ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LIU Tianhang,TANG Weidong,GAO Yongbao,et al. Genesis of the Huashitoushan Fluorite Deposit, Beishan, Inner Mongolia: Constraints from Trace Elements, REE and H-O Isotope Geochemistry of Fluorite[J]. Northwestern Geology,2024,57(4):66−79. doi: 10.12401/j.nwg.2024044
Citation: LIU Tianhang,TANG Weidong,GAO Yongbao,et al. Genesis of the Huashitoushan Fluorite Deposit, Beishan, Inner Mongolia: Constraints from Trace Elements, REE and H-O Isotope Geochemistry of Fluorite[J]. Northwestern Geology,2024,57(4):66−79. doi: 10.12401/j.nwg.2024044

Genesis of the Huashitoushan Fluorite Deposit, Beishan, Inner Mongolia: Constraints from Trace Elements, REE and H-O Isotope Geochemistry of Fluorite

More Information
  • Received Date: February 04, 2024
  • Revised Date: April 24, 2024
  • Accepted Date: April 27, 2024
  • Available Online: June 07, 2024
  • The Huashitoushan fluorite deposit is a newly discovered fluorite deposit with medium-large potential resources in the eastern part of the Beishan metallogenic belt. The orebodies are located in the outer contact zone of the Suosuojing biotite monzogranite and are controlled by NE and NS faulted structure. The host rock is mainly quartz sandstone and siltstone with limestone lens of Xishuangyingshan Formation. On the basis of studying the geological characteristics of the Huashitoushan fluorite deposit, carry out the studies of trace element, REE and H-O isotope geochemistry. The results show that 9 fluorite samples showed strong enrichment of MREE relative to LREE and HREE, and the standard partition curve showed an "inverted V" shape. Positive Eu anomaly (1.11~1.25) and negative Ce anomaly (0.90~0.95) indicate a weakly oxidizing environment with the same source of ore-forming fluids and lower temperature. In addition, the characteristics of La/Ho-Y/Ho of the fluorite samples Indicate that the ore-forming fluid may be a contemporaneous and homologous F-rich fluid. The δDV-SMOW values of the 5 fluorites ranged between −109.7‰ and −99.4‰ (average value is −104.3‰), while the δ18OV-SMOW values ranged between −3.1‰ and −1.9‰ (average value is −2.3‰), which indicating that the ore-forming fluid is a mixed hydrothermal solution of atmospheric water and magmatic water. The characteristics of Tb/La-Tb/Ca also indicates that the Huashitoushan fluorite deposit is magmatic hydrothermal. Moreover, only Sb in all fluorite samples is enriched compared to wall rock(Xishuangyingshan Formation, Beishan Oregenic Belt and Crustal), while other elements are depled, which indicating that the fluorite deposit belongs to the category of medium-low temperature deposits. The REE standard distribution curves of two biotite monzogranites show a right inclination, and LREE is strongly enriched relative to HREE. Combined with the geological characteristics of the deposit, it is believed that the Huashitoushan fluorite deposit was formed in a weakly oxidizing environment with lower temperature. The ore-forming fluid is a mixed hydrothermal solution of magmatic water and atmospheric water, the ore-forming material F is mainly derived from biotite monzogranite, and the Ca mainly comes from the Xishuangyingshan Formation. Therefore, it can be inferred that the Huashitoushan fluorite deposit is a medium-low-temperature hydrothermal, structure filling type deposit.

  • 曹华文, 张寿庭, 高永璋, 等. 内蒙古林西萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球化学, 2014, 432): 131140.

    CAO Huawen, ZHANG Shouting, GAO Yongzhang, et al. REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications, Inner Mongolia Autonomous Region[J]. Geochimica, 2014, 432): 131140.
    曹俊臣. 华南低温热液脉状萤石矿床稀土元素地球化学特征[J]. 地球化学, 19953): 225234.

    CAO Junchen. REE Geochemica characteristics of Epithermal Vien Fluorite Deposits In South China[J]. Geochimica, 19953): 225234.
    陈军元, 刘艳飞, 颜玲亚, 等. 石墨, 萤石等战略非金属矿产发展趋势研究[J]. 地球学报, 2021, 422): 287296.

