ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
JING Yongkang,ZHANG Long,LIU Ming,et al. Zircon U-Pb Dating, Trace Elements Characteristics and Geological Significance of Tonalite in the Huashigou Area, Northwestern Margin of Qaidam Basin[J]. Northwestern Geology,2025,XX(XX):1−14. doi: 10.12401/j.nwg.2024097
Citation: JING Yongkang,ZHANG Long,LIU Ming,et al. Zircon U-Pb Dating, Trace Elements Characteristics and Geological Significance of Tonalite in the Huashigou Area, Northwestern Margin of Qaidam Basin[J]. Northwestern Geology,2025,XX(XX):1−14. doi: 10.12401/j.nwg.2024097

Zircon U-Pb Dating, Trace Elements Characteristics and Geological Significance of Tonalite in the Huashigou Area, Northwestern Margin of Qaidam Basin

More Information
  • Received Date: June 12, 2023
  • Revised Date: November 05, 2024
  • Accepted Date: November 05, 2024
  • Available Online: November 11, 2024
  • This study focuses on the tonalite in the Huashigou in the western section of the Quanji massif, northwestern margin of the Qaidam basin. Based on detailed field investigations, LA-ICP-MS in-situ isotopic dating and elemental analyses were carried out on the primary zircons to explore the evolutionary history of this area during the important tectonic transition period of the Devonian. The CL images of zircons in Huashigou tonalite show that zircon crystals are mostly columnar or irregularly shaped, euhedral to subhedral grains with clear oscillatory zonations. Zircon U-Pb dating yields a weighted average age of 371.1±3.5 Ma, a concordant age of 370.9±1 Ma, and a Th/U ratio of 0.42~0.83. LA-ICP-MS in-situ elemental analysis shows obvious Ce positive anomalies, strong Eu negative anomalies, and relative enrichment in light rare earth elements (LREE) compared to heavy rare earth elements (HREE). Zircon Ti thermometer calculation reveals zircon crystallization temperatures (tZr-Ti) ranging from 628 to 722 ℃, indicating a typical magmatic origin. In the Pb-Th diagram, all zircon spots fall within the I-type granite zircon field, representing that the original magma is crust-mantle mixed. Based on the above information, it is inferred that Huashigou tonalite was formed in an extensional environment after the collision, representing a magmatic event caused by mantle upwelling and crustal reworking.

  • 陈晔, 王方成, 蔡晓菊. 甘肃西部化石沟铜矿地质特征及其找矿标志[J]. 甘肃地质, 2012, 21(2): 42−49.

    CHEN Ye, WANG Fangcheng, CAI Xiaoju. Geological features of Huashigou copper deposit in western Gansu Province[J]. Gansu Geology,2012,21(2):42−49.
    陈晔, 张春宇. 化石沟铜矿地质地球物理特征及找矿模型[J]. 甘肃科技, 2011, 27(16): 40−41+12.

    CHEN Ye, ZHANG Chunning. Geophysical characteristics and prospecting model of Huashigou copper[J]. Gansu Science and Technology,2011,27(16):40−41+12.
    董国强, 褚广博, 吴义布, 等. 全吉地块金泉山—化石沟一带古生代花岗质岩体地球化学及其构造意义[J]. 甘肃地质, 2014, 23(1): 19−27.

    DONG Guoqiang, CHU Guangbo, WU Yibu, et al. Geochemistry of paleozoic Jinquanshan-Huashigou granitoids in Quanji massif and its tectonic significance[J]. Gansu Geology,2014,23(1):19−27.
    郝国杰, 陆松年, 王惠初, 等. 柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化[J]. 地学前缘, 2004(3): 115−122.

    HAO Guojie, LU Songnian, WANG Huichu, et al. The Pre-Devonian tectonic framework in the northern margin of Qaidam basin and geological evolution of Olongbuluck palaeo-block[J]. Earth Science Frontiers,2004(3):115−122.
    胡万龙, 贾志磊, 王金荣, 等. 南祁连化石沟花岗岩年代学、地球化学特征及其构造意义[J]. 高校地质学报, 2016, 22(2): 242−253.

