ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LI Lailong,ZHANG Yongmei,GU Xuexiang,et al. Pb-Zn Mineralization in Kuergasheng Pb-Zn Deposit, Xinjiang: Constraints from In-situ Micro Composition of Quartz and Sphalerite[J]. Northwestern Geology,2024,57(3):139−153. doi: 10.12401/j.nwg.2023174
Citation: LI Lailong,ZHANG Yongmei,GU Xuexiang,et al. Pb-Zn Mineralization in Kuergasheng Pb-Zn Deposit, Xinjiang: Constraints from In-situ Micro Composition of Quartz and Sphalerite[J]. Northwestern Geology,2024,57(3):139−153. doi: 10.12401/j.nwg.2023174

Pb-Zn Mineralization in Kuergasheng Pb-Zn Deposit, Xinjiang: Constraints from In-situ Micro Composition of Quartz and Sphalerite

More Information
  • Received Date: December 14, 2022
  • Revised Date: July 28, 2023
  • Accepted Date: September 05, 2023
  • Available Online: March 27, 2024
  • The Kuergasheng Pb-Zn deposit, located in the Serimu area of the western Tianshan of Xinjiang, is a hydrothermal vein-type Pb-Zn deposit formed in the extensional environment of the plate. The ore body is veined, reticulated and lenticular in the upper subgroup of the Upper Devonian Toskurtau Formation, and is controlled by three north-west fault zones that are spread in parallel with each other. The mineralization process can be divided into three stages: the pre-ore quartz stage (I), the quartz-polymetallic sulphides stage (II) (main mineralization stage) and the calcite stage (III). In this study, the LA-ICP-MS method was used to analyze quartz and sphalerite at different stages of mineralization. The results showed that: (1) The Quartz in the I and II stages of the Kuergasheng Pb-Zn ore area contained more trace elements. Among them, Al, K, Na and Li are mainly enriched. The mass fractions of Al, K, Na and Li varied from 547.56×10−6~4355.49×10−6, 9.41×10−6~626.66×10−6, 23.78×10−6~994.40×10−6, and 43.37×10−6~265.52×10−6, respectively, showing a significant linear positive correlation between Al and Li+Na+K. The contents of Ti and Ge were low, and the contents of Ti and Ge varied from 3.17×10−6~14.05×10−6, and 1.77×10−6~6.50×10−6, respectively, reflecting the low mineralization temperature. Compared with the world's typical porphyry-type and epithermal Pb-Zn deposits, the quartz trace elements characteristics of the Kuergasheng Pb-Zn deposit are more similar to the epithermal Pb-Zn deposits. (2) The content and ratio of trace elements such as Mn, In, Fe, Ga, Ge in sphalerite indicate that the deposit was formed in a medium to low temperature environment, and the mineralization temperature was further limited to be 122~178 ℃ by using sphalerite GGIMFis thermometer. The Ga/In ratio and lnw(Ga)-lnw(In) characteristics indicate that the formation of sphalerite is related to sedimentation. Combining the trace element characteristics of host rock with the previous Pb isotopic data, it is speculated that the ore-forming materials of the Kuergasheng Pb-Zn deposit were mainly derived from the host rock.

  • 蔡劲宏, 周卫宁, 张锦章. 江西银山铜铅锌多金属矿床闪锌矿的标型特征[J]. 桂林工学院学报, 1996, 16(4): 370-375

    CAI Jinhong, ZHOU Weining, ZHANG Jinzhang. Typomorphic characteristics of sphalerites in the Yinshan copper, lead and zinc polymetallic deposit, Jiangxi[J]. Journal of Guilin Institute of Technology, 1996, 16(4): 370-375.
    陈小丹, 陈振宇, 程彦博, 等. 热液石英中微量元素特征及应用: 认识与进展[J]. 地质论评, 2011, 57(5): 707-717

    CHEN Xiaodan, CHEN Zhenyu, CHENG Yanbo, et al. Distribution and Application of Trace Elements in Hydrothermal Quartz: Understanding and prospecting[J]. Geological Review, 2011, 57(5): 707-717. .
    戴玉林. 库尔尕生布拉克铅锌矿床地质特征及成因探讨[J]. 矿产与地质, 1994, 8(5): 326-329.
    段士刚, 薛春纪, 李野, 等. 新疆库尔尕生铅锌矿床地质、流体包裹体和同位素地球化学[J]. 矿 床地质, 2012, 31(5): 1014-1024

