Citation: | HAN Wei,REN Junfeng,WEI Jianshe,et al. Preliminary Study On the Controlling Effect of Tectono-thermal Evolution on Helium-rich Natural Gas Enrichment in Ordos Basin[J]. Northwestern Geology,xxxx,x(x): x−xx. doi: 10.12401/j.nwg.2025004 |
Among the numerous gas fields in the Ordos Basin, only a few gas fields such as Dongsheng Gas Field have the potential for helium gas resources, indicating that there are certain differences in the enrichment process of natural gas and helium, and temperature is very important for the enrichment of both gases. This article explores the relationship between natural gas accumulation and helium enrichment from the perspective of basin tectonic thermal evolution. By analyzing the helium source minerals and their helium sealing temperatures in the basement of the Ordos Basin, combined with the tectonic and thermal evolution history of the basin, this study analyzes the distribution of hydrocarbon source rocks and helium source minerals, as well as the spatiotemporal characteristics of natural gas generation and helium release, and discusses the enrichment process of natural gas and helium. The results show that the upper Paleozoic hydrocarbon source rocks in the Ordos Basin are mainly distributed and shallowly buried, and the helium source minerals are mainly zircon, monazite and apatite, which are dispersed and deeply buried. The temperature and time coincidence of the gas gas in the source rocks and the helium released by the main helium source minerals are high, and the enrichment process of the two has a spatio-temporal coupling relationship. In addition, due to the large and concentrated amount of natural gas generated and small and dispersed amount of helium released, it is difficult to enrich helium in the primary gas reservoir near the settlement center of the source rock, while the secondary gas reservoir far from the settlement center of the source rock and near the base of the helium source is often conducive to the rich and integrated accumulation of helium gas. In this study, structural thermal evolution is combined with natural gas rich accumulation and helium release, which opens up new ideas and has certain significance for improving the helium resource investigation and evaluation system.
范立勇, 单长安, 李进步, 等. 基于磁力资料的鄂尔多斯盆地氦气分布规律[J]. 天然气地球科学, 2023, 34(10): 1780−1789.
FAN Liyong,SHAN Changan,LI Jinbu,et al. Distribution of helium resources in Ordos Basin based on magnetic data[J]. Natural Gas Geoscience,2023,34(10):1780−1789.
|
何发岐, 王付斌, 王杰, 等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质, 2022, 44(1): 1−10.
HE Faqi,WANG Fubin,WANG Jie,et al. Helium distribution of Dongsheng gas field in Ordos Basin and discovery of a super large helium-rich gas field[J]. Petroleum Geology & Experiment,2022,44(1):1−10.
|
韩伟, 李玉宏, 卢进才, 等. 陕西渭河盆地富氦天然气异常的影响因素[J]. 地质通报, 2014, 33(11): 1836−1841. doi: 10.3969/j.issn.1671-2552.2014.11.022
HAN Wei, LI Yuhong, LU Jincai, et al. The factors responsible for the unusual content of helium-rich natural gas in the Weihe Basin, Shaanxi Province[J]. Geological Bulletin of China,2014,33(11):1836−1841. doi: 10.3969/j.issn.1671-2552.2014.11.022
|
韩伟, 刘文进, 李玉宏, 等. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J]. 天然气地球科学, 2020, 31(3): 385−392.
HAN Wei, LIU Wenjin, LI Yu-hong, et al. Characteristics of rare gas isotopes and main controlling factors of radon enrichment in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience,2020,31(3):385−392.
|
李平, 马向贤, 张明震, 等. 矿物中氦的扩散过程及控制因素研究进展[J]. 天然气地球科学, 2023, 34(4): 697−706.
LI Ping, MA Xiangxian, ZHANG Mingzhen, et al. Research progress on diffusion process and controlling factors of helium in minerals[J]. Natural Gas Geoscience,2023,34(4):697−706.
|
李玉宏, 周俊林, 张文, 等. 渭河盆地氦气成藏条件及资源前景[M]. 北京: 地质出版社, 2018, 1-289.
LI Yuhong, ZHOU Junlin, ZHANG Wen, et al. Helium accumulation conditions and resource prospect in Weihe Basin[M]. Beijing: Geological Publishing House, 2018, 1-289.
|
李玉宏, 李济远, 周俊林, 等. 氦气资源评价相关问题认识与进展[J]. 地球科学与环境学报, 2022, 44(2): 1−11.
LI Yuhong, LI Jiyuan, ZHOU Junlin, et al. Research progress and new views on evaluation of helium resources[J]. Journal of Earth Sciences and Environment,2022,44(2):1−11.
|
李玉宏, 张国伟, 周俊林, 等. 氦气资源调查理论与技术研究现状及建议[J]. 西北地质, 2022, 55(4): 1−10.