    CHEN Junyuan, LIU Yanfei, YAN Lingya, et al. Research on Development Trend of Strategic Nonmetallic Minerals such as Graphite and Fluorite[J]. Acta Geoscientica Sinica, 2021, 422): 287296.
    代晓光, 商朋强, 张成信, 等. 冀北招素沟萤石矿地球化学特征及矿床成因探讨[J]. 岩石矿物学杂志, 2021, 401): 2738.

    DAI Xiaoguang, SHANG Pengqiang, ZHANG Chengxin, et al. Geochemical characteristics and genesis of the Zhaosugou fluorite deposit, northern Hebei Province[J]. Acta Petrologica et Mineralogica, 2021, 401): 2738.
    戴开明, 车长波, 王福良. 萤石资源勘查开发利用管理的建议[J]. 中国矿业, 2021, 309): 3235.

    DAI Kaiming, CHE Zhangbo, WANG Fuliang. Suggestions on exploration, development and utilization management of fluorite resources[J]. China Mining Magazine, 2021, 309): 3235.
    董文超, 庞绪成, 司媛媛, 等. 河南嵩县车村萤石矿床稀土元素特征及地质意义[J]. 中国稀土学报, 2020, 385): 706714.

    DONG Wenchao, PANG Xucheng, SI Yuanyuan, et al. REE Geological Characteristics of Checun Fluorite Deposit in Song County, Henan Province[J]. Journal of The Chinese Society of Rare Earths, 2020, 385): 706714.
    方贵聪, 王登红, 陈毓川, 等. 南岭萤石矿床成矿规律及成因[J]. 地质学报, 2020, 941): 161178.

    FANG Guicong, WANG Denghong, CHEN Yuchuan, et al. Metallogenic regularities and genesis of the fluorite deposits in Nanling region[J]. Acta Geologica Sinica, 2020, 941): 161178.
    高永宝, 赵辛敏, 王博, 等. 阿尔金西段卡尔恰尔-库木塔什超大型萤石矿带矿床地质、控矿花岗岩特征及找矿远景[J]. 中国地质, 2023, 503): 704729.

    GAO Yongbao, ZHAO Xinmin, WANG Bo, et al. Geological characteristics of fluorite deposits and ore-controlling granites, and prospecting potential of the super-large Kaerqiaer-Kumutashi fluorite mineralization belt in West Altyn-Tagh, China[J]. Geology in China, 2023, 503): 704729.
    顾雪祥, 李葆华, 章永梅, 等. 矿床学研究方法及应用[M]. 北京: 地质出版社, 2019, 499−526.

    GU Xuexiang, LI Baohua, ZHANG Yongmei, et al. Research Methods and Applications of Mineral Depositology[M]. Beijing: Geology Press, 2019, 499−526.
    黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及指示意义[J]. 地球科学与进展, 2015, 309): 10631073.

    HUANG Congjun, LI Zeqin. Trace elements geochemistry of fluorite and its implications in the Lala IOCG deposit[J]. Advances in Earth Science, 2015, 309): 10631073.
    黄鸿新, 罗平, 常斯敏, 等. 江西簧碧萤石矿床萤石稀土元素特征与成矿物质来源探讨[J]. 矿产与地质, 2018, 324): 641654.

    HUANG Hongxin, LUO Ping, CHANG Simin, et al. Characteristics of rare earth elements and the source of mineralization of fluorite deposit in Huangbi, Jiangxi Province[J]. Mineral Resources And Geology, 2018, 324): 641654.
    金少荣, 陈军, 代德荣, 等. 黔西南高岭萤石矿床微量和稀土元素地球化学特征[J]. 矿物学报, 2018, 386): 684692.

