ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
SUN Tao,LEI Jingchao,LIU Yang,et al. The Constraints of the Depositional Environment of the Luohe Formation on Uranium Mineralization in the Zhenyuan Area of the Southwestern Ordos Basin[J]. Northwestern Geology,2024,57(6):199−217. doi: 10.12401/j.nwg.2024077
Citation: SUN Tao,LEI Jingchao,LIU Yang,et al. The Constraints of the Depositional Environment of the Luohe Formation on Uranium Mineralization in the Zhenyuan Area of the Southwestern Ordos Basin[J]. Northwestern Geology,2024,57(6):199−217. doi: 10.12401/j.nwg.2024077

The Constraints of the Depositional Environment of the Luohe Formation on Uranium Mineralization in the Zhenyuan Area of the Southwestern Ordos Basin

More Information
  • Received Date: December 18, 2023
  • Revised Date: July 10, 2024
  • Accepted Date: August 08, 2024
  • Available Online: September 05, 2024
  • The sedimentary environment of uranium bearing rock series restricts the spatial distribution of uranium reservoirs and uranium mineralization, which is of great significance in the evaluation of uranium mineralization potential. There is controversy over the sedimentary environment of the Luohe Formation uranium bearing rock series in the southwestern edge of Ordos, and its relationship with uranium mineralization is unclear, which restricts the understanding of regional uranium mineralization laws. This article analyzes the sedimentary environment of the Upper Cretaceous Luohe Formation uranium bearing rock series in the southwestern edge of the Ordos Basin through methods such as debris composition analysis and particle size analysis. Research has found that the uranium bearing rock series in the Luohe Formation are mainly composed of red, gray, and grayish green fine coarse sandstone, with detrital components mainly composed of quartz, feldspar, and rock debris. The sandstone is mainly composed of rock debris quartz sandstone and feldspar quartz sandstone. The average particle size (Mz) of sandstone is 2.01. The average value of standard deviation (σ) is 0.49, indicating good sorting. The average skewness (Sk) value is 0.11, indicating that the sedimentation of the Luohe Formation is mainly composed of coarse material, with a tail of fine material remaining. The average kurtosis (Kg) is 1.05, and the change in kurtosis is not significant. The frequency curve shows good normal distribution characteristics, and the frequency histogram mostly shows a unimodal pattern. The probability value accumulation curve is a high slope one segment jump, one jump one suspension two segment, and one roll one jump one suspension three segment. Based on comprehensive analysis, it is believed that the sedimentary environment of the Upper Cretaceous Luohe Formation uranium bearing rock series in the study area is an aeolian sedimentary system, including aeolian sand dunes, inter hill sediments, channel sediments, and shallow lake sediments. The lithological combination and particle size characteristics of the genetic facies have their own characteristics. The river sediments and small lake sediments in the Upper Cretaceous Luohe Formation uranium bearing rock series in the research area constrain uranium mineralization, and the interaction between wind and water forms uranium reservoirs rich in organic matter with a relatively stable "mud sand mud" structure, which provides a prerequisite for large-scale uranium mineralization in the later stage. Therefore, the area of wind water interaction sedimentation at the edge of the basin is a favorable area for sandstone type uranium mineralization.

  • 曹民强. 松辽盆地钱家店铀矿含铀岩系层序地层结构对铀成矿的约束[J]. 地质科技通报, 2021, 404): 131142.

    CAO Minqiang. Constraints of the sequence stratigraphic structure of uranium-bearing series on mineralization in Qianjiadian uranium deposit, Songliao Basin[J]. Bulletin of Geological Science and Technology, 2021, 404): 131142.
    陈戴生, 李胜祥, 蔡煜琦. 我国中、新生代盆地砂岩型铀矿沉积环境研究概述[J]. 沉积学报, 2006, 242): 223228. doi: 10.3969/j.issn.1000-0550.2006.02.009

    CHEN Daisheng, LI Shengxiang, CAI Yuqi. Overview of the Researches on Sedimentary Environment for Sandstone-type Uranium Deposits in the Meso-Cenozoic Basins of China[J]. Acta Sedimentologica Sinica, 2006, 242): 223228. doi: 10.3969/j.issn.1000-0550.2006.02.009
    陈逵. 元坝地区须家河组储层岩石学特征和图像法粒度分析研究[D]. 成都: 成都理工大学, 2014, 29−49.