LI Yuhong, ZHANG Guowei, ZHOU Junlin, et al. Research Status and Suggestions on Helium Resource Investigation Theory and Technology[J]. Northwestern Geology,2022,55(4):1−10.
|
刘成林, 丁振刚, 范立勇, 等. 鄂尔多斯盆地含氦天然气地球化学特征与富集影响因素[J]. 石油与天然气地质, 2024, 45(2): 384−392. doi: 10.11743/ogg20240206
LIU Chenglin, DING Zhengang, FAN Liyong, et al. Geochemical characteristics and enrichment factors of helium-bearing natural gas in the Ordos Basin[J]. Oil & Gas Geology,2024,45(2):384−392. doi: 10.11743/ogg20240206
|
刘池洋, 王建强, 张东东, 等. 鄂尔多斯盆地油气资源丰富的成因与赋存-成藏特点[J]. 石油与天然气地质, 2021, 42(5): 1011−1029. doi: 10.11743/ogg20210501
LIU Chiyang, WANG Jianqiang, ZHANG Dongdong, et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology,2021,42(5):1011−1029. doi: 10.11743/ogg20210501
|
米敬奎, 肖贤明, 刘德汉, 等. 利用包裹体信息研究鄂尔多斯盆地上古生界深盆气的运移规律[J]. 石油学报, 2003, 24(5): 46−51. doi: 10.3321/j.issn:0253-2697.2003.05.010
MI Jingkui, XIAO Xianming, LIU Dehan, et al. Study on Upper-Paleozoic deep basin gas migration in Ordos using inclusion information[J]. Editorial office of ACTA PETROLEI SINICA,2003,24(5):46−51. doi: 10.3321/j.issn:0253-2697.2003.05.010
|
秦胜飞, 李济远, 梁传国, 等. 中国中西部富氦气藏氦气富集机理——古老地层水脱氦富集[J]. 天然气地球科学, 2022, 33(8): 1203−1217.
QIN Shengfei, LI Jiyuan, LIANG Chuanguo, et al. Helium enrichment mechanism of helium rich gas reservoirs in central and western China: Degassing and accumulation from old formation water[J]. Natural Gas Geoscience,2022,33(8):1203−1217.
|
秦胜飞, 周国晓, 李济远, 等. 氦气与氮气富集耦合作用及其重要意义[J]. 天然气地球科学, 2023, 34(11): 1981−1992.
QIN Shengfei, ZHOU Guoxiao, LI Jiyuan, et al. The coupling effect of helium and nitrogen enrichment and its significance[J]. Natural Gas Geoscience,2023,34(11):1981−1992.
|
任战利, 刘丽, 崔军平, 等. 盆地构造热演化史在油气成藏期次研究中的应用[J]. 石油与天然气地质, 2008, 29(4): 502−506.
REN Zhanli,LIU Li,CUI Junping,et al. Application of tectonic-thermal evolution history to hydrocarbon accumulation timing in sedimentary basins[J]. Oil & Gas Geology,2008,29(4):502−506.
|
任战利, 祁凯, 李进步, 等. 鄂尔多斯盆地热动力演化史及其对油气成藏与富集的控制作用[J]. 石油与天然气地质, 2021, 42(5): 1030−1042. doi: 10.11743/ogg20210502
REN Zhanli, QI Kai, LI Jinbu, et al. Thermodynamic evolution and hydrocarbon accumulation in the Ordos Basin[J]. Oil & Gas Geology,2021,42(5):1030−1042. doi: 10.11743/ogg20210502
|
陶士振, 杨怡青, 高建荣, 等. 鄂尔多斯盆地致密砂岩气及伴生氦气形成演化特征[J]. 天然气地球科学, 2023, 34(4): 551−565.
Shizhen TAO, Yiqing YANG, Jianrong GAO, et al. The formation and evolution characteristics of tight sandstone gas and associated helium in Ordos Basin[J]. Natural Gas Geoscience,2023,34(4):551−565.
|
陶小晚, 李建忠, 赵力彬, 等. 中国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 44(3): 1024−1041.
TAO Xiaowan, LI Jianzhong, ZHAO Libin, et al. Helium resources and discovery of first supergiant helium reserve in China: Hetianhe Gas Field[J]. Earth Science,2019,44(3):1024−1041.
|
王君贤, 李子颖, 贺锋, 等. 鄂尔多斯盆地南部烃源岩分布与铀成矿关系研究[J]. 铀矿地质, 2023, 39(6): 933−949.
WANG Junxian, LI Ziying, HE Feng, et al. Study on the Relationship of Hydrocarbon Source Rock Distribution to Uranium Mineralization in the Southern Ordos Basin[J]. Uranium Geology,2023,39(6):933−949.
|
张乔, 周俊林, 李玉宏, 等. 渭河盆地南缘花岗岩中生氦元素(U、Th)赋存状态及制约因素研究-以华山复式岩体为例[J], 西北地质, 2022, 55(3): 241-256.
ZHANG Qiao, ZHOU Junlin, LI Yuhong, et al. The Occurrence State and Restraint Factors of Helium-produced Elements (U, Th) in the Granites from the Southern Margin of Weihe Basin: Evidences from Huashan Complex[J]. Northwestern Geology, 2022, 55(3): 241-256.
|
张文. 关中和柴北缘地区战略性氦气资源成藏机理研究[D]. 北京, 中国矿业大学(北京), 2019.
