运, 张茂省, 等. 基于BP神经网络的区域滑坡易发性评价[J]. 西北地质, 2022, 55(02): 260-270

    ZHANG Linfan, WANG Jiayun, ZHANG Maosheng, et al. Evaluation of Regional Landslide Susceptibility Assessment Based on BP Neural Network[J]. Northwestern Geology, 2022, 55(02): 260-270.
    张茂省, 孙传尧, 校培喜, 等. 延安市宝塔区地质灾害详细调查示范[J]. 西北地质, 2007, 40(02): 29-55 doi: 10.3969/j.issn.1009-6248.2007.02.002

    ZHANG Maosheng, SUN Chuanyao, XIAO Peixi, et al. A Demonstration Project for Detailed Geo-hazard Survey in the Baota District, Yan'an[J]. Northwestern Geology, 2007, 40(02): 29-55. doi: 10.3969/j.issn.1009-6248.2007.02.002
    张茂省, 党学亚. 干旱半干旱地区水资源及其环境问题: 陕北榆林能源化工基地例析[M]. 北京: 科学出版社, 2014, 25–30.

    ZHANG Maosheng, DANG Xueya. Water resources and Environmental Problems in arid and semi-arid Area-Case study of Yulin Energy and Chemical Industry Base in Northern Shaanxi [M]. Beijing: Science Press, 2014, 25–30.
    张茂省, 黎志恒, 王根龙, 等. 白龙江流域地质灾害特征及勘查思路[J]. 西北地质, 2011, 44(03): 1-9

    ZHANG Maosheng, LI Zhiheng, WANG Genlong, et al. The Geological Hazard Characteristics and Exploration ldeas of the Bailong River Basin[J], Northwestern Geology, 2011, 44(03): 1-9.
    张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(04): 530-540 doi: 10.3969/j.issn.1004-9665.2011.04.014

    ZHANG Maosheng, LI Tonglu. Triggering Factors and Formation Mechanism of loess landslides[J]. Journal of Engineering Geology, 2011, 19(04): 530-540. doi: 10.3969/j.issn.1004-9665.2011.04.014
    张茂省, 唐亚明. 地质灾害风险调查的方法与实践[J]. 地质通报, 2008, No. 159(08): 1205-1216.

    ZHANG Maosheng, TANG Yaming. Risk investigation method and practice of geohazards[J]. Geological Bulletin of China, 2008, 27(8): 1205- 1216.
    Feng L, Zhang S, Jin Z, et al. The critical mechanics of the initiation of loess flow failure and implications for landslides[J]. Engineering Geology, 2021, 288: 106165.
    Zezere J L, Ferreira A B, Rodrigues M L. Landslides in the North of Lisbon Region (Portugal): Conditioning and triggering factors[J]. Physics and Chemistry of the Earth Part A Solid Earth and Geodesy, 1999, 24(10): 925-934. doi: 10.1016/S1464-1895(99)00137-4
  • Related Articles

  • Cited by

    Periodical cited type(13)

    1. 赵婕. 基于多源遥感的土壤有机碳预测方法研究. 中国资源综合利用. 2025(02): 46-49 .
    2. 李光明,杨玉飞,唐亚明,王小浩,尹春旺,冯凡,周永恒. 数据驱动模型评价滑坡易发性的对比研究:以黄河中游流域为例. 西北地质. 2025(02): 51-65 . 本站查看
    3. 胡祥祥,石亚亚,胡良柏,吴涛,庞栋栋,刘帅令,宋宝. 融合InSAR与信息量–机器学习耦合模型的黄土滑坡易发性评价. 西北地质. 2025(02): 159-171 . 本站查看
    4. 林琴,郭永刚,吴升杰,臧烨祺,王国闻. 基于梯度提升的优化集成机器学习算法对滑坡易发性评价:以雅鲁藏布江与尼洋河两岸为例. 西北地质. 2024(01): 12-22 . 本站查看
    5. 贾丽娜,陈世昌. 基于AHP和GIS的舟曲地质灾害易发性评价. 西北地质. 2024(01): 23-33 . 本站查看
    6. 王本栋,李四全,许万忠,杨勇,李永云. 基于3种不同机器学习算法的滑坡易发性评价对比研究. 西北地质. 2024(01): 34-43 . 本站查看
    7. 蔡文权,李建颖. 开挖和降雨耦合诱发工程边坡地质隐患易发性分析. 云南地质. 2024(01): 98-104 .
    8. 王郭艳 ,林建平 ,王阳 . 基于可解释随机森林的场地放大系数估算方法研究. 河南城建学院学报. 2024(03): 29-36 .
    9. 王宇栋,刘娟,解晋航,李章杰,张小亮,张杰,梁形形. 半山区滑坡灾害易发性评价——GIS支持下基于CF与Logistic耦合模型. 华北地质. 2024(02): 45-53 .
    10. 党政西. 基于随机森林算法的淠河总干渠河湖生态系统健康评价方法. 水利技术监督. 2024(07): 155-158 .
    11. 周浩,朱平华,蒋宏伟,俞宏艳,沈心怡. 逻辑回归优化的静—动态耦合模型在滑坡位移预测中的应用. 资源环境与工程. 2024(04): 446-456 .
    12. 杨冰颖,缪海波,马闯,崔玉龙. 基于多模型耦合的永嘉县滑坡易发性评价. 河南城建学院学报. 2024(04): 91-99+127 .
    13. 刘金沧,王欢欢,李云,杨婷. 基于支持向量机的华南斜坡类地质灾害易发性评价:以肇庆市怀集县为例. 时空信息学报. 2024(06): 785-794 .

    Other cited types(8)

Catalog

    Article views (119) PDF downloads (37) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return