    CHEN Kui. Reservoir Petrology Characteristics Study and Image Method Grain-size Analysis of Xujiahe Formation inYuanba Area[D]. Chengdu: Chengdu University of Technology, 2014, 29−49.
    程银行, 金若时, Michel CUNEY, 等. 中国北方盆地大规模铀成矿作用: 地层篇[J]. 地质学报, 2024, 987): 19531976.

    CHENG Yinhang, JIN Ruoshi, Michel CUNEY, et al. The strata constraint on large scale sandstone- type uranium mineralization in Meso- Cenozoic basins, northern China[J]. Acta Geologica Sinica, 2024, 987): 19531976.
    成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1976, 44−109.

    The Shaanbei Team of Chengdu College of Geology. Application analysis of grain size[M]. Beijing: Geological Publishing House, 1976, 44−109.
    程先钰, 张天福, 苗培森, 等. 鄂尔多斯盆地西南缘洛河组下段含铀砂岩锆石U-Pb年代学: 对岩石圈伸展作用的启示[J]. 中国地质, 2023, 503): 853871.

    CHENG Xianyu, ZHANG Tianfu, MIAO Peisen, et al. Detrital zircon U-Pb geochronology of uranium-bearings and stone in the lower member of Luohe Formation in the southwest margin of the Ordos Basin: Implications for the lithospheric extension[J]. Geology in China, 2023, 503): 853871.
    邓程文, 张霞, 林春明, 等. 长江河口区末次冰期以来沉积物的粒度特征及水动力条件[J]. 海洋地质与第四纪地质, 2016, 366): 185197.
    郭建英, 李锦荣, 陈新闯, 等. 黄河乌兰布和沙漠段不同区域入黄沙物质粒度特征及其来源分析[J]. 中国水利水电科学研究院学报, 2021, 191): 1524.

    GUO Jianying, LI Jinrong, CHEN Xinchuang, et al. Grain size characteristics and source analysis of aeolian sediment feed into river in Ulanbuh Desert along bank of Yellow River[J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 191): 1524.
    桂洪杰. 黄河宁蒙河段四大沙漠粒度和元素特征对比研究[D]. 兰州: 兰州大学, 2013, 16−29.

    GUI Hongjie. Comparative studies on characteristics of grain sizes and elements of the four deserts in Ningxia-Inner Mongolia section of the Yellow River[D]. Lanzhou: Lanzhou University, 2013, 16−29.
    李志忠, 凌智永, 陈秀玲, 等. 新疆伊犁河谷晚全新世风沙沉积粒度旋回与气候变化[J]. 地理科学, 2010, 304): 613619.

    LI Zhizhong, LING Zhiyong, CHEN Xiuling, et al. Late Holocene Climate Changes Revealed by Grain-size Cycles in Takemukul Desert in Yili of Xinjiang[J]. Scientia Geographica Sinica, 2010, 304): 613619.
    李恩菊. 巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D]. 西安: 陕西师范大学, 2011.

    LI Enju. Comparative Study on Sediment Characteristics of Badain Jaran Desert and Tengger Desert[D]. Xi’an: Shaanxi Normal University, 2011.
    李建刚, 刘晓燕, 袁四化, 等. 伊犁盆地三道河河流阶地沉积物粒度特征及其古气候响应[J]. 西北地质, 2020, 534): 1119.

    LI Jiangang, LIU Xiaoyan, YUAN Sihua, et al. Grain-size Characteristics and Paleoclimate Response of Terrace Sediments in Sandaohe River of Yili Basin[J]. Northwestern Geology, 2020, 534): 1119.
    刘宝珺, 张锦泉. 沉积成岩作用[M]. 北京: 科学出版社, 1992: 65−92.

    LIU Baojun, ZHANGJinquan. Sedimentary Diagenesis[M]. Beijing: Science Press, 1992: 65−92.
    刘池洋, 赵红格, 谭成仟, 等. 多种能源矿产赋存与盆地成藏(矿)系统[J]. 石油与天然气地质, 2006, 272): 131142. doi: 10.3321/j.issn:0253-9985.2006.02.001

    LIU Chiyang, ZHAO Hongge, TAN Chengqian, et al. Occurrences of multiple energy mineral deposits and mineralization/reservoiring system in the basin[J]. Oil & Gas Geology, 2006, 272): 131142. doi: 10.3321/j.issn:0253-9985.2006.02.001
    刘坤鹏, 刘凯鹏, 王晓鹏, 等. 鄂尔多斯盆地南部建庄地区直罗组铀矿化定位研究[J]. 西北地质, 2024, 571): 230238.

