ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
WEI Bo,QI Qi,WANG Liwei,et al. U-Pb Zircon Age, Geochemistry and Geological Significance of the Late Silurian Diabase in the Southwest Margin of Tarim[J]. Northwestern Geology,xxxx,x(x): x−xx. doi: 10.12401/j.nwg.2024117
Citation: WEI Bo,QI Qi,WANG Liwei,et al. U-Pb Zircon Age, Geochemistry and Geological Significance of the Late Silurian Diabase in the Southwest Margin of Tarim[J]. Northwestern Geology,xxxx,x(x): x−xx. doi: 10.12401/j.nwg.2024117

U-Pb Zircon Age, Geochemistry and Geological Significance of the Late Silurian Diabase in the Southwest Margin of Tarim

More Information
  • Received Date: July 27, 2023
  • Revised Date: March 21, 2024
  • Accepted Date: December 02, 2024
  • Available Online: December 18, 2024
  • There are a large number of diabase dikes (walls) developed in the paleoproterozoic granite body and Setula Group in the Yecheng area of Tiekerike structural belt, southwestern margin of Tarim Basin.Through detailed geological, chronological, geochemical and tectonic environment studies, the results show that the diabases belong to the subbasic lapidous basalt series, with the characteristics of high Fe, Ti, Na and low K.The chondrite normalized REE patterns show the slightly enriched of LREE, which are right-sloping distribution. The diabases enrich LILEs and relatively loses HFSEs, resembling the feature of intraplate basalts. The study of lithogenesis showed that the diabases had the characteristics of a depleted lithospheric mantle source, and were mixed by subduction fluid or melt, and the original magma source area were mainly spinel dipyroxene peridotite. Diabases were formed in an intraplate tensioning environment. The LA-ICP-MS zircon U-Pb age of (424±2.7) Ma was obtained from diabase, formed in the Late Silurian, combined with the tectonic evolution of the West Kunlun region, it is believed that this period is in the post-orogenic stage, representing the end of the tectonic cycle of the original Proto-Tethyan Ocean. Diabases contain a large amount of inherited zircon, the first group inherits the zircon age of (2242±19) Ma, which indicates that there is a Paleoproterozoic crystalline basement in the Tiekerek block, and the second group inherits the zircon age of (1842±42) Ma, representing the magmatic and tectonic records of late Paleoproterozoic Tarim Craton.

  • 邓万明. 喀喇昆仑—西昆仑地区蛇绿岩的地质特征及其大地构造意义[J]. 岩石学报, 1995, 11(z): 98−111.

    DENG Wanming. Geological Features of Ophiolite and Tectonic Significance in the Karakorum-West Kunlun Mts.[J]. ActaPetrologica Sinica,1995,11(z):98−111.
    韩芳林. 西昆仑增生造山带演化及成矿背景[D]. 北京: 中国地质大学(北京), 2006: 1−232.

    HAN Fanglin. Evolution and mineralization background of West Kunlun orogenic belt[D]. Beijing: China University of Geosciences (Beijing), 2006: 1−232.
    计文化, 周辉, 李荣社, 等. 西昆仑新藏公路北段古-中生代多期次构造-热事件年龄确定[J]. 地球科学: 中国地质大学学报, 2007, 32(5): 671−680.

    JI Wenhua, ZHOU Hui, LI Rongshe, et al. The deformation age of Palaeozoic-Mesozoic tectonic alongnorth Xin-Zang road in west Kunlun[J]. Earth Science-Journal of China University of Geosciences,2007,32(5):671−680.
    姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京: 地质出版社, 2000: 1−154.

    JIANG Chunfa, WANG Zongqi, LI Jinyi. Open and close structure of Central Orogenic Belt[M]. Beijing: Geological Publishing House, 2000: 1−154.
    李天福, 张建新. 西昆仑库地蛇绿岩的二辉辉石岩和玄武岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 岩石学报, 2014, 30(8): 2393−2401.

    LI Tianfu, ZHANG Jianxin. Zircon LA-ICP-MS U-Pb ages of webserite and basalt in Kudi ophiolite and the implication, West Kunlun[J]. Acta Petrologica Sinica,2014,30(8):2393−2401.
    廖世勇. 西昆仑古生代花岗岩成因与造山带演化[D]. 南京: 南京大学, 2010: 1−120.

    LIAO Shiyong. Genesis and orogenic evolution of Paleozoic granites in the West Kunlun Mountains[D]. Nanjing: Nanjin University, 2010: 1−120.
    LIU Xin, ZHU Zhixin, GUO Ruiqing, et al. LA-ICP-MS U-Pb zircon dating and its geological significance for the Late Paleozoic diabase from the west part of Tiekelike area, South Tarim[J]. 地球科学,2016,5020(3):794−805.

