ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
XU Kangkang, SUN Kai, WU Xingyuan. Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes[J]. Northwestern Geology, 2023, 56(5): 20-34. DOI: 10.12401/j.nwg.2023116
Citation: XU Kangkang, SUN Kai, WU Xingyuan. Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes[J]. Northwestern Geology, 2023, 56(5): 20-34. DOI: 10.12401/j.nwg.2023116

Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes

More Information
  • Received Date: April 02, 2023
  • Revised Date: June 10, 2023
  • Accepted Date: June 11, 2023
  • Available Online: June 27, 2023
  • The study of mafic–intermediate and felsic magmatism related to Neoproterozoic rift in the Lufilian Arc is of great significance for understanding the crustal growth and secular evolution of the region. Studies have shown that there are a large number of Neoproterozoic mafic rocks which are related to rifting in the Lufilan arc, but a few of related intermediate and felsic magmatism are discovered. A Neoproterozoic quartz monzonite with a zircon U–Pb age of 707.1±3.0 Ma was first discovered and reported in the Lufilian Arc. The pluton is characterized by relatively low MgO (0.46%~0.76%), CaO (1.63%~1.76%), K2O (0.49%~0.56%), Mg# values (8~13) and Sr/Y ratios (1.14~2.50), as well as high Al2O3 content (15.61%~16.02%). REE–normalized patterns show enrichment in LREE with (La/Yb)N of 6.64~7.86 and their primitive mantle-normalized trace element patterns are characterized by depletion of LILEs (Rb, Ba, Sr, K) and P, Ti, Zr and enrichment of HFSEs (Nb, Ta, Hf). They have a low initial 87Sr/86Sr ratios (0.7058~0.7060) with positive εNd(t) values (1.89~2.03) and their zircon εHf(t) values range from 1.30 to 5.67, their isotopic data are similar to those of the Neoproterozoic mafic intrusions in the Solwezi region, suggesting that the quartz monzonite were generated by partial melting of newly emplaced mafic lower crust. In combination with the studies of geochronology and petrogenesis, it is concluded that the Lufilian Arc experienced a multi–stage crustal growth in the Neoproterozoic, the late intrusive mantle magma heated the mafic rocks emplaced in the lower crust at early stage, resulting in partial melting and reworking the early crust.

  • 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.
    陆松年. 新元古时期Rodinia超大陆研究进展述评[J]. 地质论评, 1998, 44(5): 489-495.

    LU Songnian. A Review of Advance in the Research on the Neoproterozoic Rodinia Supercontinent[J]. Geological Review, 1988, 44(5): 489-495.
    任云伟, 张家辉, 田辉, 等. 天镇-怀安地区新太古代末二长花岗岩的成因及动力背景[J]. 华北地质. 2022, 45(2): 76-86.

    REN Yunwei, ZHANG Jiahui, TIAN Hui, et al. Petrogenesis and geodynamic settings of monzonitic granite at the end of the Neoarchean in Tianzhen-Huai'an area[J]. North China Geology, 2022, 45(2): 76-86.
    徐焱, 张世红. 塔里木克拉通在Rodinia中的位置——研究进展与问题[J]. 地质调查与研究, 2020, 43(2): 169-176.

    XU Yan, ZHANG Shihong. The position of Tarim Craton in Rodinia:advances and problems[J]. Geological Survey and Research, 2020, 43(2): 169-176.
    许康康, 孙凯, 何胜飞, 等. 非洲中部新元古代Lufilian弧地区地质特征、成矿时代及构造演化历史[J]. 地质与勘探, 2021a, 57(03): 676-692.

    XU Kangkang, SUN Kai, HE Shengfei, et al. Geological Characteristics and Metallogenic Age and Tectonic Evolution Histroy of Neoproterozoic Lufilian Arc in Central Africa[J]. Geology and Prospecting, 2021a, 57(03): 676-692.
    许康康, 孙凯, 何胜飞, 等. 赞比亚西北省Solwezi地区石榴云母片岩的碎屑锆石U-Pb年龄及其地质意义[J]. 华北地质, 2021b, 44(03): 1-3.