    DUAN Shigang, XUE Chunji, LI Ye, et al. Geology, fluid inclusions and isotopic geochemistry of Kuergasheng lead- zinc deposit in western Tianshan, Xinjiang[J]. Geology of Ore Deposits, 2012, 31(5): 1014-1024.
    段士刚. 新疆西天山赛里木微地块区域成矿规律与找矿方向[D]. 北京: 中国地质大学 (北京), 2011

    DUAN Shigang. Mineralization law and prospecting direction in the Serimu microplot area of West Tianshan Mountain, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2011.
    高永宝, 李侃, 钱兵, 等. 扬子北缘马元铅锌矿床闪锌矿微量元素及 S-Pb-He-Ar-C 同位素地球化学研究[J]. 岩石学报, 2016 (1): 251-263

    GAO Yongbao, LI Kan, QIAN Bing, et al. Trace elements S-Pb-He-Ar and C isotopes of sphalerite in the Mayuan Pb-Zn deposit, at the northern margin of the Yangtze plate, China[J]. Journal of Petrology, 2016(1): 251-263.
    顾雪祥, 章永梅, 彭义伟, 等. 西天山博罗科努成矿带与侵入岩有关的铁铜钼多金属成矿系统: 成岩成矿地球化学与构造-岩浆演化[J]. 地学前缘, 2014, 21(5): 156-175

    GU Xuexiang, ZHANG Yongmei, PENG Yiwei, et al. The Fe-Cu-Mo polymetallic mineralization system related to intermediateacid intrusions in the Boluokenu metallogenic belt of the West Tianshan, Xinjiang: Rock-and ore-forming geochemistry and tectonomagmatic evolution[J]. Earth Science Frontiers, 2014, 21(5): 156-175.
    顾雪祥, 章永梅, 王新利, 等. 新疆西天山可克萨拉-艾木斯呆依铁铜矿床成岩成矿年代学及其地质意义[J]. 地学前缘, 2013, 20(6): 195-209

    GU Xuexiang, ZHANG Yongmei, WANG Xinli, et al. Geochronology of intrusive rocks and associated ores of the Kekesala-Aimusidaiyi Fe-Cu deposit in the West Tianshan, Xinjiang and its geologic significance[J]. Frontiers of Geoscience, 2013, 20(6): 195-209.
    郭飞, 王智琳, 许德如, 等. 湖南栗山铅锌铜多金属矿床闪锌矿微量元素特征及成矿指示意义[J]. 地学前缘, 2020, 27(4): 66-81 doi: 10.13745/j.esf.sf.2020.4.28

    GUO Fei, WANG Zhilin, XU Rude, et al. Trace element characteristics of sphalerite in the Lishan Pb-Zn-Cu polymetallic deposit in Hunan Province and the metallogenic implications[J]. Earth Science Frontiers, 2020, 27(4): 66-81. doi: 10.13745/j.esf.sf.2020.4.28
    郭闯, 卢玉杰, 欧阳志强, 等. 湖南水口山老鸦巢金矿床地质特征及成因分析[J]. 西北地质, 2023, 56(5): 294−307.

    GUO Chuang, LU Yujie, OUYANG Zhiqiang, et al. Geological Characteristics and Genetic Analysis of Laoyachao Gold Deposit in Shuikoushan, Hunan Province[J]. Northwestern Geology, 2023, 56(5): 294−307.
    韩照信. 秦岭泥盆系铅锌成矿带中闪锌矿的标型特征[J]. 西安地质学院学报, 1994, 16(1): 12-17

    HAN Zhaoxin. The typomorphic characteristic of the sphalerite in the Qinling Devonian system lead -zinc metallogenic belt[J]. Journal of Xi'an Institute of Geology, 1994, 16(1): 12-17.
    黎彤. 化学元素的地球丰度[J]. 地球化学, 1976 (3): 167-174 doi: 10.3321/j.issn:0379-1726.1976.03.004

    LI Tong. Chemical element abundances in the earth and it's major shells[J]. Geochemistry, 1976(3): 167-174. doi: 10.3321/j.issn:0379-1726.1976.03.004
    刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984.
    李徽. 闪锌矿中杂质元素的特征及地质意义[J]. 地质与勘探, 1986, 22(10): 42-46.
    李野. 新疆西天山达巴特铜钼矿地质地球化学及成因[D]. 北京: 中国地质大学(北京), 2012

    LI Ye. Geological and geochemical characteristics and genesis of Dabate Cu-Mo deposit, Western Tianshan, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2012.
    刘畅. 西天山达巴特铜钼成矿流体性质及演化[D]. 北京: 中国地质大学(北京), 2015

