Citation: | XIANG Haoyu,LIU Song,KANG Bo,et al. Geochronology and Trace Element Compositions of Zircon in Granodiorite in North Baibandi Area, Western Bangong-Nujiang Metallogenic Belt and Their Geological Significance[J]. Northwestern Geology,2025,58(1):43−51. doi: 10.12401/j.nwg.2023115 |
The granodiorite in the north of Baibandi is located in Gaize County, north of the Bangong Nujiang suture zone. The field geological survey shows that granodiorite intruded into the Permian Longge Formation carbonate. Skarn alteration and copper mineralization developed along the contact zone, showing good metallogenic potential. However, due to the absence of high-precision chronology research, the genesis of the granodiorite remains poorly understanding. In this paper, the LA-ICP-MS zircon U-Pb geochronology and trace element studies were carried out on for zircon from the granodiorite in the north of Baibandi area in order to determining the age and analyzing the metallogenic potential. The results show that zircons from the granodiorite in the north of Baibandi area are all magmatic zircons. 17 zircons show weighted average 206Pb/208U ages of (154.8 ± 1.2) Ma (MSWD=1.7), showing that the granodiorite was formed in the Late Jurassic. The ƩREE values zircon of are 6.1×10−6~24.04 ×10−6 (averaging 11.68 ×10−6). The ƩLREEs and ƩHREEs values are 0.41×10−6~9.44×10−6 and 4.93×10−6~23.55×10−6, respectively, showing the enrichment of heavy rare earths. The δEu and δCe values of zircons range from 0.26 to 0.64 and 0.91 to 5.03 respectively, showing significant negative Eu anomalies and positive Ce anomalies. The Ti contents of zircon range from 0.89×10−6 to 1.43×10−6, with estimated crystallization temperature of 600.3 to 799.3 ℃ (averaging 697.6 ℃). Based on these results and the characteristics of regional tectonic evolution, it is inferred that the granodiorite in the north of Baibandi was formed during northward subduction of Bangong-Nujiang oceanic crust. Our results provide new evidence for understanding the formation of the Bangong-Nujiang metallogenic belt.
常青松, 朱弟成, 赵志丹, 等. 西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义[J]. 岩石学报, 2011, 27(7): 2034−2044.
CHANG Qingsong, ZHU Dicheng, ZHAO Zhidan, et al. Zircon U-Pb geochronology and Hf isotopes of Early Cretaceous rhyolites from the southern margin of the Qiangtang area, Tibet, and their significance[J]. Acta Petrologica Sinica,2011,27(7):2034−2044.
|
陈华安, 祝向平, 马东方, 等. 西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J]. 地质学报, 2013, 87(10): 1593−1611.
CHEN Hua'an, ZHU Xiangping, MA Dongfang, et al. Chronology, petrology, and metallogenic significance of mineralizing porphyries in the Bolong porphyry Cu-Au deposit, Tibet[J]. Acta Geologica Sinica,2013,87(10):1593−1611.
|
陈澍民, 徐宏根, 吴金虹, 等. 湖南天明金矿区云斜煌斑岩年代学、同位素地球化学及成矿意义[J]. 西北地质, 2023, 56(6): 285−300.
CHEN Shumin, XU Honggen, WU Jinhong, et al. Geochronology, Isotopic Geochemistry of Diorite Porphyrite in Tianming Gold Deposit, Hunan[J]. Northwestern Geology,2023,56(6):285−300.
|
冯国胜, 廖六根, 陈振华, 等. 西藏西部日土县材玛铁多金属矿地质特征及找矿意义[J]. 地质通报, 2006, 25(S1): 267−272.
FENG Guosheng, LIAO Liugen, CHEN Zhenhua, et al. Geological characteristics and prospecting significance of the Caimar iron-polymetallic deposit in the western part of Tibet, China[J]. Geological Bulletin of China,2006,25(S1):267−272.
|
胡为正, 廖辉宝, 黄东荣. 西藏日土县材玛铁矿地质特征及找矿方向[J]. 资源调查与环境, 2014, 35(2): 120−129.