    HU Wanlong, JIA Zhilei, WANG Jinrong, et al. Geochronology and Geochemistry Characteristics of the Granites from the Huashigou Area, South Qilian and Their Tectonic Significance[J]. Geological Journal of China Universities,2016,22(2):242−253.
    李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 32(3): 161−174.

    LI Changmin. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons[J]. Geological Survy and Research,2009,32(3):161−174.
    李卫红, 王军, 李小强, 等. 阿尔金东段当金山口中酸性侵入体年代学、地球化学特征及构造意义[J]. 西北地质, 2020, 53: 34−50.

    LI Weihong, WANG Jun, LI Xiaoqiang, et al. Chronology, Geochemical Characteristics of the Intermediate Acid Intrusives in Dangjinshankou, Eastern Altun and Their Tectonic Significanc[J]. Northwestern Geology,2020,53:34−50.
    刘永顺, 于海峰, 辛后田, 等. 阿尔金山地区构造单元划分和前寒武纪重要地质事件[J]. 地质通报, 2009, 28(10): 1430−1438.

    LIU Yongshun, YU Haifeng, XIN Houtian, et al. Tectonic units division and Precambrian significant geological events in Altyn Tagh Mountain, China[J]. Geological Bulletin of China,2009,28(10):1430−1438.
    陆松年, 李怀坤, 王惠初, 等. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究[J]. 岩石学报, 2009, 25(9): 2195−2208.

    LU Songnian, LI Huaikun, WANG Huichu et al. Detrital zircon population of Proterozoic meta-sedimentary strata in the Qingling -Qilian-Kunlun Orogen[J]. Acta Petrologica Sinica,2009,25(9):2195−2208.
    潘美慧, 贾志磊, 侯鹏博. 南祁连化石沟铜矿区上石炭统克鲁克组大理岩C、O同位素特征[J]. 黄金科学技术, 2014, 22, (5): 39−44.

    PAN Meihui, JIA Zhilei, HOU Pengbo. Characteristics of C, O Isotopes in the Upper Carboniferous Keluke Formation in South Qilian Mountains[J]. Gold Science and Technology,2014,22(5):39−44.
    彭璇, 庄玉军, 辜平阳, 等. 柴北缘小赛什腾山片麻状花岗岩的成因: 来自地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 西北地质, 2022, 55: 221−239.

    PENG Xuan, ZHUANG Yujun, GU Pingyang et al. Petrogenesis of the Gneissic Granitein Xiaosaishiteng Mountain, Northern Qaidam: Constraint from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes[J]. Northwestern Geology,2022,55:221−239.
    任军虎. 柴达木盆地南、北缘南华—泥盆纪构造演化 [D]. 西北大学. 2010.

    REN Junhu. A study on tectonic evolution during the period of Nanhua to Devonian at the north and south of Qaidan Basin[D]. Northwest Universtity,2010.
    谭光裕, 彭起陆, 刘土改. 甘肃省阿克塞县化石沟斑岩型铜矿床特征研究[J]. 甘肃地质, 2011, 20(3): 51−59.

    TAN Guangyu, PENG Qilu, LIU Tugai. Features of Huashiguo prophyry type copper deposit, Akesai county in Gansu[J]. Gansu Geology,2011,20(3):51−59.
    王惠初, 陆松年, 袁桂邦, 等. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报, 2003(7): 487−493.

    WANG Hhuichu, LU Songnian, YUAN Guibang, et al. Tectonic setting and age of the "Tanjianshan Group" on the northern margin of the Qaidan basin[J]. Geological Bulletin of China,2003(7):487−493.
    吴才来, 郜源红, 吴锁平, 等. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报, 2007(8): 1861−1875.

    WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidan basin, NW China[J]. Acta Petrologica Sinica,2007(8):1861−1875.
    吴才来, 郜源红, 吴锁平等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学(D辑: 地球科学), 2008(8): 930−949.

    WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating and Geochemistry Characteristics of granites from northwest margin of Qaidan basin[J]. Science in China Press,2008(8):930−949.
    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004(16): 1589−1604.

    WU Yuanbao, ZHENG Yongfei. Zircon genesis mineralogical studies and their constraints on U-Pb age interpretation[J]. Chinese Science Bulletin,2004(16):1589−1604.
    辛后田, 王惠初, 周世军. 柴北缘的大地构造演化及其地质事件群[J]. 地质调查与研究, 2006(4): 311−320.

    XIN Houtian, WANG Huichu, ZHOU Shijun. Geological events and tectonic evolution of the north margin of the Qaidam basin[J]. Geological Survey and Research,2006(4):311−320.
    许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1−22.

    XU Zhiqin, LI Sitian, ZHANG Jianxin, et al. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block[J]. Acta Petrologica Sinica,2011,27(1):1−22.
    许志琴, 杨经绥, 张建新, 等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报, 1999(3): 193−205.

    XU Zhiqin,YANG Jingsui,ZHANG Jianxin,et al. A comparison between the Tectonic Units on the two sides of the Altun sinistral strike-slip fault and the Mechanism of lithospheric shearing[J]. Acta Geologica Sinica,1999(3):193−205.
    闫义, 林舸, 李自安. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究[J]. 大地构造与成矿学, 2003(2): 184−90.

    YAN Yi,LIN Ge,LI Zian. Provenance tracing of sediments by means of synthetic study of shape,composition and chronolgy of zircon[J]. Geotectonica et Metallogenia,2003(2):184−90.
    杨树清. 甘肃省化石沟铜矿矿床地质特征[J]. 甘肃科技, 2009, 25(17): 47−9+38.

    YANG Shuqing. Geological characteristics of fossil gou copper deposits in Gansu Province[J]. Gansu Science and Technology,2009,25(17):47−9+38.
    赵一鸣, 丰成友, 李大新. 中国矽卡岩矿床找矿新进展和时空分布规律[J]. 矿床地质, 2017, 36(3): 519−543.

    ZHAO Yiming, FENG Chengyou, LI Daxin. New progress in prospecting for skarn deposits and spatial-teporal distribution of skarn deposits in China[J]. Mineral Deposits,2017,36(3):519−543.
    赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267−286.

    ZHAO Zhenhua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers,2010,17(1):267−286.
    赵志丹, 刘栋, 王青, 等. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124−135.

    ZHAO Zhidan, LIU Dong, WANG Qing, et al. Zircon trace elements and their use in probing deep processes[J]. Earth Science Frontiers,2018,25(6):124−135.
    庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56: 63−80.

    ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology,2023,56:63−80.
    Andersen T. Correction of common lead in U–Pb analyses that do not report 204Pb[J]. Chemical Geology,2002,192:59−79.
    Andersen T. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation[J]. Chemical Geology,2005,216:249−270. doi: 10.1016/j.chemgeo.2004.11.013
    Belousova E, Griffin W L, O'reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002,143:602−622. doi: 10.1007/s00410-002-0364-7
    Cavosie A J, Valley J W, Wilde S A. Correlated microanalysis of zircon: Trace element, δ18O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3 900 Ma detrital grains[J]. Geochimica et Cosmochimica Acta,2006,70:5601−5616.
    El-bialy M Z, Ali K A. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian–Nubian Shield[J]. Chemical Geology,2013,360:54−73.
    Ewing T A, Hermann J, Rubatto D. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)[J]. Contributions to Mineralogy and Petrology,2013,165:757−779. doi: 10.1007/s00410-012-0834-5
    Ferry J, Watson E. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology,2007,154:429−437. doi: 10.1007/s00410-007-0201-0
    Fu B, Mernagh T P, Kita N T, et al. Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia[J]. Chemical Geology,2009,259:131−142. doi: 10.1016/j.chemgeo.2008.10.035
    Gehrels G, Kapp P, Decelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30.
    Grimes C B, John B E, Cheadle M J, et al. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere[J]. Contributions to Mineralogy and Petrology,2009,158:757−783. doi: 10.1007/s00410-009-0409-2
    Grimes C B, John B E, Kelemen P, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology,2007,35:643−646.
    Hawkesworth C, Kemp A. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology,2006,226:144−162.
    Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters,2007,258(3):561−568.
    Hoskin P W. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta,2005,69:637−648.
    Hoskin P W, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 27-62.
    Kemp A, Wilde S, Hawkesworth C, et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons[J]. Earth and Planetary Science Letters,2010,296:45−56. doi: 10.1016/j.jpgl.2010.04.043
    Li H, Li J W, Algeo T J, et al. Zircon indicators of fluid sources and ore genesis in a multi-stage hydrothermal system: The Dongping Au deposit in North China[J]. Lithos,2018,314:463−478.
    Li H, Watanabe K, Yonezu K. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralization processes[J]. Ore Geology Reviews,2014,60:14−35.
    Li Y, Song S, Yang X, et al. Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: implications for Rodinia break-up[J]. International Geology Review,2023,65(7):1000−1016. doi: 10.1080/00206814.2020.1857851
    Moecher D, Mcdowell S, Samson S, et al. Ti-in-zircon thermometry and crystallization modeling support hot Grenville granite hypothesis[J]. Geology,2014,42:267−270.
    Möller A, O’brien P J, KennedY A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society, London, Special Publications,2003,220:65−81. doi: 10.1144/GSL.SP.2003.220.01.04
    Nardi L, Formoso M, Müller I, et al. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes[J]. Chemical Geology,2013,335:1−7. doi: 10.1016/j.chemgeo.2012.10.043
    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984,25:956−983. doi: 10.1093/petrology/25.4.956
    Reimink J R, Chacko T, Stern R A, et al. Earth’s earliest evolved crust generated in an Iceland-like setting[J]. Nature Geoscience,2014,7:529−533.
    Rubatto D. Zircon: the metamorphic mineral[J]. Reviews in Mineralogy and Geochemistry,2017,83:261−295. doi: 10.2138/rmg.2017.83.9
    Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps[J]. Cathodoluminescence in Geosciences: 2000, 373-400.
    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications,1989,42:313−345. doi: 10.1144/GSL.SP.1989.042.01.19
    Wang Q, Zhu D C, Zhao Z D, et al. Magmatic zircons from I-, S-and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences,2012,53:59−66. doi: 10.1016/j.jseaes.2011.07.027
    Wark D A, Hildreth W, Spear F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology,2007,35(3):235−238. doi: 10.1130/G23316A.1
    Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters,1983,64:295−304. doi: 10.1016/0012-821X(83)90211-X
    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest[J]. Earth. Science, 2005, 308 (5723): 841-844.
    Watson E, Wark D, Thomas J. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology,2006,151:413. doi: 10.1007/s00410-006-0068-5
    Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine,1969,106(4):370−384. doi: 10.1017/S0016756800058222
    Wu T, Xiao L, Ma C. U-Pb geochronology of detrital and inherited zircons in the Yidun arc belt, eastern Tibet Plateau and its tectonic implications[J]. Journal of Earth Science,2016,27:461−473. doi: 10.1007/s12583-016-0675-5
    Yang J, Cawood P A, Du Y, et al. Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China[J]. Sedimentary Geology,2012,261:120−131.
    Zhang X, Xiang H, Zhong Z, et al. U-Pb dating and trace elements composition of hydrothermal zircons from Jianfengling granite, Hainan: Restriction on the age of hydrothermal event and mineralization of Baolun gold deposit[J]. Earth Science—Journal of China University of Geosciences,2009,34:921−930. doi: 10.3799/dqkx.2009.105
  • Related Articles

Catalog

    Article views (54) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return