ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LIU Weidong,WANG Shuo,WEI Xiang,et al. Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area[J]. Northwestern Geology,2024,57(5):40−52. doi: 10.12401/j.nwg.2024016
Citation: LIU Weidong,WANG Shuo,WEI Xiang,et al. Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area[J]. Northwestern Geology,2024,57(5):40−52. doi: 10.12401/j.nwg.2024016

Application of Superimposed Mineralization of Small Intrusions in the New Round of Prospecting Breakthrough Action: A Case Study of Mian-Lue-Ning Ore Concentration Area

More Information
  • Received Date: July 24, 2023
  • Revised Date: January 14, 2024
  • Available Online: April 09, 2024
  • The theory of (large) ore deposit forming in the small intrusion is an important result of decades of prospecting practice by academician Tang Zhongli. The theory started from magmatic copper-nickel sulfide deposits, gradually extended to hydrothermal deposits associated with intermediate-acid magmatism, and developed into a complete metallogenic theoretical system of basic-ultra-basic and intermediate-acid magmatism in parallel. In recent years, it has been found that the metallogenic belt represented by the Mian-Luo-Ning ore concentration area is distributed in many superimposed areas of basic-ultra-basic and intermediate-acid magmatic activities, among which the formation process of the Jianchaling cobalt-nickel-gold polymetallic deposit experienced the preliminary ultramafic magmatic liquation in the earlier stage to achieve the pre-enrichment of ore-forming elements, and the later superimposed acid magmatic fluid on eventually led to both cobalt-nickel and gold mines reaching large scale. In recent years, the Hejiaya cobalt-nickel deposit was found in the Baiqisi basic complex also has the characteristics of superimposed mineralization of two kinds of magmatism, which provides a new research direction for the theory of (large) ore deposit forming in the small intrusion. At present, the new round of prospecting breakthrough action has been fully launched. The strategic key metal minerals represented by Co and Ni are still the top priority of the prospecting work. The superposition of small rock bodies is an important geological process in the formation of Co and Ni ores. In this paper, the development process of the theory of (large) ore deposit forming in the small intrusion is introduced, and the basic connotation of the superimposition of two kinds of magmas into (large) ore is put forward by taking the Mian-Lue-Ning ore concentration area as the representative. On this basis, the prospect of prospecting application and theoretical research is made, which is expected to support the new round of prospecting breakthrough action.

  • 陈衍景. 为什么中酸性小岩体成大矿?[J]. 西北地质, 2012, 454): 128133. doi: 10.3969/j.issn.1009-6248.2012.04.011

    CHEN Yanjing. Why Small Granitic Stocks Associate with Giant Mineral System?[J]. Northwestern Geology, 2012, 454): 128133. doi: 10.3969/j.issn.1009-6248.2012.04.011
    代军治, 陈荔湘, 石小峰, 等. 陕西略阳煎茶岭镍矿床酸性侵入岩形成时代及成矿意义[J]. 地质学报, 2014, 8810): 18611873.

    DAI Junzhi, CHEN Lixiang, SHI Xiaofeng, et al. Geocheronology of Acid Intrusice Rocksof the Jianchaling Nickel Deposit in Lueyang, Shaanxi and Its Metallogenic Implications[J]. Acta Geologica Sinica, 2014, 8810): 18611873.
    胡建明, 董广法. 略阳县煎茶岭金矿矿体的空间展布规律及找矿方向[J]. 大地构造与成矿学, 2002, 261): 7580.