    XU Kangkang, SUN Kai, HE Shengfei, et al. Detrital zircon U-Pb dating of the garnet mica schist and its geological implications in the Solwezi area, Northwestern Zambia[J]. North China Geology, 2021b, 44(03): 1-3.
    Annen C, Blundy J D, Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2006, 47(3): 505-539. doi: 10.1093/petrology/egi084
    Armstrong R A, Master S, Robb L J. Geochronology of the Nchanga granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1-5): 32-40. doi: 10.1016/j.jafrearsci.2005.08.012
    Arth J G, Hanson G N. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths[J]. Contributions to Mineralogy and Petrology, 1972, 37(2): 161-174. doi: 10.1007/BF00371074
    Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53, 303-323. doi: 10.1016/0009-2541(85)90076-2
    Barron J W. Stratigraphy, metamorphism, and tectonic history of the Solwezi area, Northwest Province, Zambia: Integrating geological field observations and airborne geophysics in the interpretation of regional geology[D]. Colorado School of Mines, Golden, CO. , USA, 2003: 1−233.
    Batumike M J, Kampunzu A B, Cailteux J H. Petrology and geochemistry of the Neoproterozoic Nguba and Kundelungu Groups, Katangan Supergroup, southeast Congo: Implications for provenance, paleoweathering and geotectonic setting[J]. Journal of African Earth Sciences, 2006, 44(1): 97-115. doi: 10.1016/j.jafrearsci.2005.11.007
    Batumike M J, Cailteux J L H, Kampunzu A B. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt[J]. Gondwana Research, 2007, 11(3): 432-447. doi: 10.1016/j.gr.2006.04.012
    Beard J S, Lofgren G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365
    Belousova E, Griffin W L, O'Reilly S Y, Fisher N L. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143, 602-622. doi: 10.1007/s00410-002-0364-7
    Cai Y, Wang Y, Cawood P A, Zhang Y Z, Zhang A M. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone[J]. Precambrian Research, 2015, 266: 137-149. doi: 10.1016/j.precamres.2015.05.008
    Cailteux J. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization[J]. Journal of African Earth Sciences, 1994, 19(4): 279-301. doi: 10.1016/0899-5362(94)90015-9
    Cailteux J L H, Kampunzu A B, Lerouge C, Kaputo A K, Milesi J P. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1-5): 134-158. doi: 10.1016/j.jafrearsci.2005.08.001
    Cailteux J L H, Kampunzu A B, Lerouge C. The Neoproterozoic Mwashya–Kansuki sedimentary rock succession in the Central African Copperbelt, its Cu–Co mineralisation, and regional correlations[J]. Gondwana Research, 2007, 11(3): 414-431. doi: 10.1016/j.gr.2006.04.016
    Cailteux J , Putter T D. The Neoproterozoic Katanga Supergroup (D. R. Congo): State-of-the-art and revisions of the lithostratigraphy, sedimentary basin and geodynamic evolution[J]. Journal of African Earth Sciences, 2019, 150: 522-531. doi: 10.1016/j.jafrearsci.2018.07.020
    Cantagrel J M, Didier J, Gourgaud A. Magma mixing: origin of intermediate rocks and “enclaves” from volcanism to plutonism[J]. Physics of the earth and planetary interiors, 1984, 35(1-3): 63-76. doi: 10.1016/0031-9201(84)90034-7
    Carmichael I S. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99 W) Mexico[J]. Contributions to Mineralogy and Petrology, 2002, 143(6): 641-663. doi: 10.1007/s00410-002-0370-9
    Cawood P A, Hawkesworth C J, Dhuime B. The continental record and the generation of continental crust[J]. Bulletin, 2013, 125(1-2): 14-32.
    Clemens A. The granulite–granite connection[J]. In: Vielzeuf D, Vidal P, eds. Granulites and Crustal Evolution[M]. Dordrecht, Kluwer, 1990: 25–36.
    Clemens J D, Vielzeuf D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters, 1987, 86(2-4): 287-306. doi: 10.1016/0012-821X(87)90227-5
    Condie K C. Episodic continental growth and supercontinents: a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 1998, 163(1-4): 97-108. doi: 10.1016/S0012-821X(98)00178-2