    LIU Kunpeng, LIU Kaipeng, WANG Xiaopeng, et al. Study on Uranium Mineralization Location of Zhiluo Formation in Jianzhuang Area, Southern Ordos Basin[J]. Northwestern Geology, 2024, 571): 230238.
    刘华健, 金若时, 肖鹏, 等. 松辽盆地北部古恰地区含铀岩系四方台组粒度特征及其沉积环境指示意义[J]. 地质调查与研究, 2018, 411): 4050.

    LIU Huajian, JIN Ruoshi, XIAO Peng, et al. Grain-size characteristics of the Sifangtai Formation of uraniumbearing series in Guqia area, northern Songliao basin and its sedimentary environmental implications[J]. Geological Survey and Research, 2018, 411): 4050.
    刘阳, 王军礼, 曹惠锋, 等. 鄂尔多斯盆地南缘双龙地区直罗组下段后生蚀变地球化学特征及其对铀成矿的制约[J]. 地质科技通报, 2021, 406): 7787.

    LIU Yang, WANG Junli, CAO Huifeng, et al. Geochemical Characteristics of Epigenetic Alteration and Its Constraintson Mineralization in Zhiluo Formation, Shuanglong Area, Southern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 406): 7787.
    何清, 杨兴华, 霍文, 等. 库姆塔格沙漠粒度分布特征及环境意义[J]. 中国沙漠, 2009, 291): 1822.

    HE Qing, YANG Xinghua, HUO Wen, et al. Characteristics of Sand Granularity from Kumtag Desert and Its Environmental Significance[J]. Journal of Desert Research, 2009, 291): 1822.
    侯光才, 张茂省. 鄂尔多斯盆地地下水资源与可持续利用[M]. 西安: 陕西科技出版社, 2004, 139−145.

    HOU Guangcai, ZHANG Maosheng. Groundwater Resources and Sustainable Utilization in the Ordos Basin[M]. Xi’an: Xi’an Science and Technology Press, 2004, 139−145.
    胡小文, 杨晓勇, 任伊苏, 等. 准噶尔盆地沉积环境‒构造演化对砂岩型铀矿成矿的控制作用[J]. 大地构造与成矿学, 2020, 444): 725741.

    HU Xiaowen, YANG Xiaoyong, REN Yisu, et al. Sedimentary Environment and Tectonic Evolution of Junggar Basin: Constrains on the Mineralization of Sandstone-type Uranium Deposits[J]. Geotectonica et Metallogenia, 2020, 444): 725741.
    胡永兴, 张翔, 胡妍, 等. 鄂尔多斯盆地西南缘白垩系洛河组砂岩型铀矿床铀赋存特征及铀成矿作用浅析[J]. 地质找矿论丛, 2020, 354): 380389.

    HU Yongxing, ZHANG Xiang, HU Yan, et al. Analysis on the uranium metallogenic conditions and uranium occurrence characteristics of the sandstone-hosted uranium deposit in Cretaceous Luohe Formation in the southwestern margin of the Ordos Basin[J]. Contributions to Geology and Mineral Resources Research, 2020, 354): 380389.
    吉启慧. 粒度分析在塔克拉玛干沙漠研究中的应用[J]. 中国沙漠, 1996, 162): 173179.

    JI Qihui. Application of Grain Size Analysis in the Studies of Taklimakan Desert[J]. Journal of Desert Research, 1996, 162): 173179.
    焦养泉, 陈安平, 王敏芳, 等. 鄂尔多斯盆地东北部直罗组底部砂体成因分析—砂岩型铀矿床预测的空间定位基础[J]. 沉积学报, 2005, 233): 371379.

    JIAO Yangquan, CHEN Anping, WANG Minfang, et al. Genetic Analysis of the Bottom Sandstone of Zhiluo Formation, Northeastern Ordos Basin: Predictive base of spatial orientation of sandstone-type uranium deposit[J]. Acta Sedimentologica Sinica, 2005, 233): 371379.
    焦养泉, 吴立群, 杨生科, 等. 铀储层沉积学—砂岩型铀矿勘查与开发的基础[M]. 北京: 地质出版社, 2006: 1−29.