HU Weizheng, LIAO Huibao, HUANG Dongrong. Geological characteristics and prospecting direction of the Caimar iron deposit in Ritong County, Tibet[J]. Resources Survey and Environment,2014,35(2):120−129.
|
代新宇, 周斌, 李新林, 等. 西昆仑奇台达坂北中新世石英二长岩侵入岩年代学、地球化学及其构造意义[J]. 西北地质, 2024, 57(4): 191−205.
DAI Xinyu,ZHOU Bin,LI Xinlin,et al. Geochronology, Geochemistry and Tectonic Significance of Miocene Quartz Monzonite from the Northern of Qitai Mountain in Western Kunlun[J]. Northwestern Geology,2024,57(4):191−205.
|
李金祥, 李光明, 秦克章, 等. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约[J]. 岩石学报, 2007, 24(3): 531−543.
LI Jinxiang, LI Guangming, QIN Kezhang, et al. Geochemical characteristics and age of porphyry-volcanic rocks in the Duobuza rich-gold porphyry copper deposit in the Bangong Lake area: Implications for metallogenic tectonic settings[J]. Acta Petrologica Sinica,2007,24(3):531−543.
|
潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2007, 22(3): 521−533.
PAN Guitang, MO Xuanxue, HOU Zengqian, et al. The spatial-temporal structure and evolution of the Gangdese orogenic belt[J]. Acta Petrologica Sinica,2007,22(3):521−533.
|
李平, 朱涛, 吕鹏瑞, 等. 西天山早寒武世夏特辉长岩: 南天山洋早期俯冲的岩浆记录[J]. 西北地质, 2024, 57(3): 44−58.
LI Ping,ZHU Tao,LÜ Pengrui,et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology,2024,57(3):44−58.
|
潘桂棠, 王立全, 朱弟成. 青藏高原区域地质调查中几个重大科学问题的思考[J]. 地质通报, 2004, 23(1): 12−19.
PAN Guitang, WANG Liquan, ZHU Dicheng. Reflections on some major scientific issues in regional geological surveys of the Qinghai-Tibet Plateau[J]. Geological Bulletin of China,2004,23(1):12−19.
|
曲晓明, 王瑞江, 辛洪波, 等. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J]. 地球化学, 2009, 38(6): 523−535. doi: 10.3321/j.issn:0379-1726.2009.06.002
QU Xiaoming, WANG Ruijiang, XIN Hongbo, et al. Geochronology and geochemistry of igneous rocks associated with the subduction of the Bangong Lake Tethys Ocean Basin in western Tibet[J]. Geochimica,2009,38(6):523−535. doi: 10.3321/j.issn:0379-1726.2009.06.002
|
曲晓明, 辛洪波. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J]. 地质通报, 2006, 25(7): 792−799. doi: 10.3969/j.issn.1671-2552.2006.07.004
QU Xiaoming, XIN Hongbo. Formation age and metallogenic tectonic environment of the Bangong Lake porphyry copper belt in western Tibet[J]. Geological Bulletin of China,2006,25(7):792−799. doi: 10.3969/j.issn.1671-2552.2006.07.004
|
佘宏全, 李进文, 马东方, 等. 西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J]. 矿床地质, 2009, 28(6): 737−746. doi: 10.3969/j.issn.0258-7106.2009.06.003
SHE Hongquan, LI Jinwen, MA Dongfang, et al. Molybdenite Re-Os and zircon U-Pb SHRIMP dating and their geological significance in the Duobuza porphyry copper deposit, Tibet[J]. Mineral Deposits,2009,28(6):737−746. doi: 10.3969/j.issn.0258-7106.2009.06.003
|
宋扬, 唐菊兴, 曲晓明, 等. 西藏班公湖-怒江成矿带的广义概念及成矿特点[J]. 矿床地质, 2014, 33(S1): 815−816.