    HU Jianming, DONG Guangfa. Rule of Spatial Extention and Direction in Prospecting of the Jianchaling Gold Deposit in Lueyang County[J]. Geotectonic et Metallogenia, 2002, 261): 7580.
    黄婉康, 甘先平, 陈荔湘, 等. 陕西煎茶岭金矿区的岩石及成矿时代研究[J]. 地球化学, 1996, 252): 150156. doi: 10.3321/j.issn:0379-1726.1996.02.006

    HUANG Wankang, GAN Xianping, CHEN Lixiang, et al. A Study of Petrology and Met-allogenetic Epoch of Gold in Jianchaling Deposit, Shaanxi Province[J]. Geochimica, 1996, 252): 150156. doi: 10.3321/j.issn:0379-1726.1996.02.006
    姜修道, 魏钢锋, 聂江涛. 煎茶岭镍矿—是岩浆还是热液成因[J]. 矿床地质, 2010, 296): 11121124. doi: 10.3969/j.issn.0258-7106.2010.06.013

    JIANG Xiudao, WEI Gangfeng, NIE Jiangtao. Jianchaling nickel deposit: Magmatic or hy-drothermal origin[J]. Mineral Deposits, 2010, 296): 11121124. doi: 10.3969/j.issn.0258-7106.2010.06.013
    罗明伟, 张晨曦, 杜春阳, 等. 洛南—豫西中酸性小岩体宏观特征及与钼矿床成矿的关系[J]. 中国钼业, 2018, 423): 2227.

    LUO Mingwei, ZHANG Chenxi, DU Chunyang, et al. The Relationship Between Macroscopic Characteristics of the Medium Acidic Rock Mass and the Molybdenum Deposit-Mine Ralization in Luonan-West of Hennan Province[J]. China Molybdenum Industry, 2018, 423): 2227.
    罗照华. 小岩体成大矿学说的内涵和意义[J]. 西北地质, 2012, 454): 204215. doi: 10.3969/j.issn.1009-6248.2012.04.019

    LUO Zhaohua. The Theoury of Metallogeny by the Small Magmatic Intrusion: Meaning –and Implications[J]. Northwestern Geology, 2012, 454): 204215. doi: 10.3969/j.issn.1009-6248.2012.04.019
    罗照华, 苏尚国, 刘翠. 岩浆成矿系统的尺度效应[J]. 地球科学与环境学报, 2014, 361): 19.

    LUO Zhaohua, SU Shangguo, LIU Cui. Scale Effects of the Magma-related Metallogenic Systems[J]. Journal of Earth Sciences and Environment, 2014, 361): 19.
    李世金, 孙丰月, 高永旺, 等. 小岩体成大矿理论指导与实践—青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 2012, 454): 185191. doi: 10.3969/j.issn.1009-6248.2012.04.017

    LI Shijin, SUN Fengyue, GAO Yongwang, et al. The Theoretical Guidance and the Practi-ce of Small Intrusions Forming Large Deposits—The Enlightenment and Significance -for Searching Breakthrough of Cu-Ni Sulfide Deposit in Xiarihamu, East Kunlun, Qin-ghai[J]. Northwestern Geology, 2012, 454): 185191. doi: 10.3969/j.issn.1009-6248.2012.04.017
    李文渊, 张照伟, 陈博. 小岩体成大矿的理论与找矿实践意义—以西北地区岩浆铜镍硫化物矿床为例[J]. 中国工程科学, 2015, 172): 2934. doi: 10.3969/j.issn.1009-1742.2015.02.004

    LI Wenyuan, ZHANG Zhaowei, CHEN Bo. The theory on small intrusions forming large deposits and its exploration significance—Taking for magmatic Ni-Cu sulfide deposits example in the northwestern of China[J]. Strategic Study of CAE, 2015, 172): 2934. doi: 10.3969/j.issn.1009-1742.2015.02.004
    李文渊. 中国铜镍硫化物矿床成矿系列与地球化学[M]. 西安: 西安地图出版社, 1996.
    聂江涛. 陕西省煎茶岭金镍矿田构造特征及其控岩控矿作用[D]. 西安: 长安大学, 2010.

    NIE Jiangtao. Struture Characteristics of Jianchaling Gold and Nickel Orefeild and Functi-on of Rock-controlling and Ore-controlling, in Shaanxi Province[D]. Xi’an: Chang’an -University, 2010.
    庞春勇, 陈民扬. 煎茶岭地区同位素地质年龄数据及其地质意义[J]. 矿产与地质, 1993, 75): 354360.

