ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
HE Jiale,TANG Weidong,LIU Tianhang,et al. Study on Geochronology, Rock Genesis and Tectonic Background of Luocheng Granodiorite in Longshou Mountain Tectonic Belt[J]. Northwestern Geology,2025,58(1):52−67. doi: 10.12401/j.nwg.2023153
Citation: HE Jiale,TANG Weidong,LIU Tianhang,et al. Study on Geochronology, Rock Genesis and Tectonic Background of Luocheng Granodiorite in Longshou Mountain Tectonic Belt[J]. Northwestern Geology,2025,58(1):52−67. doi: 10.12401/j.nwg.2023153

Study on Geochronology, Rock Genesis and Tectonic Background of Luocheng Granodiorite in Longshou Mountain Tectonic Belt

More Information
  • Received Date: October 25, 2022
  • Revised Date: June 28, 2023
  • Accepted Date: July 29, 2023
  • Available Online: December 18, 2024
  • The geotectonic location of Longshou Mountain Metallogenic Belt of the Alxa Massif is at the junction of the North China Plate, the Qilian Orogenic Belt, and the Central Asian Orogenic Belt, and the particularity of the tectonic environment is of great significance to the regional tectonic evolution and plate movement. The magmatic evolution and tectonic background of this area are not well studied. The author has carried out studies on the rock geochemistry, zircon U-Pb dating, and Lu-Hf isotope of Luocheng biotite granodiorite. LA-ICP-MS zircon U-Pb dating shows a value of (289±3)Ma (MSWD=0.57), and the emplacement time of the rock is in the Early Permian. Luocheng Granodiorite is quasi aluminous, calc alkaline series, with Mg# value between 0.64-0.66, showing the characteristics of I-type granite. These early Permian Granodiorite in the study area show the characteristics of relative enrichment of light REE and relative depletion of heavy REE, LREE/HREE ratio was 4.20-5.30, and (La/Yb) N was 3.69-5.46, And it has a slight negative Eu anomaly(δEu: 0.80-0.96). In the standardized diagram of the primitive mantle, In the standardized diagram of the original mantle, these samples are relatively rich in large ion lithophile elements (Rb, Th, K, etc.) and depleted in high field strength elements (Nb, Ta, Ti, P, etc.), showing the geochemical characteristics of subduction related arc magmas. The early Permian intrusive rocks in the Luocheng area have positive ε The Hf (t) value (+4.37 to+6.88) and the relatively young two-stage mode age (T (DMC)=808.6 to 952.5 Ma). Field geological characteristics and geochemical data show that Luocheng Granodiorite is the product of mixing of crust derived magma and mantle derived magma. Based on the analysis of regional background and foreword research data, it is possible that arc magmatic activity related to subduction existed in the Longshoushan tectonic belt in the western part of Alxa during the Early Permian.

  • 董国强, 余君鹏, 李通国, 等. 甘肃龙首山西山头窑地区中酸性岩体年代学、地球化学特征及构造意义[J]. 新疆地质, 2022.40(3): 425-433 doi: 10.3969/j.issn.1000-8845.2022.03.018

    Dong Guoqiang, Yu Junpeng, Li Tongguo, et al. Geochronology, Geochemistry and Tectonic Significance of Intermediate Acid Magmatic Rocks in Shantouyao Area, West of Longshou Mountain, Gansu Province[J]. XinJiang Geology, 2022.40(3): 425-433. doi: 10.3969/j.issn.1000-8845.2022.03.018
    甘肃省地质局. 高台幅、平川幅1: 200000区域地质测量报告[R].甘肃省地质局, 1974.
    焦建刚,汤中立,闫海卿,等.甘肃高台-临泽地区109-2隐伏岩体岩石地球化学特征[J]. 大地构造与成矿学,2007,31(2):218-225.

    Jiao Jiangang, Tang Zhongli, Yan Haiqing, et al.Lithogeochemical characteristics of 109-2 hidden ultramafic intrusions at gaotai-linze, gansu province[J]. Geotecton ica etM eta llogenia,2007,31(2):218-225.
    刘文恒, 潘家永, 刘晓东, 等, 甘肃龙首山青山堡花岗岩成因及其构造意义: 元素地球化学、锆石U-Pb年龄和Sr-Nd同位素约束[J]. 矿物岩石, 2019, 39(4): 26-40