    JIAO Yangquan, WU Liqun, YANG Shengke, et al. Sedimentology of Uranium Reservoir—The Exploration and Production Base of Sandstone-type Uranium Deposits[M]. Beijing: Geological Publishing House, 2006: 1−29.
    焦养泉, 吴立群, 杨琴. 铀储层—砂岩型铀矿地质学的新概念[J]. 地质科技情报, 2007, 264): 17.

    JIAO Yangquan, WU Liqun, YANG Qin. Uranium Reservoir: A New Concept of Sandstone-Type Uranium Deposits Geology[J]. Geological Science and Technology Information, 2007, 264): 17.
    焦养泉, 吴立群, 彭云彪, 等. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析[J]. 地学前缘, 2015, 221): 189205.

    JIAO Yangquan, WU Liqun, PENG Yunbiao, et al. Sedimentary-tectonic setting of the depositiomtype uranium deposits forming in the Paleo-Asian tectonic domain, North China[J]. Earth Science Hrontiers, 2015, 221): 189205.
    焦养泉, 吴立群, 荣辉, 等. 中国盆地铀资源概述[J]. 地球科学, 2021, 468): 26752696.

    JIAO Yangquan, WU Liqun, RONG Hui, et al. Review of Basin Uranium Resources in China[J]. Earth Science, 2021, 468): 26752696.
    焦养泉, 吴立群, 荣辉, 等. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战[J]. 地球科学, 2022, 4710): 35803602.

    JIAO Yangquan, WU Liqun, RONG Hui, et al. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China[J]. Earth Science, 2022, 4710): 35803602.
    金若时, 朱强. 鄂尔多斯盆地泾川地区风成沉积体系砂岩型铀矿超常富集机制及成矿过程[J]. 地质学报, 2023, 973): 725737.

    JIN Ruoshi, ZHU Qiang. Supernormal enrichment mechanism and metallogenic process of sandstone type uranium deposit in the eolian sedimentary system in Jingchuan area, Ordos basin[J]. Acta Geologica Sinica, 2023, 973): 725737.
    李明辉, 王剑, 谢渊, 等. 鄂尔多斯盆地白垩纪岩相古地理与地下水相关性探讨[J]. 沉积与特提斯地, 2003, 234): 3440.

    LI Minghui, WANG Jian, XIE Yuan, et al. The correlation of sedimentary facies and palaeogeography and ground water from the Cretaceous strata in the Ordos Basin[J]. Sedimentary Geology and Tethyan Geology, 2003, 234): 3440.
    李思田, 焦养泉, 林畅松, 等. 含能源盆地沉积体系[M]. 武汉: 中国地质大学出版社, 1996, 138−147.

    LI Sitian, JIAO Yangquan, LIN Changsong, et al. Sedimentary system of energy containing basins[M]. Wuhan: China University of Geosciences Press, 1996, 138−147.
    乔大伟, 旷红伟, 柳永清, 等. 鄂尔多斯盆地风成含铀岩系的识别—以 XX 井为例[J]. 大地构造与成矿学, 2020, 444): 648666.

    QIAO Dawei, KUANG Hongwei, LIU Yongqing, et al. Identification of Eolian Sandstone in Cretaceous Uraniferous Sandstone in Ordos Basin, China[J]. Geotectonica et Metallogenia, 2020, 444): 648666.
    乔卫涛, 陈仁, 胡歆睿, 等. 贵州开阳地区澄江组第二段砂岩粒度分析与沉积环境[J]. 贵州地质, 2020, 371): 5965. doi: 10.3969/j.issn.1000-5943.2020.01.008

    QIAO Weitao, CHEN Ren, HU Yinrui, et al. Grain-size Analysis and Depositional Environment of the Second Member of Chengjiang Formation at Kaiyang Area of Guizhou Province[J]. Guizhou Geology, 2020, 371): 5965. doi: 10.3969/j.issn.1000-5943.2020.01.008
    钱广强, 董治宝, 罗万银, 等. 巴丹吉林沙漠地表沉积物粒度特征及区域差异[J]. 中国沙漠, 2011, 316): 13571364.

    QIAN Guangqiang, DONG Zhibao, LUO Wanyin, et al. Grain Size Characteristics and Spatial Variation of Surface Sediments in the Badain Jaran Desert[J]. Journal of Desert Research, 2011, 316): 13571364.
    钱亦兵, 吴兆宁, 杨海峰, 等. 古尔班通古特沙漠南部风沙土粒度分布的空间异质性[J]. 干旱区地理, 2009, 325): 655661.