    PANG Chunyong, CHEN Minyang. Isotopic Geochronological Data and Their Geological-Significance in Jianchaling Region, Shaanxi Province[J]. Mineral Resources and Geology, 1993, 75): 354360.
    平先权, 郑建平, 熊庆, 等. 扬子西北缘碧口块体花岗质岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 吉林大学学报 (地球科学版), 2014, 444): 12001218.

    PING Xianquan, ZHENG Jianping, XIONG Qing, et al. Zircon U-Pb Ages and Hf Isotope Characteristics of the Granitic Plutons in Bikou Terrane, Northwestern Yangtze Block, and Their Geological Significance.[J]. Journal of Jilin University (Earth Science Edition), 2014, 444): 12001218.
    宋谢炎, 陈列锰. “小岩体成大矿”的核心—岩浆通道系统成矿原理、 特征及找矿标志[J]. 西北地质, 2012, 454): 117127. doi: 10.3969/j.issn.1009-6248.2012.04.010

    SONG Xieyan, CHEN Liemeng. The Core Issue of the Large-scale Mineralization in Sma-ll Intrusion: Mineralization in Magmatic Plumbing System Principles, Key Features and Exploration Marks[J]. Northwestern Geology, 2012, 454): 117127. doi: 10.3969/j.issn.1009-6248.2012.04.010
    汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 44): 5464.

    TANG Zhongli. Minerogenetic Model of the Jinchuan Copper and Nickel Sulfide Deposit[J]. Geoscience, 1990, 44): 5464.
    汤中立. 金川含铂硫化铜镍矿床成矿模式[J]. 甘肃地质, 19912): 104124.

    TANG Zhongli. Minerogenetic Model of the Jinchuan Copper and Nickel Sulfide Deposit[J]. Gansu Geology, 19912): 104124.
    汤中立, 李小虎. 两类岩浆的小岩体成大矿[J]. 矿床地质, 2006, 25S1): 538.

    TANG Zhongli, LI Xiaohu. Small Intrusions Forming Large Deposits in Two Types of M-agma[J]. Mineral Deposits, 2006, 25S1): 538.
    汤中立, 徐刚, 王亚磊, 等. 岩浆成矿新探索—小岩体成矿与地质找矿突破[J]. 西北地质, 2012, 454): 116. doi: 10.3969/j.issn.1009-6248.2012.04.002

    TANG Zhongli, XU Gang, WANG Yalei, et al. The New Exploration of Magmatic Mineraliz-ation: Small Intrusion Mineralization and Geological Prospecting Breakthrough[J]. Northwestern Geology, 2012, 454): 116. doi: 10.3969/j.issn.1009-6248.2012.04.002
    汤中立, 焦建刚, 闫海卿, 等. 小岩体成 (大) 矿理论体系[J]. 中国工程科学, 2015, 172): 419. doi: 10.3969/j.issn.1009-1742.2015.02.002

    TANG Zhongli, JIAO Jiangang, YAN Haiqing, et al. Theoretical System for (Large) Seposit Formed by Smaller Intrusion[J]. Strategic Study of CAE, 2015, 172): 419. doi: 10.3969/j.issn.1009-1742.2015.02.002
    汤中立, 钱壮志, 姜常义, 等. 中国矿产地质志—小岩体成 (大) 矿理论体系[M]. 北京: 地质出版社, 2021.
    仝立华, 汪洋. 千里山钨锡金属矿床物质运移模式与成岩成矿关系—小岩体成大矿的一个实例[J]. 西北地质, 2012, 454): 380389. doi: 10.3969/j.issn.1009-6248.2012.04.033

    TONG Lihua, WANG Yang. The Explanation of the Metallogeny about Qianlishan Tungst-en-tin by the Theory of Small Magmatic Intrusion Mineralization[J]. Northwestern Geology, 2012, 454): 380389. doi: 10.3969/j.issn.1009-6248.2012.04.033
    王登红, 何晗晗, 黄凡, 等. 对华南小岩体找大矿问题的探讨[J]. 地球科学与环境学报, 2014, 361): 1018.