    Liu Wenheng, Pan Jiayong, Liu Xiaodong, et al. Petrogenesis and tectonic implication of qingshanbao pluton in longshou moutains, gansu: Constraints from elemental geochemistry, zircon U-Pb age and Sr-Nd isotopes[J]. Mineral Petrol, 2019, 39(4): 26-40.
    李良, 孙丰月, 李碧乐, 等. 漠河地区黑云母花岗闪长岩地球化学、Hf同位素特征及其成因[J]. 地球科学, 2018, 43(2): 417-434

    Li Liang, Sun Fengyue, Li Bile, et al. Geochemistry, Hf Isotopes and Petrogenesis of Biotite Granodiorites in the Mohe Area[J]. Earth Science, 2018, 43(2): 417-434.
    李宏卫, 屈尚侠, 林小明, 等. 广东新丰新坪花岗闪长岩(104Ma)地球化学、锆石U-Pb年龄和Hf同位素研究[J]. 中国地质, 2021, 48(5): 1524-1539

    Li Hongwei, Qu Shangxia, Lin Xiaoming, et al. Petrogeochemistry, zircon U-Pb age and Hfisotope of Xinping granodiorite(104Ma) in Xinfeng area, Guangdong Province[J]. Geology in China, 2021, 48(5): 1524-1539.
    李金超, 国显正, 孔会磊, 等. 东昆仑浪麦滩地区A型花岗岩年代学地球化学特征及其地质意义[J]. 地质学报, 2021, 95(5): 1508-1522 doi: 10.3969/j.issn.0001-5717.2021.05.014

    Li Jinchao, Guo Xianzheng, Kong Huilei, et al. Geochronology, geochemical characteristics and geological significance of A-type granite from the Langmaitan area, East Kunlun[J]. Acta Geologica Sinica, 2021, 95(5): 1508-1522. doi: 10.3969/j.issn.0001-5717.2021.05.014
    李平, 朱涛, 吕鹏瑞, 等. 西天山早寒武世夏特辉长岩: 南天山洋早期俯冲的岩浆记录[J]. 西北地质, 2024, 57(3): 44−58.

    LI Ping, ZHU Tao, LÜ Pengrui, et al. Early Cambrian Xiate Gabbro in Western Tianshan: Magmatic Records of Initial Subduction of the South Tianshan Ocean[J]. Northwestern Geology, 2024, 57(3): 44−58.
    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MSU-Pb定年方法及应用[J]. 地质学报, 2015, 89(12 ): 2400-2418 doi: 10.3969/j.issn.0001-5717.2015.12.015

    Li Yanguang, Wang Shuangshuang, Liu Minwu, et al. U-Pb Datin g Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica, 2015, 89(12 ): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
    牛宇奔, 刘文恒, 刘晓东, 等. 甘肃龙首山成矿带青山堡岩体地球化学特征及成因意义[J]. 科学技术与工程, 2018, 18(34): 11-21 doi: 10.3969/j.issn.1671-1815.2018.34.002

    Niu Yunben, Liu Wenheng, Liu Xiaodong, et al. Geochemistry and petrogenesis of Qingshanbao pluton of Longshoushan metallogenic belt in Gansu[J]. Science Technology and Engineering, 2018, 18(34): 11-21. doi: 10.3969/j.issn.1671-1815.2018.34.002
    强利刚,王刚,邵东,等.龙首山成矿带地质构造演化研究[J].西部资源,2019,(05):23-24.

    Qiang Ligang, Wang Gang, Shao Dong, et al. Study on the geological structure evolution of the Longshou Mountain ore-forming belt [J].Western Resources,2019,(05):23-24.
    宋东方, 肖文交, 韩春明, 等. 北山中部增生造山过程: 构造变形和40Ar-39Ar年代学制约[J]. 岩石学报, 2018, 34(7): 2087-2098

    Song Dongfang, Xiao Wenjiao, Han Chunming, et al. Accretionary processes of the central segment of Beishan: Constraints from structural deformation and 40Ar-39Ar geochronology. Acta Petrologica Sinica, 2018, 34(7): 2087-2098.
    谭文娟, 杨合群, 张小平, 等. 祁连及邻区成矿区带的划分[J]. 地质找矿论丛, 2012, 27(01): 9-15 doi: 10.3969/j.issn.1001-1412.2012.01.002

    Tan Wenjuan, Yang Hequn, Zhang Xiaoping, et al. Division of metallogenic belts in Qilian moutain and adjacent areas[J]. Contributions to Geology and Mineral Resources Research, 2012, 27(01): 9-15. doi: 10.3969/j.issn.1001-1412.2012.01.002
    汤中立, 白云来. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 1999, 6(2): 271-284 doi: 10.3321/j.issn:1005-2321.1999.02.006