    LIU Xin, ZHU Zhixin, GUO Ruiqing, et al. LA-ICP-MS U-Pb zircon dating and its geological significance for the Late Paleozoic diabase from the west part of Tiekelike area, South Tarim[J]. 地球科学, 2016, 5020(3): 794−805.
    刘成军. 西昆仑造山带(西段)及周缘早古生代—早中生代物质组成与构造演化[D]. 西安: 长安大学, 2015: 1−210.

    LIU Chen-jun. Material composition and tectonic evolution of the West Kunlun orogenic belt and its periphery from early Paleozoic to early Mesozoic[D]. Xi'an: Chang'an University, 2015: 1−210.
    刘东晓, 王玉玺, 贾志磊, 等. 塔里木克拉通Columbia聚合后大陆裂解的高热事件痕迹[J]. 兰州大学学报(自然科学版), 2017, 53(6): 727−731, 739.

    LIU Dongxiao, WANG Yuxi, JIA Zhilei, et al. Traces of high heat events of continental cleavage after Tarim craton Columbia polymerization[J]. Journal of Lanzhou University(Natural Science Edition),2017,53(6):727−731, 739.
    柳坤峰, 王永和, 姜高磊, 等. 西昆仑新元古代中生代沉积盆地演化[J]. 地球科学(中国地质大学学报), 2014, 39(8): 987−999. doi: 10.3799/dqkx.2014.090

    LIU Kunfeng, WANG Yonghe, JIANG Gaolei, et al. Evolution of neoproterozoic-mesozoic sedimentary basins of West Kunlun area[J]. Earth Science-Journal of China University of Geosciences,2014,39(8):987−999. doi: 10.3799/dqkx.2014.090
    陆松年. 从罗迪尼亚到冈瓦纳超大陆—对新元古代超大陆研究几个问题的思考[J]. 地学前缘(中国地质大学, 北京), 2001, 8(4): 442−449.

    LU Songnian. From Rodinia to Gondwana Supercontinent: Reflections on Several Issues in the Study of Neoproterozoic Supercontinents[J]. Frontiers of Geoscience(China University of Geosciences, Beijing),2001,8(4):442−449.
    陶再礼, 尹继元, 袁超, 等. 西昆仑造山带晚奥陶世侵入岩的岩石成因: 对原特提斯洋俯冲过程的制约[J]. 岩石学报, 2022, 38(11): 3321−3340. doi: 10.18654/1000-0569/2022.11.05

    TAO Zaili, YIN Jiyuan, YUAN Chao, et al. Petrogenesis of Late Ordovician intrusive rocks in the WestKunlun orogenic belt: Constraints on thesubduction process of the Proto-Tethys Ocean[J]. Acta Petrologica Sinica,2022,38(11):3321−3340. doi: 10.18654/1000-0569/2022.11.05
    王超, 刘良, 何世平, 等. 西昆仑早古生代岩浆作用过程: 布隆花岗岩地球化学和锆石 U-Pb-Hf同位素组成研究[J]. 地质科学, 2013, 48(4): 997−1014. doi: 10.3969/j.issn.0563-5020.2013.04.004

    WANG Chao, LIU Liang, HE Shiping, et al. Early Paleozoic magmatic process in West Kunlun: Bloom granite geochemistry and zircon U-Pb-Hf isotopic composition[J]. Chinese Journal of Geology,2013,48(4):997−1014. doi: 10.3969/j.issn.0563-5020.2013.04.004
    王向利, 高小平, 刘幼骐, 等. 塔里木盆地南缘铁克里克断隆结晶基底特征[J]. 西北地质, 2010, 43(4): 95-112.

    WANG Xiangli, GAO Xiaoping, LIU Youqi, et al. Crystal basement feature of Tiekelike fault-uplift at southern margin of Tarim Basin. Northwestern Geology, 2010, 43(4): 95−112.
    魏博, 张旗, 吴锋, 等. 新疆西昆仑北缘叶城棋盘—西河休一带构造岩浆活动与成矿关系[J]. 地质与勘探, 2018, 54(S1): 1327−1337. doi: 10.12134/j.dzykt.2018.S1.003

    WEI Bo, ZHANG Qi, WU Feng, et al. Tectonic magmatic activity in relation to mineralization in the Yecheng-Xihexiu area, northern margin of the West Kunlun, Xinjiang[J]. Geology and Exploration,2018,54(S1):1327−1337. doi: 10.12134/j.dzykt.2018.S1.003
    肖文交, 侯泉林, 李继亮, 等. 西昆仑大地构造相解剖及其多岛增生过程[J]. 中国科学(D辑), 2000, 30(z1): 22−28. doi: 10.3969/j.issn.1674-7240.2000.z1.004