    WANG Denghong, HE Hanhan, HUANG Fan, et al. Discussion on the Issues of Explorat-ion Large Deposits Around Small Intrusions in South China[J]. Journal of Earth Sciences and Environment, 2014, 361): 1018.
    王瑞廷, 郑崔勇, 高菊生, 等. 秦岭勉县-略阳-宁强矿集区成矿规律与找矿预测[M]. 北京: 科学出版社, 2021.

    WANG Ruiting, ZHENG Cuiyong, GAO Jusheng, et al. Metallogenic Regularity and Pros-pecting Prediction of Mianxian-Lueyang-Ningqiang Ore Concentration Area in Qinling Mountains[M]. Beijing: Science Press, 2021.
    王瑞廷, 毛景文, 任小华, 等. 煎茶岭硫化镍矿床矿石组分特征及其赋存状态[J]. 地球科学与环境学报, 2005, 271): 3438.

    WANG Ruiting, MAO Jingwen, REN Xiaohua, et al. Ore Composition and Hosting Cond-ition in the Jianchaling Sulfide Nickel Deposit, Shaanxi Province[J]. Journal of Earth Sciences and Environment, 2005, 271): 3438.
    王瑞廷, 王东生, 李福让, 等. 煎茶岭大型金矿床地球化学特征、成矿地球动力学及找矿标志[J]. 地质学报, 2009, 8311): 17391751. doi: 10.3321/j.issn:0001-5717.2009.11.016

    WANG Ruiting, WANG Dongsheng, LI Furang, et al. Geochemical Characteristics, Met-allogenic Geodynamics and Prospecting Indicator of the Jianchaling Large Gold OreDeposit[J]. Acta Geologica Sinica, 2009, 8311): 17391751. doi: 10.3321/j.issn:0001-5717.2009.11.016
    王瑞廷, 赫英, 王东生. 略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义[J]. 地质论评, 2003, 492): 205211. doi: 10.3321/j.issn:0371-5736.2003.02.014

    WANG Ruiting, HE Ying, WANG Dongsheng, et al. Re-Os Isotope Age and Its Application to the Jianchaling Nickel-Copper Sulfide Deposit, Lueyang, Shaanxi Province[J]. Geological Review, 2003, 492): 205211. doi: 10.3321/j.issn:0371-5736.2003.02.014
    王瑞廷, 赫英, 汤中立, 等. 煎茶岭大型含钴硫化镍矿床微量元素地球化学研究[J]. 矿床地质, 2002, 21S1): 10411044.

    WANG Ruiting, HEYing, TANG Zhongli, et al. Study on Minor Elements Geochemistry -in Jianchaling Large Cobalt-Bearing Sulfide Nickel Deposit[J]. Mineral Deposits, 2002, 21S1): 10411044.
    岳素伟, 林振文, 邓小华, 等. 陕西省煎茶岭金矿 C、H、O、S、Pb 同位素地球化学示踪[J]. 大地构造与成矿学, 2013, 374): 653670.

    YUE Suwei, LIN Zhenwen, DENG Xiaohua, et al. C, H, O, S, Pb Isotopic Geochemistry of the Jianchaling Gold Deposit, Shaanxi Province[J]. Geotectonic et Metallogenia, 2013, 374): 653670.
    游军, 张小明, 杨运军. 略阳白雀寺-石瓮子双峰式侵入岩锆石U-Pb定年、地球化学特征及意义[J]. 矿产勘查, 2018, 912): 23652377.

    YOU Jun, ZHANG Xiaoming, YANG Yunjun. Zircon U-Pb Geochronology and Geochemistry of Baiquesi-Shiwengzi Bimodal Intrusive Rocks in Lueyang, and Their Significance[J]. Mineral Exploration, 2018, 912): 23652377.
    张旗. 关于“小岩体为什么有利于成矿”的探讨[J]. 甘肃地质, 2013, 224): 17.