    Condie K C, Kröner A. The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean[J]. Gondwana Research, 2013, 23(2): 394-402. doi: 10.1016/j.gr.2011.09.011
    De Swardt A M J, Gerrard P, Simpson J. Major zones of transcurrent dislocation and superposition of orogenic belts in part of Central Africa[J]. Geological Society of America BulletinBull, 1965, 76(1): . 89-1. doi: 10.1130/0016-7606(1965)76[89:MZOTDA]2.0.CO;2
    Dirks P H G M, Sithole T A. Eclogites in the Makuti gneisses of Zimbabwe: implications for the tectonic evolution of the Zambezi Belt in southern Africa[J]. Journal of Metamorphic Geology, 1999, 17(6): 593-612. doi: 10.1046/j.1525-1314.1999.00215.x
    Eglinger A, André-Mayer A S, Vanderhaeghe O. Geochemical signatures of uranium oxides in the Lufilian belt: from unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle[J]. Ore Geology Reviews, 2013, 54: 197-213. doi: 10.1016/j.oregeorev.2013.04.003
    El Desouky H A, Muchez P, Cailteux J. Two Cu–Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo[J]. Ore Geology Reviews, 2009, 36(4): 315-332. doi: 10.1016/j.oregeorev.2009.07.003
    Flierdt T V D, Hoernes S, Jung S, Masberg P, Hoffer E, Schaltegger U, Friedrichsen H. Lower crustal melting and the role of open-system processes in the genesis of syn-orogenic quartz diorite-granite-leucogranite associations: constraints from Sr-Nd-O isotopes from the Bandombaai Complex, Namibia. Lithos, 2003, 67, 205–226. doi: 10.1016/S0024-4937(03)00016-1
    Gao S, Rudnick R L, Yuan H , Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162
    Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
    Griffin W L, Wang X, Jackson S E, Pearson NJ, O’Reilly S Y, Xu X S, Zhou X M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8
    Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003, 145(5): 515-533. doi: 10.1007/s00410-003-0448-z
    Hanson R E, Wardlaw M S, Wilson T J, Mwale G. U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: Constraints on pan-African deformation, plutonism, and transcurrent shearing in central Zambia[J]. Precambrian Reserch, 1993, 63: 189-209. doi: 10.1016/0301-9268(93)90033-X
    Hitzman M W, Selley D, Bull S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history[J]. Economic Geology, 2010, 105(3): 627-639. doi: 10.2113/gsecongeo.105.3.627
    Johnson S P, Rivers T, De Waele B. A review of the Mesoproterozoic to early Palaeozoic magmatic and tectonothermal history of south–central Africa: implications for Rodinia and Gondwana[J]. Journal of the Geological Society, 2005, 162(3): 433-450. doi: 10.1144/0016-764904-028
    Jung S, Hoernes S, Mezger K. Synorogenic melting of mafic lower crust: constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia)[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 551-566. doi: 10.1007/s00410-002-0366-5
    Kampunzu A B, Cailteux J. Tectonic evolution of the Lufilian Arc (Central Africa Copperbelt) during Neoproterozoic Pan African orogenesis[J]. Gondwana Research, 1999, 2(3): 401-421. doi: 10.1016/S1342-937X(05)70279-3
    Kampunzu A B, Tembo F, Matheis G, Kapenda D, Huntsman-Mapila P. Geochemistry and tectonic setting of mafic igneous units in the Neoproterozoic Katangan Basin, Central Africa: Implications for Rodinia break-up[J]. Gondwana Research, 2000, 3(2): 125-153. doi: 10.1016/S1342-937X(05)70093-9
    Kampunzu A B, Cailteux J L H, Kamona A F, Intiomale M M, Melcher F. Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 2009, 35(3-4): 263-297. doi: 10.1016/j.oregeorev.2009.02.003
    Katongo C, Koeberl C, Reimold W U, Mubu S. Remote sensing, field studies, petrography, and geochemistry of rocks in central Zambia: no evidence of a meteoritic impact in the area of the Lukanga Swamp[J]. Journal of African Earth Sciences, 2002, 35(3): 365-384. doi: 10.1016/S0899-5362(02)00150-1