    XIAO Wenjiao, HOU Quanlin, LI Jiliang, et al. Anatomy of tectonic facies in West Kunlun and its multi-island hyperplasia process[J]. Science in China (Series D),2000,30(z1):22−28. doi: 10.3969/j.issn.1674-7240.2000.z1.004
    肖序常, 王军, 苏犁, 等. 再论西昆仑库地蛇绿岩及其构造意义[J]. 地质通报, 2003, 22(10): 745−750. doi: 10.3969/j.issn.1671-2552.2003.10.001

    XIAO Xuchang, WANG Jun, SU Li, et al. A further discussion of the Kudi ophiolite, West Kunlun and its tectonic significance[J]. Geological Bulletin of China,2003,22(10):745−750. doi: 10.3969/j.issn.1671-2552.2003.10.001
    袁超, 孙敏, 肖文交, 等. 原特提斯的消减极性: 西昆仑128公里岩体的启示[J]. 岩石学报, 2003, 19(3): 339−408.

    YUAN Chao, SUN Min, XIAO Wenjiao, et al. The reduced polarity of Proto-Tethys: The enlightenment of the 128 km rock mass in West Kunlun[J]. Journal of Petrology,2003,19(3):339−408.
    袁四化, 潘桂棠, 王立全, 等. 大陆边缘增生造山作用[J]. 地学前缘, 2009, 16(3): 32−48.

    YUAN Sihua, PAN Guitang, WANG Liquan, et al. Accretionary orogenesis in the active continental margins[J]. Earth Science Frontiers,2009,16(3):32−48.
    张传林, 马华东, 朱炳玉, 等. 西昆喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评, 2019, 65(5): 1077−1102.

    ZHANG Chuanlin, MA Huadong, ZHU Bingyu, et al. Tectonic evolution and metallogenic effect of West Kunkarakorum[J]. Geological Review,2019,65(5):1077−1102.
    张健, 张传林, 李怀坤, 等. 再论塔里木北缘阿克苏蓝片岩的时代和成因环境: 来自锆石U-Pb年龄、Hf同位素的新证据[J]. 岩石学报, 2014, 30(11): 3357−3365.

    ZHANG Jian, ZHANG Chuanlin, LI Huaikun, et al. Revisit to time and tectonic environment of the Aksu blueschist terrane in Northern Tarim, NW China: New evidence from zircon U-Pb age and Hf isotope[J]. Acta Petrologica Sinica,2014,30(11):3357−3365.
    张永旺, 刘汇川, 于志琪, 等. 塔里木克拉通古元古代晚期A型花岗岩成因及对哥伦比亚超大陆演化的指示意义[J]. 岩石学报, 2021, 37(4): 1122−1138. doi: 10.18654/1000-0569/2021.04.10