    JIN Shaorong, CHEN Jun, DAI Derong, et al. Geochemical Characteristics of Trace Elements and REE in the Gaoling Fluorite Deposit, Southwest Guizhou, China[J]. Acta Mineralogica Sinica, 2018, 386): 684692.
    李根, 方贵聪, 冯佐海, 等. 桂东北胡家田萤石矿床稀土元素地球化学特征及其指示意义[J]. 桂林理工大学学报, 2023, 431): 5260.

    LI Gen, FANG Guicong, FENG Zuohai, et al. Geochemical characteristics of rare earth elements and their implications for Hujiatian fluorite deposit in northeast Guangxi[J]. Journal of Guilin University of Technology, 2023, 431): 5260.
    黎彤. 化学元素的地球丰度[J]. 地球化学, 1976, 31): 167174.

    LI Tong. Chemical Element Abundances In The Earth And It's Major Shells[J]. Geochimica, 1976, 31): 167174.
    刘天航, 高永宝, 刘家军, 等. 内蒙古东七一山萤石矿微量、稀土元素特征及对成矿物质来源的指示[J/OL]. 中国地质, 2023: 1−19.

    LIU Tianhang, GAO Yongbao, LIU Jiajun, et al. Characteristics of trace and rare earth elements in Dongqiyishan fluorite deposit, Inner Mongolia: Indication of ore-forming material sources[J/OL]. Geology in China, 2023: 1−19.
    刘艳飞, 颜玲亚, 柳群义, 等. 我国重要非金属矿产评价研究及重点勘查建议[J]. 中国矿业, 2019, 2810): 8591.

    LIU Yanfei, YAN Lingya, LIU Qunyi, et al. Evaluation study on the important non-metallic minerals in China and suggestions for key exploration[J]. China Mining Magazine, 2019, 2810): 8591.
    马腾霄, 和源, 朱利东, 等. 川中地区下寒武统沧浪铺组下段碳氧同位素特征及其地质意义[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 187−199.

    MA Tengxiao, HE Yuan, ZHU Lidong, et al. Carbon and oxygen isotope characteristics of Lower Cambrian Canglangpu Formation in central Sichuan and their geological significance[J], Journal of Chengdu University of Technology (Science & Technology Edition), 2023, 50(2): 187−199.
    吴益平, 张连昌, 周月斌, 等. 阿尔金卡尔恰尔超大型萤石矿床成矿流体特征及形成机制探讨[J]. 地质科学, 2022, 572): 495509.

    WU Yiping, ZHANG Lianchang, ZHOU Yuebin, et al. Study on fluid characteristics and metallogenic mechanism of the super-large Kalqiar fluorite deposit in Altyn Tagh area[J]. Chinese Journal of Geology, 2022, 572): 495509.
    王自国, 朱培元. 中央企业萤石矿战略布局思考[J]. 中国矿业, 2020, 296): 811.

    WANG Ziguo, ZHU Peiyuan. Strategic layout of fluorite mine in state-owned enterprises[J]. China Mining Magazine, 2020, 296): 811.
    辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 399): 12971316.

    XIN Houtian, NIU Wenchao, TIAN Jian, et al. Spatio-temporal structure of Beishan orogenic belt and evolution of PaleoAsian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 2020, 399): 12971316.
    许东青. 内蒙古苏莫查干敖包超大型萤石矿化区形成环境、地质特征及成矿机理研究[M]. 北京: 中国地质科学院, 2009.

    XU Dongqing. Geological Setting, features and Origin of the Sumochagan Obo Super-large Fluorite Mineralized District[M]. Beijing: Chinese Academy of Geological Sciences, 2009.
    许海, 刘海涛, 贾元琴, 等. 关于中国萤石矿产业发展的思考[J]. 四川有色金属, 2021, 32): 25.

    XU Hai, LIU Haitao, JIA Yuanqin, et al. Reflection on the Development of Fluorite Industry in China[J]. Sichuan Nonferrous Metals, 2021, 32): 25.
    杨世文, 丰成友, 楼法生, 等. 赣南隆坪萤石矿床成矿流体特征及成矿模式[J]. 地质学报, 2022, 9611): 38863900.