    Katongo C, Koller F, Kloetzli U, Koeberl C, Tembo F, De Waele B. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian–Zambezi belt, Zambia: Implications for tectonic setting and regional correlation[J]. Journal of African Earth Sciences, 2004, 40(5): 219-244. doi: 10.1016/j.jafrearsci.2004.12.007
    Kemp A I S, Hawkesworth C J, Collins W J, Gray C M, Blevin P L. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 2009, 284(3-4): 455-466. doi: 10.1016/j.jpgl.2009.05.011
    Key R M, Liyungu A K, Njamu F M, Somwe V, Banda J, Mosley P N, Armstrong R A. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization[J]. Journal of African Earth Sciences, 2001, 33(3-4): 503-528. doi: 10.1016/S0899-5362(01)00098-7
    Kushiro I. The system forsterite-diopside-silica with and without water at high pressures[J]. American Journal of Science, 1969, 267(A): 269-294.
    Liu S, Hu R Z, Gao S, Feng C, Qi Y Q, Wang T, Feng G Y, Coulson I M. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China[J]. Lithos, 2008, 106, 365-379. doi: 10.1016/j.lithos.2008.09.004
    Ludwig K R. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel[M]. Geochronological Center, Special Publication No. 4, Berkeley, 2003: 25-32.
    Master S, Rainaud C, Armstrong R A, Phillips D, Robb L J. . Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution[J]. Journal of African Earth Sciences, 2005, 42(1-5): 41-60. doi: 10.1016/j.jafrearsci.2005.08.005
    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37, 215-224. doi: 10.1016/0012-8252(94)90029-9
    Muchez P, Vanderhaeghen P, El Desouky H, Schneider J, Boy A, Dewaele S, Cailteux J. Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2008, 43(5): 575-589. doi: 10.1007/s00126-008-0183-5
    Naydenov K V, Lehmann J, Saalmann K, Milani L, Kinnaird J A, Charlesworth G, Rankin W. New constraints on the Pan-African Orogeny in Central Zambia: A structural and geochronological study of the Hook Batholith and the Mwembeshi Zone[J]. Tectonophysics, 2014, 637: 80-105. doi: 10.1016/j.tecto.2014.09.010
    Parman S W, Grove T L. Harzburgite melting with and without H2O: Experimental data and predictive modeling[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2).
    Patchett P J, Kouvo O, Hedge C E , Tatsumoto M. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 1982, 78(3): 279-297. doi: 10.1007/BF00398923
    Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru[J]. Journal of petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491
    Porada H. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil[J]. Precambrian Research, 1989, 44(2): 103-136. doi: 10.1016/0301-9268(89)90078-8
    Porada H, Berhorst V. Towards a new understanding of the Neoproterozoic-Early Palaeozoic Lufilian and northern Zambezi Belts in Zambia and the Democratic Republic of Congo[J]. Journal of African Earth Sciences, 2000, 30(3): 727-771. doi: 10.1016/S0899-5362(00)00049-X
    Rainaud C, Master S, Armstrong R A, Phillips D, Robb L J. Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications[J]. Journal of African Earth Sciences, 2005, 42(1-5): 1-31. doi: 10.1016/j.jafrearsci.2005.08.006
    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
    Roberts M P, Clemens J D. Origin of high-potassium, talc-alkaline, I-type granitoids[J]. Geology, 1993, 21, 825-828.
    Roberts M P, Pin C, Clemens J D, et al. Petrogenesis of mafific to felsic plutonic rock associations: the Calc-alkaline Querigut Complex, French Pyrenees[J]. Journal of Petrology, 2000, 41, 809–844.
    Rolland Y, Galoyan G, Bosch D, Sosson M, Corsini M, Fornari M, Verati C. Jurassic back-arc and Cretaceous hot-spot series in the Armenian ophiolites: implications for the obduction process[J]. Lithos, 2009, 112, 163-187. doi: 10.1016/j.lithos.2009.02.006
    Rudnick R L, Gao S. Composition of the continental crust[J]. In, Rudnick R L, Holland H D, Turekian K K, eds.Treatise on Geochemistry[M]. Elsevier-Pergamon, Oxford, 2003: 1−64.