    ZHANG Yongwang, LIU Huichuan, YU Zhiqi, et al. Petrogenesis of late Paleoproterozoic A type granites in theTarim Craton and implications for the Columbia assembly and break up[J]. Acta Petrologica Sinica,2021,37(4):1122−1138. doi: 10.18654/1000-0569/2021.04.10
    Anderson D L. Komatites and picrites: Evidence that “plume” source is depleted[J]. Earth and Planetary Science Letters,1994,128(3-4):303−311. doi: 10.1016/0012-821X(94)90152-X
    Bogaard P J F, Wörner G. Petrogenesis of Basanitic to Tholeiitic Volcanic Rocks from the Miocene Vogelsberg, Central Germany[J]. Journal of Petrology,2003,44(3):569−602. doi: 10.1093/petrology/44.3.569
    Boynton W. V. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry[J]. Elservier, Amsterdam, 1984: 63-114.
    Condie KC. Plate Tectonics and Crustal Evolution[J]. Oxford Pergamon Press, London, 1989: 476.
    Chen FK, Hegner E., Todt W. Zircon Ages, Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest, Germany: Evidencefora Cambrian Magmatic Arc[J]. International Journal of Earth Sciences,2000,88:791−802. doi: 10.1007/s005310050306
    Chen FK, Siebel W, Satir M, et al. Geochronology of the Karadere Basement(NW Turkey)and Implications for the Geological Evolution of the Istanbul Zone[J]. International Journal of Earth Sciences,2002,91:469−481. doi: 10.1007/s00531-001-0239-6
    Gibbons DA., Mueller D R., Zahirovic S., et al. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys[J]. Gondwana research,2015,28(2):451−492. doi: 10.1016/j.gr.2015.01.001
    Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contribution in arc magmas[J]. Annual Review of Earth and Planetary Sciences,1993,21:175−204. doi: 10.1146/annurev.ea.21.050193.001135
    Hofmann A W, Jochum K P, Seufert M, White W M. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters,1986,79(1-2):33−45. doi: 10.1016/0012-821X(86)90038-5
    Jahn B M, Wu F Y and Chen B. Granitoid soft hecentral Asianorogenic belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences,2000,91:181−193. doi: 10.1017/S0263593300007367
    Jia Ruya, Jiang Yaohui, Liu Zheng, et al. Petrogenesis and tectonic implications of early Silurian high-K calc-alkaline granites and their potassic microgranular enclaves, western Kunlun orogen, NW Tibetan Plateau[J]. International Geology Review,2013,55(8):958−975. doi: 10.1080/00206814.2012.755766
    Jiang YH, Jia RY, Liu Z, et al. Origin of Middle Triassic high-K calc-alkaline granitoids and their potassic microgranular enclaves from the western Kunlun orogen, Northwest China: A record of the closure of Paleo-Tethys[J]. Lithos,2013,156-159:13−30. doi: 10.1016/j.lithos.2012.10.004
    Liao Shiyong, Jiang Yaohui, Jiang Shaoyong, et al. Subducting sediment-derived arc granitoids: evidence from the Datong pluton and its quenched enclaves in the western Kunlun orogen, Northwest China[J]. Mineralogy&Petrology, 2010, 100(1): 55-74.
    McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters,1991,102(3):358−374.
    Saunders AD, Storey M, Kent RW, et al. Consequences of plume-lithosphere interaction[J]. In: Storey B C, Alabaster T, Pankhurst R J (eds). Magmatism and the causes of continental break-up. Geol. Soc. Spec. Pub., London,1992,68:41−60.
    Sun, S. S. McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins[J]. Geological Society of London, London, 1989: 313-345.
    Sklyarov E V, Gladkochub D P, Mazukabzov A M, et al. Neoproterozoic mafic dikeswarms of the Sharyzhalgai metamorphic massif, southern Siberiancraton[J]. Precambrian Research,2003,122(1):359−376.
    Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 57-72.
    Kieffer B, Arndt N, Lapierre H. Fllod and shield basalts from Ethiopia: magmas from the African superswell[J]. Petrol,2004,45(4):793−834. doi: 10.1093/petrology/egg112
    Wang P, Zhao GC, Liu Q, et al. Slab-controlled progressive evolution of the Kudi back-arc ophiolite in response to the rollback of the Proto-Tethys oceanic slab, 、in Western Kunlun, NW Tibetan Plateau[J]. Lithos,2020,105(887):380−381.
    Wang P, Zhao GC, Han YG, et al. Petrogenesis of Ordovician granitoids in Western Kunlun, NW Tibetan Plateau: Insights into the evolution of the Proto-Tethys Ocean[J]. Geological Society of America Bulletin,2021,133(5-6):1071−1089. doi: 10.1130/B35740.1
    Wang ZH. Tectonic evolution of the western Kunlun orogenic belt, western China[J]. Journal of Asian Earth Sciences,2004,24(2):153−161. doi: 10.1016/j.jseaes.2003.10.007
    Wilson M. Igneous petrogenesis[M]. London: Unwin Hyman, 1989: 1−464.
    Xiao W, Han F, Windley BF, Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia[J]. International Geology Review, 2003, 45(4): 303-328.
    Yin A and Harrison T M. Geologic evolution of the Himalyan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28(1):211−280. doi: 10.1146/annurev.earth.28.1.211
    Yin J, Xiao W, Sun M, et al. Petrogenesis of Early Cambrian granitoids in the western Kunlun orogenic belt, Northwest Tibet: Insight into early stage subduction of the Proto-Tethys Ocean[J]. Geological Society of America Bulletin, 2020, 132(9-10): 2221-2240.
    Yuan Chao, Sun Min, Zhou Mei-fu, et al. Tectonic Evolution of the West Kunlun: Geochronologic and Geochemical Constraints from Kudi Granitoids[J]. International Geology Review, 2002, 44(7): 653-669.
    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards & Geoanalytical Research,2004,28(3):353−370.
    Zhang C L, Zou H B, Li H K. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research,2013,23(4):1306−1315. doi: 10.1016/j.gr.2012.05.009
    Zhang Chuan-Lin, Zou Hai-Bo, Ye Xian-Tao, et al. Tectonic evolution of the NE section of the Pamir Plateau: New evidence from field observations and zircon U-Pb geochronology[J]. Tectonophysics,2018,723:27−40. doi: 10.1016/j.tecto.2017.11.036
    Zhang CL, Zou HB, Ye XT, et al. Timing of subduction initiation in the Proto-Tethys Ocean: Evidence from the Cambrian gabbros from the NE Pamir Plateau[J]. Lithos,2018a,314-315:40−51. doi: 10.1016/j.lithos.2018.05.021
    Zhao GC, Sun M, Wilde SA, et al. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton[J]. Gondwana Research,2003,6(3):417−434. doi: 10.1016/S1342-937X(05)70996-5

Catalog

    Article views (10) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return