    QIAN Yibing, WU Zhaoning, YANG Haifeng, et al. Spatial heterogeneity for grain size distribution of eolian sand soil in the southern Gurbantunggut Desert[J]. Arid Land Geography, 2009, 325): 655661.
    沈亚萍, 张春来, 李庆, 等. 中国东部沙区表层沉积物粒度特征[J]. 中国沙漠, 2016, 361): 150157. doi: 10.7522/j.issn.1000-694X.2015.00278

    SHEN Yaping, ZHANG Chunlai, LI Qing, et al. Grain-size Characteristics of Surface Sediments in the Eastern Desert Regions of China[J]. Journal of Desert Research, 2016, 361): 150157. doi: 10.7522/j.issn.1000-694X.2015.00278
    宋进喜, 于芳, 王珍. 渭河陕西段河床沉积物的粒度参数分析[J]. 南水北调与水利科技, 2013, 114): 7578.

    SONG Jinxi, YU Fang, WANG Zhen. Parameter Analysis on Grain Size Distribution of Streambed Sediment in theWeihe River of Shaanxi Province[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 114): 7578.
    田敏, 钱广强, 杨转玲, 等. 柴达木盆地东北部哈勒腾河流域风成沉积物粒度特征与空间差异[J]. 中国沙漠, 2020, 402): 6878.

    TIAN Min, QIAN Guangqiang, YANG Zhuanling, et al. Grain size characteristics and spatial variation of aeolian sediments in the Haerteng River, Northeastern Qaidam Basin, China[J]. Journal of Desert Research, 2020, 402): 6878.
    向尧. 风成沉积体系中氧化还原作用与铀成矿关系—以鄂尔多斯盆地西南部洛河组和罗汉洞组为例[D]. 武汉: 中国地质大学(武汉), 2022, 39−64.

    XIANG Rao. Relationship between oxidation-reduction and uranium mineralization in aeolian depositional system: Taking Luohe Formation and Luohandong Formation in southwest Ordos Basin as an example[D]. Wuhan: China University of Geosciences (Wuhan), 2022, 39−64.
    熊平生, 刘亮, 张楚楚, 等. 湘江衡阳段河漫滩沉积物粒度特征及其环境意义[J]. 绵阳师范学院学报, 2022, 415): 9398.

    XIONG Pingsheng, LIU Liang, ZHANG Chuchu, et al. Grain-size characteristics and its Environmental Significance of Floodplain Sediments in Hengyang Section of Xiangjiang River[J]. Journal of Mianyang Teachers' College, 2022, 415): 9398.
    王龙辉, 剡鹏兵, 焦养泉, 等. 鄂尔多斯盆地北部下白垩统铀成矿模式[J]. 地质科技通报, 2023, 423): 222233.

    WANG Longhui, YAN Pengbing, JIAO Yangquan, et al. Uranium metallogenic model of the Lower Cretaceous in the northern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2023, 423): 222233.
    王贵玲, 刘志明, 蔺文静. 鄂尔多斯周缘地质构造对地热资源形成的控制作用[J]. 地质学报, 2004, 781): 4451. doi: 10.3321/j.issn:0001-5717.2004.01.006

    WANG Guiling, LIU Zhiming, LIN Wenjing. Tectonic Control of Geothermal Resources in the Peripheral of Ordos Basin[J]. Acta Geologica Sinica, 2004, 781): 4451. doi: 10.3321/j.issn:0001-5717.2004.01.006
    王宁祖, 张文斌, 何碧, 等. 贵州中坪地区上三叠统二桥组砂岩粒度分析及其沉积环境意义[J]. 地质与资源, 2023, 324): 406417.

    WANG Ningzu, ZHANG Wenbin, HE Bi, et al. Sandstone Grain Size Analysis of Upper Triassic Erqiao Fromation in Zhongping Area, Guizhou Province: Implication of Sedimentary Environment[J]. Geology and Resources, 2023, 324): 406417.
    吴柏林, 张婉莹, 宋子升, 等. 鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J]. 地质学报, 2016, 9012): 33933407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    WU Bolin, ZANG Wanying, SONG Zisheng, et al. Geological and Geochemical Characteristics of Uranium Minerals inthe Sandstone-type Uranium Deposits in the North of Ordos Basin and Their Genetic Significance[J]. Acta Geologica Sinica, 2016, 9012): 33933407. doi: 10.3969/j.issn.0001-5717.2016.12.009
    吴柏林, 孙斌, 程相虎, 等. 铀矿沉积学研究与发展[J]. 沉积学报, 2017, 355): 10441053.