    LIU Chang. The nature and evolution of ore fluids in Dabate Cu-Mo Deposit, Western Tianshan[D]. Beijing: China University of Geosciences (Beijing), 2015.
    刘凤鸣. 库尔尕生铅锌矿床地质特征及成因浅析[J]. 新疆有色金属, 2007, 30(3): 4-6. doi: 10.16206/j.cnki.65-1136/tg.2007.03.005
    刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS 在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753-3769 doi: 10.1360/csb2013-58-36-3753

    LIU Yongsheng, HU Zhaochu, LI Ming, et al. Application of LA-ICP-MS in elemental analysis of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3753-3769. doi: 10.1360/csb2013-58-36-3753
    吕行. 新疆西天山达巴特铜钼矿床萤石流体包裹体及元素地球化学研究[D]. 北京: 中国地质大学(北京), 2021

    LV Xing. Study on Fluid Inclusions and Geochemical Characteristics of Major and 'Trace Elements of Fluorite in the Dabate Cu-Mo Deposit, West Tianshan, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2021.
    柳晨雨, 章永梅, 顾雪祥, 等. 新疆西天山库尔尕生铅锌矿床成因——来自流体包裹体和硫同位素的证据[J]. 新疆地质, 2021, 39(4): 655-660 doi: 10.3969/j.issn.1000-8845.2021.04.022

    LIU Chenyu, ZHANG Yongmei, GU Xuexiang, et al. The Genesis of the Kuergasheng Pb-Zn Deposit in Western Tianshan, Xinjiang: Evidence from Fluid Inclusions and Sulfur Isotopes[J]. Xinjiang Geology, 2021, 39(4): 655-660. doi: 10.3969/j.issn.1000-8845.2021.04.022
    唐功建, 陈海红, 王强, 等. 西天山达巴特 A 型花岗岩的形成时代与构造背景[J]. 岩石学报, 2008, 24(5): 947-958

    TANG Gongjian, CHEN Haihong, WANG Qiang, et al. Geochronological age and tectonic background of the Dabate A-type granite pluton in the west Tianshan[J]. Acta Petrologica Sinica, 2008, 24(5): 947-958.
    王核, 彭省临, 赖健清, 等. 新疆温泉县达巴特铜矿火山机构的厘定及其意义[J]. 地质找矿论丛, 2000, 15(4): 346-350 doi: 10.3969/j.issn.1001-1412.2000.04.008

    WANG He, PENG Shenglin, LAI Jianqing, et al. Determination of volcanic edifice and its geological significance to Dabate copper ore deposit in Wenquan county, Xinjiang[J]. Contributions to Geology and Mineral Resources Research, 2000, 15(4): 346-350. doi: 10.3969/j.issn.1001-1412.2000.04.008
    新疆新地地质勘查有限公司.新疆温泉县北达巴特铜钼矿勘探报告[R].新疆新地地质勘查有限公司, 2011.
    新疆维吾尔自治区地质矿产勘查开发局. 西天山地区 1∶500000 地质图[R].新疆维吾尔自治区地质矿产勘查开发局, 2005
    新疆有色地质矿产勘查院. 新疆博乐市库尔尕生铅多金属矿普查报告[R]. 新疆有色地质矿产勘查院, 2002.
    薛春纪, 赵晓波, 莫宣学, 等. 西天山巨型金铜铅锌成矿带构造成矿演化和找矿方向[J]. 地质学报, 2014, 88(12): 2490-2531 doi: 10.19762/j.cnki.dizhixuebao.2014.12.025

    XUE Chunji, ZHAO Xiaobo, MO Xuanxue, et al. Tectonic metallogenic evolution and prospecting direction of giant gold-copper-Pb-Zn metallogenic belt in West Tianshan[J]. Acta Petrologica Sinica, 2014, 88(12): 2490-2531. doi: 10.19762/j.cnki.dizhixuebao.2014.12.025
    薛春纪, 赵晓波, 张国震, 等. 西天山金铜多金属重要成矿类型、成矿环境及找矿潜力[J]. 中国地质, 2015, 42(3): 381-410 doi: 10.3969/j.issn.1000-3657.2015.03.002