    ZHANG Qi. Discussion on “Small Intrusions Associate with Large Deposits” and “Large Intrusions are Not Mineralization”[J]. Gansu Geology, 2013, 224): 17.
    张照伟, 李文渊. 小岩体成大矿与岩浆通道成矿理论的比较[J]. 地球科学与环境学报, 2014, 361): 4857.

    ZHANG Zhaowei, LI Wenyuan. Comparison of Theories Between Large Orebodies Hostedin Small Intrusion and Magma Conduit Mineralization[J]. Journal of Earth Sciences and Environment, 2014, 361): 4857.
    张照伟, 张江伟, 王亚磊, 等. 准噶尔北缘成矿带蕴都卡拉钴矿成矿特征[J]. 西北地质, 2023, 561): 110. doi: 10.12401/j.nwg.2022009

    ZHANG Zhaowei, ZHANG Jiangwei, WANG Yalei, et al. Metallogenic Characteristics ofYundukala Co Deposit in Northern Margin of Junggar Metallogenic Belt, Northwest -China[J]. Northwestern Geology, 2023, 561): 110. doi: 10.12401/j.nwg.2022009
    郑崔勇, 刘建党, 袁波, 等. 与煎茶岭金矿有关超基性岩体地球化学特征[J]. 地质与勘探, 2007, 436): 5257. doi: 10.3969/j.issn.0495-5331.2007.06.010

    ZHENG Cuiyong, LIU Jiandang, YUAN Bo, et al. Geological and Geochemical Character-istics of Rock Mass Related with Gold Minerallization in the Jianchaling Deposit[J]. Geology and Prospecting, 2007, 436): 5257. doi: 10.3969/j.issn.0495-5331.2007.06.010
    张小明, 吴应忠, 曾忠诚, 等. 陕西勉略宁地区基性杂岩体中新发现镍钴矿化体[J]. 中国地质, 2022, 492): 669670.

    ZHANG Xiaoming, WU Yingzhong, ZENG Zhongcheng, et al. Discovery of a New Nickel Cobalt Mineralization Body of the Basic Complex in Mian-Lue-Ning Area, Shaanxi[J]. Geology in China, 2022, 492): 669670.
    张华添, 李江海. 蛇纹岩化对洋中脊超基性岩热液硫化物成矿的影响: 来自青藏高原德尔尼铜矿床的启示[J]. 大地构造与成矿, 2019, 431): 111122.