    Tang Zhongli, Bai Yunlai. Geotectonic framework and metallogenic system in the southwest margin of north China paleocontinent[J]. Earth Science Frontiers, 1999, 6(2): 271-284. doi: 10.3321/j.issn:1005-2321.1999.02.006
    王德滋, 谢磊. 岩浆混合作用: 来自岩石包体的证据[J]. 高校地质学报, 2008, (1): 16-22 doi: 10.3969/j.issn.1006-7493.2008.01.002

    Wang Dezi, Xie Lei. Magma Mingling: Evidence from Enclaves[J]. Geological Journal of China Universities, 2008, (1): 16-22. doi: 10.3969/j.issn.1006-7493.2008.01.002
    王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71−81.

    WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology, 2023, 56(6): 71−81.
    王增振, 陈宣华, 邵兆刚, 等. 甘肃龙首山-合黎山晚志留世-早泥盆世花岗岩类的成因及其对阿拉善地块西南缘早古生代构造演化的约束[J]. 地质学报, 2020, 94(8): 2243-2257 doi: 10.3969/j.issn.0001-5717.2020.08.006

    Wang Zengzhen, Chen Xuanhua, Shao Zhaogang, et al. Petrogenesis of the Late Silurian-Early Devonian granites in the Longshoushan-Helishan area, Gansu Province, and its tectonic implications for the Early Paleozoic evolution of the southwestern Alxa Block[J]. Acta Geologica Sinica, 2020, 94(8): 2243-2257. doi: 10.3969/j.issn.0001-5717.2020.08.006
    王钊飞, 隋清霖, 贺永康. 西昆仑沙子沟铜矿区花岗闪长岩年代学地球化学及Hf同位素特征. 西北地质, 2019, 52(3): 90-109

    Wang Zhaofei, Sui Qinglin, He Yongkang. Geochronology, Geochemistry and Hf Isotopic Com positions of the Granodiorite in the Shazigou Copper Deposit, Vest Kunlun[J]. Northwestern Geology, 2019, 52(3): 90-109.
    王秉璋, 潘彤, 任海东, 等. 东昆仑祁漫塔格寒武纪岛弧: 来自拉陵高里河地区玻安岩型高镁安山岩/闪长岩锆石U-Pb年代学、地球化学和Hf同位素证据[J]. 地学前缘(中国地质大学(北京);北京大学), 2021, 28(1): 318-333

    Wang Bingzhang, Pantong, Ren Haidong, et al. Cambrian Qimantagh island arc in the East Kunlun orogeny: Evidences from zircon U-Pb ages, litho geochemistry and Hf isotopes of high-Mg andesite/diorite from the Lalinggaolihe area[J]. Earth Science Frontiers, 2021, 28(1): 318-333.
    王承花, 龙首山成矿带成矿规律及找矿方向[J]. 甘肃科技, 2010, 26(10): 39-44

    Wang Chenghua. Metallogenic Regularity and Prospecting Direction of Longshou Mountain Metallogenic Belt[J]. Gansu Science and Technology, 2010, 26(10): 39-44.
    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220 doi: 10.3969/j.issn.1000-0569.2007.02.001

    Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. doi: 10.3969/j.issn.1000-0569.2007.02.001
    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报. 2004, 49(16): 1589-1604

    Wu Yuanbao, Zheng Yongfei. Study on the mineralogy of Zircon and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin. 2004, 49(16): 1589-1604.
    夏林圻, 徐学义, 夏祖春, 等. 天山石炭纪碰撞后裂谷火山作用[J]. 地质学报, 2003, (3): 358 doi: 10.3321/j.issn:0001-5717.2003.03.018

    XIA Linqi, XU Xueyi, XIA Zuchun, et al. Volcanism of rift valley after Carboniferous collision in Tianshan Mountains [J]. Acta Geologica Sinica, 2003, (3): 358. doi: 10.3321/j.issn:0001-5717.2003.03.018
    徐克勤, 胡受奚, 孙明志, 等. 华南两个成因系列花岗岩类及其成矿特征[J]. 桂林工学院学报, 1982, (1): 1-10

    Xu Keqin, Hu Shouxi, Su Mingzhi, et al. On the Two Genetic Series of Granites in South China and their Metallogenetic Characteritics[J]. Journal of Guilin Institute of Technology, 1982, (1): 1-10.
    袁洪林, 高山, 罗彦, 等. Lu-Hf年代学研究—以大别榴辉岩为例[J]. 岩石学报, 2007, 23(02): 233-239 doi: 10.3969/j.issn.1000-0569.2007.02.004