    WU Bolin, SUN Bin, CHENG Xianghu, et al. Study and Prospect for Sedimentology of Uranium Deposit[J]. ActaSedimentologica Sinica, 2017, 355): 10441053.
    吴颖, 孙磊, 冯敏, 等. 天环坳陷南北部盒8段地层水地化特征差异性分析[J]. 西北地质, 2024, 572): 244253.

    WU Ying, SUN Lei, FENG Min, et al. Analysis on Geochemical Characteristics and Difference of Formation Water in He 8th Member in Northern and Southern Tianhuan Depression[J]. Northwestern Geology, 2024, 572): 244253.
    杨玉卿, 田洪, 孟杰, 等. 渤海湾中部南堡35-2地区新第三系河流沉积及油气勘探意义[J]. 古地理学报, 2001, 34): 7784. doi: 10.3969/j.issn.1671-1505.2001.04.009

    YANG Yuqing, TIAN Hong, MENG Jie, et al. Fluvial Sediments and Their Oil-Gas Exploration Significance of the Neogene in the Nanpu 35-2 Area of Central Bohai Gulf[J]. Journal of Palaeogeography, 2001, 34): 7784. doi: 10.3969/j.issn.1671-1505.2001.04.009
    张龙, 吴柏林, 刘池洋, 等. 鄂尔多斯盆地北部砂岩型铀矿直罗组物源分析及其铀成矿意义[J]. 地质学报, 2016, 9012): 34413453. doi: 10.3969/j.issn.0001-5717.2016.12.012

    ZHANG Long, WU Bolin, LIU Chiyang, et al. Provenance Analysis of the Zhiluo Formation in the Sandstone-hosted Uranium Deposits of the Northern Ordos Basin and Implications for Uranium Mineralization[J]. Acta Geologica Sinica, 2016, 9012): 34413453. doi: 10.3969/j.issn.0001-5717.2016.12.012
    张凌华, 张振克, 符跃鑫, 等. 长江下游南京-镇江河段河漫滩粒度特征[J]. 地理科学, 2015, 359): 11831190.

    ZHANG Linghua, ZHANG Zhenke, FU Yuexin, et al. Grain-size Characteristics of Overbank Sediments in the Lower Reaches of the Changjiang River and Its Environmental Implication[J]. Scientia Geographica Sinica, 2015, 359): 11831190.
    张帅军. 西藏岗玛日地区下三叠统康鲁组砂岩粒度分析及环境意义[D]. 北京: 中国地质大学(北京), 2013, 20−37.

    ZHANG Shuaijun. Sandstone Grain Size Analysis and Environmental significance of Lower Triassic Kanglu Formation Gangmari region, Tibet[D]. Beijing: China University of Geosciences(Beijing), 2013, 20−37.
    张天福, 张云, 金若时, 等. 鄂尔多斯盆地东北缘侏罗系层序界面特征对砂岩型铀矿成矿环境的制约[J]. 中国地质, 2020, 472): 278299. doi: 10.12029/gc20200202

    ZHANG Tianfu, ZHANG Yun, JIN Ruoshi, et al. Characteristics of Jurassic sequence boundary surfaces on the northeastern margin of Ordos basin and their constraints on the spatial-temporal properties of sandstone uranium mineralization[J]. Geology In China, 2020, 472): 278299. doi: 10.12029/gc20200202
    张翔, 胡永兴, 杨涛, 等. 鄂尔多斯盆地西南缘砂岩型铀矿含矿目的层—洛河组砂岩的沉积物源特征[J]. 铀矿地质, 2022, 382): 153167. doi: 10.3969/j.issn.1000-0658.2022.38.015

    ZHANG Xiang, HU Yongxing, YANG Tao, et al. Sediment Source Characteristics of the Target Sandstone Layer for Sandstone-type Uranium Deposit in Southwestern Ordos Basin[J]. Uranium Geology, 2022, 382): 153167. doi: 10.3969/j.issn.1000-0658.2022.38.015
    郑浚茂, 王德发, 孙永传. 黄骅拗陷几种砂体的粒度分布特征及其水动力条件的初步分析[J]. 石油实验地质, 1980, 2: 921. doi: 10.11781/sysydz198003009

    ZHENG Junmao, WANG Defa, SUN Yongchuan. Preliminary Analysis of Particle Size Distribution Characteristics and Hydrodynamic Conditions of Several Sand Bodies in Huanghua Depression[J]. Petroleum Geology & Experiment, 1980, 2: 921. doi: 10.11781/sysydz198003009
    郑萌, 梁积伟, 冯振伟, 等. 鄂尔多斯盆地中部寒武纪岩相古地理研究[J]. 西北地质, 2023, 566): 352368.