    ZHANG Huatian, LI Jianghai. Impacts of Serpentinization on Ultramafic Rock-Hosted Hy-drothermal System along Mid-Ocean Ridges: Insight from Dur’ngoi Copper Massive -Sulfide Deposit, Tibetan Plateau[J]. Geotectonica et Metallogenia, 2019, 431): 111122.
    Gao Y H, Wang C Y, Wei B. Magma oxygen fugacity of Permian to Triassic Ni-Cu sulf-ide-bearing maficultramafic intrusions in the central Asian orogenic belt, North China[J]. Journal of Asian Earth Sciences, 2019, 17315): 250262.
    Han Z H, Wang R, Tong X S, et al. Multi-scale exploration of giant Qulong porphyry d-eposit in a collisional setting[J]. Ore Geology Reviews, 2021, 139(Part A): 104455.
    Hajjar Z, Gervilla F, Fanlo I, et al. Formation of serpentinite-hosted, Fe-rich arsenide ores at the latest stage of mineralization of the Bou-Azzer mining district (Morocco) [J]. Ore Geology Reviews, 2021: 103926.
    Hajjar Z, Ares G, Fanlo I, et al. Cr-spinel tracks genesis of Co-Fe ores by serpentinite r-eplacement at Bou Azzer, Morocco[J]. Journal of African Earth Sciences, 2022, 188: 104471. doi: 10.1016/j.jafrearsci.2022.104471
    Hui B, Dong Y P, Zhang F F, et al. Geochronology, Geochemistry, and Isotopic Composi-tion of the Early Neoproterozoic Granitoids in the Bikou Terrane Along the Northwe-sternMargin of the Yangtze Block, South China: Petrogenesis and Tectonic Implications[J]. Pre-cambrian Research, 2022, 377: 106724. doi: 10.1016/j.precamres.2022.106724
    Jiang J Y, Zhu Y F. Geology and geochemistry of the Jianchaling hydrothermal nickel de-posit: T-pH-fO2-fS2 conditions and nickel precipitation mechanism[J]. Ore Geology Re-views, 2017, 91: 216235. doi: 10.1016/j.oregeorev.2017.10.005
    Lv L S, Mao J W, Li H B, et al. Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of -the Hongqiling Ni–Cu sulfide deposits in Northeast China[J]. Ore Geology Reviews, 2010, 431): 106119.
    Li H Y, Ye H S, Wang X X, et al. Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China[J]. Journal of Asian Earth Sciences, 2014, 79Part B): 641654.
    Mou N N, Wang G W, Sun X. Identification of geochemical anomalies related to mineral-ization: A case study from porphyry copper deposits in the Qulong-Jiama mining dist-rict of Tibet, China[J]. Journal of Geochemical Exploration, 2023, 244: 107126. doi: 10.1016/j.gexplo.2022.107126
    Peng B, Sun F Y, Li B L, et al. The geochemistry and geochronology of the Xiarihamu -II mafic–ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications forthe enesis of magmatic Ni-Cu sulfide deposits[J]. Ore Geology Reviews, 2016, 731): 1328.
    Slack J F, Kimball B E, Shedd K B, et al. Critical Mineral Resources of the United StatesEconomic and Environmental Geology and Prospects for Future Supply[R]. U. S. Geological Survey, Professional Paper, 2017, 1802: p. F1-F40.
    Tourneur E, Chauvet A, Kouzmanov K, et al. Co-Ni-arsenide mineralisation in the Bou Azzer district (Anti-Atlas, Morocco): Genetic model and tectonic implications[J]. Ore Geology Reviews, 2021, 134: 104128.
    Vasyukova O V, Williams-Jones A E. Constrains on the genesis of cobalt deposits: Part II, application to natural systems[J]. Economic Geology, 2022, 117: 529544. doi: 10.5382/econgeo.4888
    Wang K Y, Song X Y, Yi J N, et al. Zoned orthopyroxenes in the Ni-Co sulfide ore-bea-ring Xiarihamu mafic-ultramafic intrusion in northern Tibetan Plateau, China: Implicat-ions for multiple magma replenishments[J]. Ore Geology Reviews, 2019, 113: 103082. doi: 10.1016/j.oregeorev.2019.103082
    Wang Y, Yang X Y, Kang X N, et al. Geochemical and mineralogical studies of zircon, -apatite, and chlorite in the giant Dexing porphyry Cu-Mo-Au deposit, South China: I-mplications for mineralization and hydrothermal processes[J]. Journal of Geochemical Exploration, 2022, 240: 107042. doi: 10.1016/j.gexplo.2022.107042
    Wang G G, Ni P, Li L, et al. Petrogenesis of the Middle Jurassic andesitic dikes in the -giant Dexing porphyry copper ore field, South China: Implications for mineralization[J]. Journal of Asian Earth Sciences, 2020, 1961): 104375.
    Williams-Jones A E, Vasyukova O V. Constraints on the genesis of cobalt deposits: Part I, theoretical considerations[J]. Economic Geology, 2022, 117: 513528. doi: 10.5382/econgeo.4895
    Xu L L, Bi X W, Zhang X C, et al. Mantle contribution to the generation of the giant Jinduicheng porphyry Mo deposit, Central China: New insights from combined in-situ element and isotope compositions of zircon and apatite[J]. Chemical Geology, 2023, 61612): 121238.
    Yue W S, Deng X H, Bagas L, et al. Fluid inclusion geochemistry and 40Ar/39Ar geochronology constraints on the genesis of the Jianchaling Au deposit, China[J]. Ore Geology Reviews, 2017, 80: 676690. doi: 10.1016/j.oregeorev.2016.08.024
  • Related Articles

Catalog

    Article views (161) PDF downloads (96) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return