    Yuan Honglin, Gao Shan, LuoYan, et al. Study of Lu-Hf Geochronology: a case study of eclogite from DaBie UHP Belt[J]. Acta Petrologica Sinica, 2007, 23(02): 233-239. doi: 10.3969/j.issn.1000-0569.2007.02.004
    张甲民, 赵如意, 王刚, 等. 甘肃龙首山芨岭铀矿区A型似斑状花岗岩地质特征及其地质意义[J]. 矿物岩石地球化学报, 2017, (05): 121-131

    Zhang Jiamin, Zhao Ruyi, Wang Gang, et al. The Geological Characteristics and Significances of A-Type Porphyritic Granite in the Jiling Uranium Deposit in the Longshou Mountains, Gansu Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, (05): 121-131.
    张建军, 王涛, 张招崇, 等. 华北地块北缘西段巴音诺尔公-狼山地区牙马图岩体的岩浆混合成因[J]. 地质论评, 2012, 58(1): 53-66 doi: 10.3969/j.issn.0371-5736.2012.01.005

    Zhang Jianjun, Wang Tao, Zhang Zhaochong, et al. Magma Mixing Origin of Yamatu Granite in Nuoergong—Langshan Area, Western Part of the Northern Margin of North China Craton: Petrological and Geochemical Evidences[J]. Geological Review, 2012, 58(1): 53-66. doi: 10.3969/j.issn.0371-5736.2012.01.005
    张照伟, 谭文娟, 杜辉, 等. 金川岩浆镍钴硫化物矿床深部找矿勘查技术研究[J]. 西北地质, 2023, 56(6): 242−253.

    ZHANG Zhaowei, TAN Wenjuan, DU Hui, et al. Study on Exploration Techniques of Deep Ore Prospecting in Jinchuan Magmatic Co–Ni Sulfide Deposit, Northwest China[J]. Northwestern Geology, 2023, 56(6): 242−253.
    Alther R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany)[R]. Lithos, 2000, 50(1): 51-73.
    Batchelor, R. A, Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters[J]. Chemical Geology, 1985.48(1-4): 43-55. doi: 10.1016/0009-2541(85)90034-8
    Chappell B W, White A J R. I-and S-type granites in the Lachlan fold belt[J]. Royal Society of Edinburgh Transaction, 1992, 83: 1-26.
    Harris N B W, Pearce J A, Tindle A G. Geochemical Characteristics of Collision-zone Magmatism[J]. Geological Society, London, Special Publications, 1986, 19(1): 67-81. doi: 10.1144/GSL.SP.1986.019.01.04
    Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology. 2000, 18(4): 423-439.
    Jiang Yaohui, Jiang Shaoyong, Ling Hongfei, et al. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints[J]. Earth andPlanetary Science Letters, 2006, 241(3): 617-633.
    LASSITERJ C, Depaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood ba-salts: Chemical and isotopic constraints. In: Mahoney J, ed. Large Igneous Provinces: Continental Ocanic and Planetary Flood Volcanism. Geophysical Monograph 100 [M]. Washington DC: American Geophysical Union Press, 1997, 335-355.
    R. W. Le Maitre, A new generalised petrological mixing model[J]. Contributions to Mineralogy and Petrology, 1979,71(2): 133-137.
    Ludwig, K R. User’s Manual for Isoplot 3.0: A Geo-chronological Toolkit for Microsoft Excel. Berkeley Geo-chronology Center Special Publication, Berkeley. 2003
    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of American Bulletin. 1989, 10(5): 635-643.
    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 1976.58(1): 63-81.
    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
    Rapp, R. P. , Watson, E. B. , Dehydration Melting of Me-tabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology. 1995.36(4): 891-931.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds.). Magmatism in the Ocean Basins. Geological Society of London Special Publication, 1989, 42(1): 313−345.
    Streckeisen A L. Classification of the Common Igne-ous Rocks by Means of Their Chemical Composition: A Provisional Attempt. Neues Jahrbuch für Mineralogie-Monatshefte. 1976, 1: 1-15.
    Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell, 1985, 1-312.
    Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202
    Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanism[J]. Geochimica et Cosmochimica Acta, 1994.58: 4127-4145. doi: 10.1016/0016-7037(94)90269-0

Catalog

    Article views (91) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return