    ZHENG Meng, LIANG Jiwei, FENG Zhenwei, et al. Lithofacies Paleogeography of the Cambrian in the Central Ordos Basin[J]. Northwestern Geology, 2023, 566): 352368.
    周丹丹, 董建林, 高永, 等. 巴音温都尔沙漠表层土壤粒度特征及风蚀量估算[J]. 干旱区地理, 2008, 316): 933939.

    ZHOU Dandan, DONG Jianlin, GAO Yong, et al. Grain sizes analysis and soil loss of surface soil during desertification process on Bayinwenduer Desert[J]. Arid Land Geography, 2008, 316): 933939.
    朱强, 李建国, 苗培森, 等. 鄂尔多斯盆地西南部洛河组储层特征和深部铀成矿地质条件[J]. 地球科学与环境学报, 2019, 416): 675690. doi: 10.3969/j.issn.1672-6561.2019.06.004

    ZHU Qiang, LI Jianguo, MIAO Peisen, et al. Reservoir Characteristics of Luohe Formation and Metallogenic Geological Conditions of Deep Uranium in the Southwestern Margin of Ordos Basin, China[J]. Journal of Earth Sciences and Environment, 2019, 416): 675690. doi: 10.3969/j.issn.1672-6561.2019.06.004
    朱欣然, 刘立, 贾士琚, 等. 鄂尔多斯盆地白垩系洛河组风成砂岩地球化学与物源区特征: 以靖边县龙洲乡露头为例[J]. 世界地质, 2018, 373): 702711. doi: 10.3969/j.issn.1004-5589.2018.03.004

    ZHU Xinran, LIU Li, JIA Shiju, et al. Geochemical and provenance characteristics of eolian sandstone of Cretaceous Luohe Formation in Ordos Basins: an example from outcrop in Longzhou, Jingbian[J]. Global Geology, 2018, 373): 702711. doi: 10.3969/j.issn.1004-5589.2018.03.004
    朱筱敏. 沉积岩石学(第4版)[M]. 北京: 石油工业出版社, 2008, 138−268.

    ZHU Xiaomin. Sedimentary Petrology (4th edition)[M]. Beijing: petroleum industry press, 2008, 138−268.
    Belnap J, Munson S M, Jason P F. Aeolian and fluvial processes in dryland regions: the need for integrated studies[J]. Ecohydrology, 2011, 41): 615622.
    Blott S J, Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 2611): 12371248. doi: 10.1002/esp.261
    Bullard J E. Aeolian-fluvial interactions in dryland environments: scales, concepts and Australia case study[J]. Progress in Physical Geography, 2003, 271): 471501.
    Cheng Yinhang, Wang Shaoyi, Jin Ruoshi, et al. Global Miocene tectonics and regional sandstone-style uranium mineralization[J]. Ore Geology Reviews, 2019, 106: 238250.
    Fredlund M D, Wilson G W, Fredlund D G. Use of the grain-size distribution for estimation of the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2002, 395): 11031117. doi: 10.1139/t02-049
    Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 271): 326. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
    Folk R L. A review of grain-size parameters[J]. Sedimentology, 19666): 7393.
    Sahu B K. Depositional mechanisms from the size analysis of clastic sediments[J]. Journal of Sedimentary Petrology, 1964, 341): 7383.
    Stanistreet I G, Stollhofen H. Hoanib River flood deposits of Namib Desert interdunes as analogues for thin permeability barrier mudstone layers in aeolianite reservoirs[J]. Sedimentology, 2002, 491): 719736.
    Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 1523−4): 263277.
    Visher G S. Grain size distributions and depositional processes[J]. Journal of sedimentary petrology, 1969, 393): 10741106.
    Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 2023): 409424. doi: 10.1016/j.sedgeo.2007.03.007
    Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 486): 723741. doi: 10.1007/s11004-015-9611-0
  • Related Articles

Catalog

    Article views (90) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return