ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LIU Long,DU Hui,TANG Xiaoping,et al. Characteristics of Magnetic Anomalies and Geologic Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China[J]. Northwestern Geology,2025,58(3):1−11. doi: 10.12401/j.nwg.2024101
Citation: LIU Long,DU Hui,TANG Xiaoping,et al. Characteristics of Magnetic Anomalies and Geologic Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China[J]. Northwestern Geology,2025,58(3):1−11. doi: 10.12401/j.nwg.2024101

Characteristics of Magnetic Anomalies and Geologic Significance in the Southern Hongshigang Area of the Eastern Tianshan Mountains, China

More Information
  • Received Date: April 11, 2023
  • Revised Date: June 13, 2024
  • Accepted Date: November 18, 2024
  • Available Online: March 25, 2025
  • In recent years, the emphasis of metal mineral exploration has gradually shifted to the hidden deposits in the covered areas where the rock mass is not exposed. However, it is difficult to obtain the information of underground abnormal bodies in the early investigation work because of the thick overlying layer. The Mafic and ultramafic rock mass outlying in the Hongshigang area of the Eastern Tianshan Cu-Ni metallogenic belt shows good prospecting potential. The 1:50 000 aeromagnetic data and gravity data show that there is a high magnetic and high gravity coupling anomaly in the southern Quaternary covered area, which has not been investigated yet. Therefore, this study conducted high-precision ground magnetic survey work in the southern Hongshigang area and used magnetic anomaly reduced to the pole, vertical first derivative, normalized total gradient method, two-dimensional profile simulation, and three-dimensional magnetic anomaly inversion methods to conduct preliminary exploration and research on the underground anomalous bodies in the area. It was found that there are five significant magnetic anomalies in the investigation area, and the average magnetic susceptibility of the hidden anomalous bodies is about 6000 × 10−5 SI, with a depth of about 200-300 meters. There are five main small anomalous bodies, which strike nearly southwest-northeast and dip to the north. Combined with geological data and rock physical properties, the anomalous bodies in this area may be mafic and ultramafic rock bodies with high magnetic susceptibility. Magnetic anomalies are used to indicate the Huangshan-Jingerquan faults in the southwest-northeast direction which are consistent with the inferred position of predecessors and the secondary fault in the investigated area, which could provide a favorable metallogenic environment for copper-nickel deposits. Therefore, the underground anomalous bodies in the southern Hongshigang area have great prospecting potential for copper-nickel deposits, and this study provides reliable geophysical data for subsequent exploration work in the area.