SONG Yang, TANG Juxing, QU Xiaoming, et al. General concept and metallogenic characteristics of the Bangong Lake-Nujiang metallogenic belt, Tibet[J]. Mineral Deposits,2014,33(S1):815−816.
|
唐菊兴. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展[J]. 岩石学报, 2019, 35(3): 617−624. doi: 10.18654/1000-0569/2019.03.01
TANG Juxing. Progress in the investigation and research of mineral resource bases in important metallogenic belts in the Qinghai-Tibet Plateau and adjacent areas[J]. Acta Petrologica Sinica,2019,35(3):617−624. doi: 10.18654/1000-0569/2019.03.01
|
王立强, 王勇, 旦真王修, 等. 班公湖—怒江成矿带西段主要岩浆热液型矿床成矿特征初探[J]. 地球学报, 2017, 38(5): 615−626. doi: 10.3975/cagsb.2017.05.03
WANG Liqiang, WANG Yong, DANZHEN Wangxiu, et al. Preliminary study on metallogenic characteristics of major magmatic hydrothermal deposits in the western Bangong Lake-Nujiang metallogenic belt[J]. Acta Geoscientica Sinica,2017,38(5):615−626. doi: 10.3975/cagsb.2017.05.03
|
王立强, 谢富伟, 王勇. 西藏巴嘎拉东铅锌矿床黑云母花岗岩锆石U-Pb年龄、微量元素组成及地质意义[J]. 岩矿测试, 2016, 35(6): 650−657.
WANG Liqiang, XIE Fuwei, WANG Yong. Zircon U-Pb age, trace element composition, and geological significance of biotite granite in the Bagala East Pb-Zn deposit, Tibet[J]. Rock and Mineral Analysis,2016,35(6):650−657.
|
王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71−81.
WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology,2023,56(6):71−81.
|
吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
WU Yuanbao, ZHENG Yongfei. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation[J]. Chinese Science Bulletin,2004,49(16):1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
|
周金胜, 孟祥金, 臧文栓, 等. 西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义[J]. 岩石学报, 2013, 29(11): 3755−3766.
ZHOU Jinsheng, MENG Xiangjin, ZANG Wenshuan, et al. Zircon U-Pb geochronology, trace element geochemistry, and geological significance of mineralized porphyries in the Qingcaoshan porphyry Cu-Au deposit, Tibet[J]. Acta Petrologica Sinica,2013,29(11):3755−3766.
|
AndersenT, Correction of common lead in U-Pb analyses that do not report Pb-204[J]. Chemical Geology,2002,192:59−79. doi: 10.1016/S0009-2541(02)00195-X
|
Belousova E A, Griffin W L, Suzanne Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002,143(5):602−622. doi: 10.1007/s00410-002-0364-7
|
Cao M J, Qin K Z, Li G M, et al. Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane, Tibet[J]. Gondwana Research,2016,39:386−400. doi: 10.1016/j.gr.2016.01.006
|
Fan J J, Li C, Xie X M, et al. Petrology and U–Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean[J]. Lithos,2015,227:148−160. doi: 10.1016/j.lithos.2015.03.021
|
Guynn, J H , Kapp P , Pullen A, et al. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture central Tibet[J]. Geology,2006,34:505−508.
|
Hao L L, Wang Q, Wyman D A, et al. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet[J]. Lithos, 2016, 245: 223-242.
|
Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry,2003,53(1):27−62. doi: 10.2113/0530027
|
Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills[J]. Australia. Geochimica et Cosmochimica Acta,2005,69(3):637−648. doi: 10.1016/j.gca.2004.07.006
|
Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos,2014,205:284−297.
|
Li Y L, He J, Han Z P, et al. Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Tibet, and their implications for the Bangong–Nujiang Ocean subduction[J]. Lithos,2016,245:34−46.
|
Ludwig, K. User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication,2003,4:1−70.
|
Shi R D, Yang J S, Xu Z Q, et al. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong–Nujiang suture zone[J]. Journal of Asian Earth Sciences,2008,32(5):438−457.
|
Shi R D. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet[J]. Chinese Science Bulletin,2007,52(7):936−941. doi: 10.1007/s11434-007-0134-z
|
Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science,2005,308:841−844.
|
Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology,2006,151:413−433.
|
Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter,1995,19(1):1−23. doi: 10.1111/j.1751-908X.1995.tb00147.x
|
Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research,2004,28(1):9−39. doi: 10.1111/j.1751-908X.2004.tb01041.x
|
Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research,2004,28(3):353−370. doi: 10.1111/j.1751-908X.2004.tb00755.x
|
Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos,2016,245:7−17.
|