ZHANG Wen. Accumulation mechanism of helium, a strategic resource, in Guanzhong and North Qaidam Basin[D]. Beijing, China University of Mining&Technology-Beijing, 2019.
|
张成立, 苟龙龙, 白海峰, 等. 鄂尔多斯地块基底研究新的思考与认识[J]. 岩石学报, 2021, 37(1): 162-184.
ZHANG Chengli,GOU Longlong,BAI Haifeng,et al. New thinking and understanding for the researches on the basement of Ordos Block[J]. Acta Petrologica Sinica,2021. 37(1): 162-184.
|
张厚福, 方朝亮, 高先志, 等. 石油地质学[M]. 石油工业出版社, 1999.
ZHANG Houfu, FANG Chaoliang, GAO Xianzhi, et al. Petroleum geology[M]. Petroleum Industry Press, 1999.
|
邹才能, 陶士振, 侯莲花, 等. 非常规油气地质[M]. 北京: 地质出版社, 2014.
ZOU Caining, TAO Shizheng, HOU Lianhua, et al. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2014.
|
Andrews J N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers[J]. Chemical Geology,1985,49(1-3):339−351. doi: 10.1016/0009-2541(85)90166-4
|
Ballentine C J, Burnard P G. Production, Release and Transport of Noble Gases in the Continental Crust[J]. Reviews in Mineralogy and Geochemistry,2002,47(1):481−538. doi: 10.2138/rmg.2002.47.12
|
Barry P H, Lawson M, Meurer W P, et al. Determining fluid migration and isolation times in multiphase crustal domains using noble gases[J]. Geology,2017,45(9):775−778. doi: 10.1130/G38900.1
|
Brown A A. Formation of High Helium Gases: A Guide for Explorationists[C]. AAPG Conference, 2010: 11-14.
|
Delaporte-Mathurin R, Ialovega M, Hodillee A, et al. Influence of exposure conditions on helium transport and bubble growth in tungsten[J]. Scientific Reports,2011,11(1):14681.
|
Danabalan D, Gluyas J G, Macpherson C G, et al. New High-Grade Helium Discoveries in Tanzania[J]. V. M. Goldschmidt Conference-Program and Abstracts,2016,26:595.
|
Danabalan D. Helium: Exploration Methodology for a Stra-tegic Resource[D]. England Durham, Durham University, 2017.
|
Danabalan D. Gluyas LG、Macpherson C G, et al. The Principles of Helium Exploration[J]. Petroleum Geosci-ence,2022,28(2):1−13.
|
Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology,1973,40(3):259−274.
|
Farley K A. Helium diffusion from apatite: General behaveior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research Solid Earth,2000,105(B2):2903−2914. doi: 10.1029/1999JB900348
|
Gou L L, Zhang C L, Brown M, et al. P-T-t evolution of pelitic gneiss from the basement underlying the northwestern Ordos Basin, North China Craton, and the tectonic implications[J]. Precambrian Research,2016,276:67−84. doi: 10.1016/j.precamres.2016.01.030
|
Halford D T, Karolytė R, Barry P H, et al. High Helium Reservoirs in the Four Corners Area of the Colorado Plateau, USA[J]. Chemical Geology,2022,596:120790. doi: 10.1016/j.chemgeo.2022.120790
|
Mitchell D J, Patrick R C. Temperature dependence of helium release from erbium tritide films[J]. Journal of Vacuum Science & Technology,1981,19(2):236−242.
|
Torgersen T, Clarke W B. Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia[J]. Geochimica et Cosmochimica Acta,1985a,49(5):1211−1218. doi: 10.1016/0016-7037(85)90011-0
|
Torgersen T, Ivey G N. Helium accumulation in groundwater. II: A model for the accumulation of the crustal 4He degassing flux[J]. Geochimica et Cosmochimica Acta,1985b,49(11):2445−2452. doi: 10.1016/0016-7037(85)90244-3
|
Wang W(RZ), Zhao Y, Liu XC, et al. Metamorphism of diverse basement gneisses of the Ordos Basin: Record of multistage Paleoproterozoic constraints on the evolution of the western North orogenesis and China Craton. Precambrian Research[J]. 2019, 328: 48-63.
|
Zhang W, Li Y, Zhao F, et al. Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin, central China[J]. Geochimica et Cosmochimica Acta,2019a,251:229−246.
|
Zhang W, Li Y, Zhao F, et al. Quantifying the helium and hydrocarbon accumulation processes using noble gases in the North Qaidam Basin, China[J]. Chemical Geology,2019b,525:368−379.
|
Zhang Wen, Li Yuhong, Zhao Fenghua, et al. Granite is an Effective Helium Source Rock: Insights from the Helium Generation and Release Characteristics in Granites from the North Qinling Orogen, China[J]. Acta geologica Sinica (Beijing),2020,94(1):114−125. doi: 10.1111/1755-6724.14397
|
Zwahlen C A, Kampman N, Dennis P, et al. Estimating carbon dioxide residence time scales through noble gas and stable isotope diffusion profiles[J]. Geology,2017,45(11):995−998. doi: 10.1130/G39291.1
|