  • 宫辰. 哈密红石岗铜镍矿矿床地质特征及找矿前景[J]. 中国金属通报, 202011): 4950. doi: 10.3969/j.issn.1672-1667.2020.21.023
    韩宝福, 季建清, 宋彪, 等. 新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J]. 科学通报, 200422): 23242328. doi: 10.3321/j.issn:0023-074X.2004.22.012
    侯朝勇, 蔡厚安, 裴森龙. 综合物化探方法在新疆哈密月牙湾铜镍矿勘查中的应用[J]. 矿产与地质, 2021, 356): 11161123.
    惠卫东, 赵鹏大, 秦克章, 等. 东天山图拉尔根铜镍硫化物矿床综合信息找矿模型的应用[J]. 地质与勘探, 2011, 473): 388399.
    李彤泰. 新疆哈密市黄山基性-超基性岩带铜镍矿床地质特征及矿床成因[J]. 西北地质, 2011, 441): 5460. doi: 10.3969/j.issn.1009-6248.2011.01.007
    刘璎, 孟贵祥, 严加永, 等. 重磁3D物性反演技术在金属矿勘探中的应用[J]. 地质与勘探, 2011, 473): 448455.
    刘隆, 周建平, 吴涛, 等. 大洋中脊玄武岩磁性特征[J]. 地球物理学进展, 2021, 365): 18801890. doi: 10.6038/pg2021EE0403
    乔天成. 高精度磁法在铜镍多金属矿普查工作中的应用[J]. 新疆有色金属, 2016, 391): 3639.
    邵行来. 东天山黄山—镜儿泉超镁铁岩带地球物理特征研究及找矿应用[D]. 中国地质大学(北京), 2012.
    邵行来, 薛春纪, 戴德文, 等. 新疆哈密葫芦岩浆Cu-Ni矿勘查地球物理异常特征[J]. 现代地质, 2010, 242): 383391. doi: 10.3969/j.issn.1000-8527.2010.02.025
    邵行来, 薛春纪, 周耀明. 哈密图拉尔根镁铁-超镁铁岩磁法异常解释[J]. 新疆地质, 2012, 304): 425429. doi: 10.3969/j.issn.1000-8845.2012.04.009
    师震, 陈宏骏, 钱壮志, 等. 东天山红石岗镁铁—超镁铁质岩体成因及铜镍成矿潜力[J]. 地球科学与环境学报, 2019, 412): 156169. doi: 10.3969/j.issn.1672-6561.2019.02.003
    宋谢炎, 邓宇峰, 颉炜, 等. 新疆黄山-镜儿泉铜镍硫化物成矿带岩浆通道成矿特征及其找矿意义[J]. 矿床地质, 2022, 416): 11081123.
    王成. 重、磁、电综合勘探方法在寻找铜镍矿中的应用[J]. 新疆有色金属, 2018, 414): 1317.
    王庆功. 综合物探方法在新疆某铜镍矿勘探中的应用[J]. 甘肃冶金, 2021, 432): 9698+104. doi: 10.3969/j.issn.1672-4461.2021.02.028
    王志福, 吴飞, 谭克彬, 等. 哈密红石岗铜镍矿矿床地质特征及找矿前景[J]. 新疆地质, 2012, 303): 307311. doi: 10.3969/j.issn.1000-8845.2012.03.013
    王亚磊, 张照伟, 陈寿波, 等. 新疆东天山红石岗北铜镍矿化镁铁质岩体岩石成因及成矿潜力分析[J]. 地质学报, 2017, 914): 776791. doi: 10.3969/j.issn.0001-5717.2017.04.006
    吴功成. 新疆白石泉铜镍矿矿床地质与找矿预测[D]. 中国地质大学(北京), 2018. .
    肖丹, 宋泽友, 宋维国. 我国岩浆硫化物型镍矿床伴生矿产综合勘查评价指标探讨[J]. 国土资源导刊, 2022, 191): 4853. doi: 10.3969/j.issn.1672-5603.2022.01.011
    杨大欢, 古志宏. 广东与燕山期岩浆作用有关矿产资源的区域成矿分带特征及成因[J]. 矿产与地质, 2021, 354): 603609.
    尹希文. 新疆香山铜镍硫化物矿床岩浆深部过程与找矿方向探讨[J]. 西北地质, 2015, 483): 2230. doi: 10.3969/j.issn.1009-6248.2015.03.003
    Cockett R, Kang S, Heagy L J, et al. SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications[J]. Computers & Geosciences, 2015, 85: 142154.
    Ekwok S E, Achadu O-I M, Akpan A E, et al. Depth Estimation of Sedimentary Sections and Basement Rocks in the Bornu Basin, Northeast Nigeria Using High-Resolution Airborne Magnetic Data[J]. Minerals, 2022, 123): 285.
    Ekwok S E, Akpan A E, Ebong E D. Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria[J]. Journal of African Earth Sciences, 2019, 155: 4353. doi: 10.1016/j.jafrearsci.2019.02.030
    Elysseieva I s., Pašteka R. Review Paper: Historical development of the total normalized gradient method in profile gravity field interpretation[J]. Geophysical Prospecting, 2019, 671): 188209. doi: 10.1111/1365-2478.12704
    Feng Y, Qian Z, Duan J, et al. Geochronological and geochemical study of the Baixintan magmatic Ni-Cu sulphide deposit: New implications for the exploration potential in the western part of the East Tianshan nickel belt (NW China)[J]. Ore Geology Reviews, 2018, 95: 366381. doi: 10.1016/j.oregeorev.2018.02.023
    He J, Fan Z, Xiong S, et al. Geophysical prospecting of copper-nickel deposits in Beishan rift zone, Xinjiang[J]. China Geology, 2021, 41): 126146.
    Jahren C E. Magnetization of keweenawan rocks near duluth, minnesota[J]. Geophysics, 1965, 305): 858. doi: 10.1190/1.1439660
    Koenigsberger J G. Natural residual magnetism of eruptive rocks[J]. Terrestrial Magnetism and Atmospheric Electricity, 1938, 433): 299320. doi: 10.1029/TE043i003p00299
    Mao Y-J, Qin K-Z, Li C, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, 200–201: 111–125.
    Mao Y-J, Qin K-Z, Tang D-M, et al. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China[J]. Journal of Asian Earth Sciences, 2016, 129: 2237. doi: 10.1016/j.jseaes.2016.07.028
    Meng Z. Three-dimensional potential field data inversion with L0 quasinorm sparse constraints[J]. Geophysical Prospecting, 2018, 663): 626646.
    Parkinson W D, Barnes C D. In situ determination of Koenigsberger ratio[J]. Australian Journal of Earth Sciences, 1985, 321): 15. doi: 10.1080/08120098508729308
    Sun J, Li Y. Adaptive Lp inversion for simultaneous recovery of both blocky and smooth features in a geophysical model[J]. Geophysical Journal International, 2014, 1972): 882899. doi: 10.1093/gji/ggu067
    Sun J, Li Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering: 4[J]. Geophysics, 2015, 804): ID1ID18.
    Utsugi M. 3-D inversion of magnetic data based on the L1–L2 norm regularization[J]. Earth, Planets and Space, 2019, 71(1).
    Vanzon T, Roy-Chowdhury K. Structural inversion of gravity data using linear programming: 3[J]. Geophysics, 2006, 71(3).
    Wardinski I, Saturnino D, Amit H, et al. Geomagnetic core field models and secular variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-13)[J]. Earth Planets and Space, 2020, 721): 155. doi: 10.1186/s40623-020-01254-7
    Xiangjin R, Linfu X, Yanyan Z, et al. The 3D Visualization of 2D GM-SYS Gravity-Magnetic Inversion Sections Based on GoCAD[C]//2017 International Conference on Robots & Intelligent System (ICRIS). Huai An City, China: IEEE, 2017. 325–328.
    Xiao F, Wang Z. Geological interpretation of Bouguer gravity and aeromagnetic data from the Gobi-desert covered area, Eastern Tianshan, China: Implications for porphyry Cu-Mo polymetallic deposits exploration[J]. Ore Geology Reviews, 2017, 80: 10421055. doi: 10.1016/j.oregeorev.2016.08.034
    Yurichev A N, Chernyshov A I. New Ore Minerals from the Kingash Ultramafic Massif, Northwestern Eastern Sayan[J]. Geology of Ore Deposits, 2017, 597): 626631. doi: 10.1134/S107570151707011X
    石煜, 王玉往, 王京彬, 等. 东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制: 来自斜长石成分的约束[J]. 地球科学, 2022, 479): 32443257. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209009

Catalog

    Article views (18) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return