    YANG Shiwen, FENG Chengyou, LOU Fasheng, et al. Characteriscs of ore-forming fluids and ore-forming model of the Longping fluorite deposit in southern Jiangxi Province[J]. Acta Geologica Sinica, 2022, 9611): 38863900.
    游超, 王春连, 刘殿鹤, 等. 江西宁都坎田萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球学报, 2022, 433): 359370.

    YOU Chao, WANG Chunlian, LIU Dianhe, et al. REE Geochemistry of Fluorite from Kantian Fluorite Deposit and Its Geological Implications in Ningdu Area, Jiangxi Province[J]. Acta Geoscientica Sinica, 2022, 433): 359370.
    曾昭法, 曹华文, 高峰, 等. 内蒙古林西地区萤石矿床流体包裹体研究[J], 地球化学, 2013, 42(1): 73-81.

    ZENG Shaofa, CAO Huawen, GAO Feng, et al. Fluid inclusion study of fluorite deposits in Linxi region, Inner Mongolia[J]. Geochimica, 2013, 42(1): 73-81.
    张青松, 王春连, 栗克坤, 等. 闽北大坪萤石矿构造蚀变, 岩石地球化学特征与矿床成因探讨[J]. 岩石矿物学杂志, 2021, 406): 11311140.

    ZHANG Qingsong, WANG Chunlian, LI Kekun, et al. Discussion on structural alteration, rock geochemistry characteristics and genesis of Daping fluorite deposit in northern Fujian[J]. Acta Petrologica et Mineralogica, 2021, 406): 11311140.
    张善明, 王庭院, 张华, 等. 内蒙古东七一山钨锡多金属矿成矿特征与控矿因素分析[J]. 地质与勘探, 2014, 506): 10381049.

    ZHANG Shanming, WANG Tingyuan, ZHANG Hua, et al. Oregon-trolling factors and geological features of the W-Sn polymetallic ore deposits in East Qiyi Shan, Inner Mongolia[J]. Geology and Exploration, 2014, 506): 10381049.
    张苏坤, 王辉, 冯绍平, 等. 河南省栾川县杨山萤石矿成矿作用: 来自氢氧同位素和元素地球化学的约束[J]. 西北地质, 2022, 552): 209216.

    ZHANG Sukun, WANG Hui, FENG Shaoping, et al. Mineralization of Yangshan Fluorite Deposit in Luanchuan County, Henan Province: Constraints from H-O Isotopes and Element Geochemistry[J]. Northwestern Geology, 2022, 552): 209216.
    张振亮, 冯选洁, 赵国斌, 等. 东天山—北山地区中生代内生矿床成矿规律[J]. 西北地质, 2022, 554): 280299.

    ZHANG Zhenliang, FENG Xuanjie, ZHAO Guobin, et al. The Metallogenic Rule of Mesozoic Hypogene Deposits in the Eastern Tianshan-Beishan Area[J]. Northwestern Geology, 2022, 554): 280299.
    张遵遵, 龚银杰, 陈立波, 等. 黔东北沿河大竹园萤石矿床成矿物质来源探讨: 地球化学制约[J]. 地球化学, 2018, 473): 295305.

    ZHANG Zunzun, GONG Yinjie, CHEN Libo, et al. Geochemical evidence of the source of ore-forming materials from Dazhuyuan fluorite deposit in northeastern Guizhou[J]. Geochimica, 2018, 473): 295305.
    赵辛敏, 高永宝, 燕洲泉, 等. 阿尔金卡尔恰尔超大型萤石矿带成因: 来自年代学, 稀土元素和Sr-Nd同位素的约束[J]. 西北地质, 2023, 561): 3147.

    ZHAO Xinmin, GAO Yongbao, YAN Zhouquan et al. Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr–Nd Isotopes Constraints[J]. Northwestern Geology, 2023, 561): 3147.
    邹灏, 方乙, 陈合毛, 等. 浙江天台盆地下陈萤石矿稀土元素地球化学特征及成因[J]. 中国地质, 2014, 414): 13751386.