    Scherer, E. , Munker, C. , Mezger, K. , Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293, 683-687. doi: 10.1126/science.1061372
    Selley D, Broughton D, Scott R J, Hitzman M, Bull S W, Large R R, Pollington N. A new look at the geology of the Zambian Copperbelt[J]. Economic Geology, 2005, 100: 965-1000.
    Shaw A, Downes H, Thirlwall M F. The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central[J]. Chemical Geology, 1993, 107(1-2): 1-18. doi: 10.1016/0009-2541(93)90098-4
    Smithies R H, Champion D C. 2000. The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology, 41, 1653–1671. doi: 10.1093/petrology/41.12.1653
    Stein M, Hofmann A W. Mantle plumes and episodic crustal growth[J]. Nature, 1994, 372, 63–68. doi: 10.1038/372063a0
    Stern R A, Hanson G N. Archean high-Mg granodiorite-a derivative of light rare-earth element-enriched monzodiorite of mantle origin. Journal of Petrology, 1991, 32, 201–238.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    Tatsumi Y. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures[J]. Earth and Planetary Science Letters, 1982, 60(2): 305-317. doi: 10.1016/0012-821X(82)90009-7
    Tembo F, Kampunzu A B, Porada H. Tholeiitic magmatism associated with continental rifting in the Lufilian Fold Belt of Zambia[J]. Journal of African Earth Sciences, 1999, 28(2): 403-425. doi: 10.1016/S0899-5362(99)00012-3
    Unrug R. The Lufilian Arc: a microplate in the Pan-African collision zone of the Congo and the Kalahari cratons[J]. Precambrian Research, 1983, 21(3-4): 181-196. doi: 10.1016/0301-9268(83)90040-2
    Vielzeuf D, Clemens J D, Pin C, et al. Granites, granulites, and crustal differentiation[J]. In: Vielzeuf D, Vidal P, eds. Granulites and Crustal Evolution[M]. Kluwer, Dordrecht, 1990: 59–85.
    Vinyu M L, Hanson R E, Martin M W, Bowring S A, Jelsma H A, Krol M A, Dirks P H G M. U-Pb and 40Ar/39Ar geochronological constraints on the tectonic evolution of the easternmost part of the Zambezi orogenic belt, northeast Zimbabwe[J]. Precambrian Research, 1999, 98(1-2): 67-82. doi: 10.1016/S0301-9268(99)00039-X
    Wang Q, McDermott F, Xu J, Bellon H, Zhu Y T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1
    Wang Y J, Zhang A M, Fan W M, Zhang Y H, Zhang Y Z. Origin of paleosubduction-modifified mantle for Silurian gabbro in the Cathaysia block: geochronological and geochemical evidence[J]. Lithos, 2013, 160, 37-54.
    Watters W A. Diorite and associated intrusive and metamorphic rocks between Port William and Paterson Inlet, Stewart Island, and on Ruapuke Island[J]. New Zealand journal of geology and geophysics, 1978, 21(4): 423-442. doi: 10.1080/00288306.1978.10424067
    Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4): 370-384. doi: 10.1017/S0016756800058222
    Yuan, H. L. , Gao, S. , Liu, X. M. , Li, H. M. , 2004. Accurate U-Pb age and trace element determination of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28, (3), 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
    Zhao J H, Zhou M F, Zheng J P, Fang S M. Neoproterozoic crustal growth and reworking of the Northwestern Yangtze Block: constraints from the Xixiang dioritic intrusion, South China[J]. Lithos, 2010, 120(3-4): 439-452. doi: 10.1016/j.lithos.2010.09.005
    Zhou Y, Liang X, Liang X, Jiang Y, Wang C, Fu J G, Shao T B. U–Pb geochronology and Hf-isotopes on detrital zircons of Lower Paleozoic strata from Hainan Island: new clues for the early crustal evolution of southeastern South China[J]. Gondwana Research, 2015, 27(4): 1586-1598. doi: 10.1016/j.gr.2014.01.015
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 贾伍慧,刘凯,余成华,朱伟,邓岳飞. 锶同位素在地质学领域的分析技术与应用研究进展. 岩矿测试. 2025(02): 149-160 .

    Other cited types(1)

Catalog

    Article views (234) PDF downloads (130) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return