    XUE Chunji, ZHAO Xiaobo, ZHANG Guozhen, et al. Important mineralization types, mineralization environment and prospecting potential of gold-copper polymetals in West Tianshan[J]. Geology in China, 2015, 42(3): 381-410. doi: 10.3969/j.issn.1000-3657.2015.03.002
    肖红, 张伟博. 新疆博乐市库尔尕生铅锌矿地质普查报告[R]. 新疆有色地质勘查局703队, 2002.
    伊其安, 邸晓辰, 卞翔, 等. 新疆博乐市库尔尕生铅锌矿地质特征[J]. 新疆有色金属, 2013, 36(4): 30-33. doi: 10.16206/j.cnki.65-1136/tg.2013.04.014
    张作衡, 毛景文, 王志良, 等. 新疆西天山达巴特铜矿床地质特征和成矿时代研究[J]. 地质论评, 2006, 52(5): 683-689 doi: 10.3321/j.issn:0371-5736.2006.05.023

    ZHANG Zuoheng, MAO Jingwen, WANG Zhiliang, et al. Geology and Metallogenetic Epoch of the Dabate Porphyry Copper Deposit in West Tianshan Mountains, Xinjiang[J]. Geological Review, 2006, 52(5): 683-689. doi: 10.3321/j.issn:0371-5736.2006.05.023
    张作衡, 王志良, 陈伟十, 等. 西天山达巴特斑岩型铜矿床流体地球化学特征和成矿作用[J]. 岩石学报, 2009, 25(6): 1310-1318

    ZHANG Zuoheng, WANG Zhiliang, CHEN Weishi, et al. Fluid geochemical characteristics and metallogenic effects of Dabat porphyry copper deposits in West Tianshan Mountains[J]. Acta Petrologica Sinica, 2009, 25(6): 1310-1318.
    张作衡, 王志良, 左国朝, 等. 西天山达巴特矿区火山岩的形成时代, 构造背景及对斑岩型矿化的制约[J]. 地质学报, 2008, 82(11): 1494-1503 doi: 10.3321/j.issn:0001-5717.2008.11.004

    ZHANG Zuoheng, WANG Zhiliang, ZUO Guochao, et al. Ages and tectonic settings of the volcanic rocks in Dabate ore district in West Tianshan Mountains and their constraints on the porphyry-type mineralization West Tianshan Mountains, Xinjiang[J]. Acta Geological Sinica, 2008, 82(11): 1494-1503. doi: 10.3321/j.issn:0001-5717.2008.11.004
    张辉善, 李艳广, 全守村, 等. 阿尔金喀腊达坂铅锌矿床金属硫化物元素地球化学特征及其对成矿作用的制约[J]. 岩石学报, 2018, 34(8): 2295-2311

    ZHANG Huishan, LI Yanguang, QUAN Shoucun, et al. Geochemical characteristics of metallic sulfides from the Kaladaban deposit in Xinjiang and its implications for Pb-Zn ore-forming mechanism[J]. Acta Petrologica Sinica, 2018, 34(8): 2295-2311.
    张天栋, 刘忠法, 邸洪飞, 等. 湘南宝山铜铅锌多金属矿床闪锌矿元素地球化学特征及其对成矿的制约[J]. 矿产勘查, 2021, 12(8): 1716-1726 doi: 10.3969/j.issn.1674-7801.2021.08.002

    ZHANG Tiandong, LIU Zhongfa, DI Hongfei, et al. Geochemical characteristics of sphalerite from the Baoshan deposit in southern Hunan and its implications for Cu-Pb-Zn-Ag polymetallic oreforming mechanism Xinjiang and its implications for Pb-Zn ore-forming mechanism[J]. Mineral Exploration, 2021, 12(8): 1716-1726. doi: 10.3969/j.issn.1674-7801.2021.08.002
    周卫宁, 傅金宝, 李达明. 广西大厂矿田铜坑-长坡矿区闪锌矿的标型特征研究[J]. 矿物岩石, 1989, 9(2): 65-72 doi: 10.19719/j.cnki.1001-6872.1989.02.006

    ZHOU Weining, FU Jinbao, LI Daming. Typomorphic characteristics of sphalerite in Tongkeng-Changpo mine of Dachang ore field Guangxi, China[J]. Mineralogy and Petrology, 1989, 9(2): 65-72. doi: 10.19719/j.cnki.1001-6872.1989.02.006
    朱赖民, 袁海华, 栾世伟. 金阳底苏会东大梁子铅锌矿床内闪锌矿微量元素标型特征及其研究意义[J]. 四川地质学报, 1995(1): 49-55