    ZOU Hao, FANG Yi, CHEN Hemao, et al. REE geochemistry and genesis of the Xiachen fluorite deposit in Tiantai basin, Zhejiang Province[J]. Geology in China, 2014, 414): 13751386.
    陕西省地质调查中心. 内蒙古自治区阿拉善盟二龙包等四幅1∶5万矿产调查成果报告[R]. 陕西省地质调查中心, 2012.
    Bau M, Möller P. Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite[J]. Mineralogy & Petrology, 1992, 45: 231246.
    Bau Michael, Dulski Peter. Comparative Study of Yttrium and Rare-Earth Element Behaviours in Fluorine-Rich Hydrothermal Fluids[J]. Contrib Mineral Petrol, 1995, 1192): 213223.
    Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[M]. Developments in Geochemistry, 1984, 63-114.
    Elderfield H, Sholkovitz, ER. Rare Earth Elements in the Pore Waters of Reducing Nearshore Sediments[J]. Earth & Planetary Science Letters, 1987, 823-4): 280288.
    Ismail I, Baioumy H, Ouyang H, et al. Origin of fluorite mineralizations in the Nuba Mountains, Sudan and their rare earth element geochemistry[J]. J Afr Earth Sci, 2015, 112: 276286. doi: 10.1016/j.jafrearsci.2015.09.016
    Möller P, Parekh P P, Schneider H J. The Application of Tb/Ca-Tb/La Abundance Ratios to Problems of Fluorspar Genesis[J]. Mineralium Deposita, 1976, 11: 111116. doi: 10.1007/BF00203098
    Mondillo N, Boni M, Balassone G, et al. Rare Earth Elements (REE)-Minerals in the Silius Fluorite Vein System (Sardinia, Italy)[J]. Ore Geology Reviews, 2016, 74: 211224. doi: 10.1016/j.oregeorev.2015.11.016
    Pei Qiuming, Zhang Shouting, Santosh M, et al. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, Chian[J]. Ore Geology Reviews, 2017, 83: 174190. doi: 10.1016/j.oregeorev.2016.12.022
    Schwinn G, Markl G. REE Systematics in Hydrothermal Fluorite[J]. Chemical Geology, 2005, 2163-4): 225248. doi: 10.1016/j.chemgeo.2004.11.012
    Souissi F, Souissi R, Dandurand J L. The Mississippi Valley-type Fluorite Ore at Jebel Stah (Zaghouan District, North-Eastern Tunisia): Contribution of REE and Sr Isotope Geochemistries to the Genetic Model[J]. Ore Geology Reviews, 2010, 371): 1530. doi: 10.1016/j.oregeorev.2009.11.001
    Veksler I V, Dorfman A M, Kamenetsky M, et al. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks[J]. Geochimica et Cosmochimica Acta, 2005, 6911): 28472860. doi: 10.1016/j.gca.2004.08.007
    Williams-Jones A E, Samson I M, Olivo G R. The Genesis of Hydrothermal Fluorite-REE Deposits in the Gallinas Mountains, New Mexico[J]. Economic Geology, 2000, 95: 327341. doi: 10.2113/gsecongeo.95.2.327
    Yang Shiwen, Feng Chengyou, Lou Fasheng, et al. Origin of the Tongda fluorite deposit related to the paleo-pacific plate subduction in southern Jiangxi Province, China: new evidence from fluid geochronology, geochemistry, fluid inclusion, and H-O isotope compositions[J]. Geological Journal, 2022, 57: 238253. doi: 10.1002/gj.4295
    Zou Hao, Li Min, Leon Ragas, et al. Fluid composition and evolution of the Langxi Ba-F deposit, Yangtze Block, China: new insight from LA-ICP-MS study of individual fluid inclusion[J]. Ore Geology Reviews, 2020, 107: 103702.
    Zou Hao, Li Min, Santosh M, et al. Fault-controlled carbonate-hosted barite-fluorite mineral systems: the Shuanghe deposit, Yangtze Block, South China[J]. Gondwana Research, 2022, 101: 2643. doi: 10.1016/j.gr.2021.07.020
  • Related Articles

Catalog

    Article views (173) PDF downloads (93) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return