    ZHU Laimin, YUAN Haihua, LUAN Shiwei. Typomorphic characteristics and their signficance of minor elements of sphalerite from Disu and Daliangzi Pb-Zn deposits, Sichuan[J]. Sichuan Journal of Geology, 1995(1): 49-55.
    张乾. 利用方铅矿, 闪锌矿的微量元素图解法区分铅锌矿床的成因类型[J]. 地质地球化学, 1987, 9: 64-66
    Audétat A, Garbe Schönberg D, Kronz A, et al. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge[J]. Geostandards and Geoanalytical Research, 2015, 39(2): 171-184.
    Cao R, Yan S C, Chen B, et al. Cu-Mo differential mineralization mechanism of the Dabate PolymetallicDeposit in Western Tianshan, NW China: Evidence from geology, fluid Inclusions, and oxygen isotopesystematics[J]. Resource Geology, 2020, 70(1): 50-69. doi: 10.1111/rge.12218
    Flem B, Larsen R B, Grimstvedt A, et al. In situ analysis oftrace elements in quartz by using laser ablation inductivelycoupled plasma mass spectrometry[J]. Chemical Geology, 2002, 182(2-4) : 237-247. doi: 10.1016/S0009-2541(01)00292-3
    Frenzel M, Hirsch T, Gutzmer J. Gallium, germanium, indium and other trace and minor elements in sphalerite as a function of deposit type-A meta-analysis[J]. Ore Geology Reviews, 2016, 76: 52-78. doi: 10.1016/j.oregeorev.2015.12.017
    Gao, S. , Zou, X. , Hofstra, A. H, et al. Trace elements in quartz: Insights into source and fluid evolution in magmatic-hydrothermal systems[J]. Economic Geology, 2022, 117(6): 1415-1428. doi: 10.5382/econgeo.4943
    Götze J, Plötze M, Graupner T, et al. Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography[J]. Geochimica et Cosmochimica Acta, 2004, 68(18): 3741-3759. doi: 10.1016/j.gca.2004.01.003
    Götte T, Ramseyer K. Trace element characteristics, luminescence properties and real structure of quartz[J]. Quartz: Deposits, Mineralogy and Analytics, 2012: 265-285.
    Hayden L A, Watson E B, Wark D A. A thermobarometer for sphene (titanite)[J]. Contributions to Mineralogy and Petrology, 2008, 155: 529-540. doi: 10.1007/s00410-007-0256-y
    Jacamon F, Larsen R B. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation[J]. Lithos, 2009, 107(3-4): 281-291. doi: 10.1016/j.lithos.2008.10.016
    Larsen R B, Henderson I, Ihlen P M, et al. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway[J]. Contributions to Mineralogy and Petrology, 2004, 147: 615-628. doi: 10.1007/s00410-004-0580-4
    Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4
    Maydagán L, Franchini M, Rusk B, et al. Porphyry to epithermal transition in the Altar Cu-(Au-Mo) deposit, Argentina, studied by cathodoluminescence, LA-ICP-MS, and fluid inclusion analysis[J]. Economic Geology, 2015, 110(4): 889-923. doi: 10.2113/econgeo.110.4.889
    Rottier B, Casanova V. Trace element composition of quartz from porphyry systems: a tracer of the mineralizing fluid evolution[J]. Mineralium Deposita, 2021, 56: 843-862. doi: 10.1007/s00126-020-01009-0
    Rusk B G, Lowers H A, Reed M H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation[J]. Geology, 2008, 36(7): 547-550. doi: 10.1130/G24580A.1
    Wang C M, Deng J, Zhang S T, et al. Sediment-hosted Pb-Zn deposits in southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton[J]. Acta Geologica Sinica-English Edition, 2010, 84(6): 1428-1438. doi: 10.1111/j.1755-6724.2010.00338.x
    Wang Y, Qiu K F, Müller A, et al. Machine learning prediction of quartz forming-environments[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8): e2021JB021925. doi: 10.1029/2021JB021925
    Wark D A, Watson E B. TitaniQ: a titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6): 743-754. doi: 10.1007/s00410-006-0132-1
    Wei C, Ye L, Hu Y, et al. Distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb deposit, northeastern Yunnan, China: Insights from SEM and LA-ICP-MS studies[J]. Ore Geology Reviews, 2019, 115: 103175. doi: 10.1016/j.oregeorev.2019.103175
    Qian Z. Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits[J]. Chinese Journal of Geochemistry, 1987, 6: 177-190. doi: 10.1007/BF02872218
  • Related Articles

Catalog

    Article views (90) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return