ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LI Yanguang,HUO Jinjing,SUN Guochao. Rock Thin Section Scale In-Situ Apatite U-Pb Dating Technique Discussion: A New Perspective on Ultramafic Rock Geochronology Analysis[J]. Northwestern Geology,2025,58(4):1−10. doi: 10.12401/j.nwg.2025010
Citation: LI Yanguang,HUO Jinjing,SUN Guochao. Rock Thin Section Scale In-Situ Apatite U-Pb Dating Technique Discussion: A New Perspective on Ultramafic Rock Geochronology Analysis[J]. Northwestern Geology,2025,58(4):1−10. doi: 10.12401/j.nwg.2025010

Rock Thin Section Scale In-Situ Apatite U-Pb Dating Technique Discussion: A New Perspective on Ultramafic Rock Geochronology Analysis

More Information
  • Received Date: November 04, 2024
  • Revised Date: January 07, 2025
  • Accepted Date: January 17, 2025
  • Available Online: March 20, 2025
  • Ultramafic rocks, as a major component of mantle rocks, hold significant importance for understanding the Earth's internal structure and dynamic processes. Due to the silicon undersaturation in ultramafic magmas, crystallization of zircon is challenging; instead, apatite, a common accessory mineral in ultramafic rocks, has emerged as a crucial target for geochronological studies owing to its unique crystallochemical characteristics. With advancements in in-situ microanalysis techniques, the U-Pb dating method for apatite has experienced marked improvements, significantly enhancing both precision and reliability. However, conducting in-situ apatite dating analyses on thin sections of ultramafic rocks still presents several challenges, such as the correction of common lead, genetic analysis of the minerals, and contamination control during the preparation of rock thin sections. This paper reviews the current state of geochronological research on ultramafic rocks, summarizes advancements in in-situ dating techniques and apatite U-Pb dating methodologies, discusses the prospects for the application of apatite U-Pb dating in the in-situ dating of ultramafic rocks, and outlines future research directions.

  • 靳梦琪, 李艳广, 王鹏, 等. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究[J]. 岩矿测试, 2020, 39(2): 274−284.

    JIN Mengqi, LI Yanguang, WANG Peng, et al. Element fractionation and correction method for U-Pb dating of titanite by laser ablation-inductively coupled plasms-mass spectrometry[J]. Rock and Mineral Analysis,2020,39(2):274−284.
    李琳琳. 斜锆石、锆石和磷灰石U-Pb年代学在华北克拉通基性岩墙研究中的应用[D]. 北京: 中国地质科学院, 2019.

    LI Linlin. Application of U-Pb geochronology of baddeleyite, zircon, and apatite in the study of mafic dykes in the North China Craton[D]. Beijing: Chinese Academy of Geological Sciences, 2019.
    李献华, 苏犁, 宋彪, 等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 2004, 49(4): 401−402. doi: 10.3321/j.issn:0023-074X.2004.04.018

    LI Xianhua, SU Li, SONG Biao, et al. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin,2004,49(4):401−402. doi: 10.3321/j.issn:0023-074X.2004.04.018
    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb 定年技术相关问题探讨[J]. 2023, 56(4): 274−282.

    LI Yanguang,JIN Mengqi. WANG Shuangshuang,et al. Exploration of Issues Related to the LA-ICP-MS U-Pb Dating Technique[J]. Northwestern Geology,2023,56(4):274−282.
    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS定年方法及应用[J]. 地质学报, 2015, 89(12): 2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    LI Yanguang, WANG Shuangshuang, LIU Minwu, et al. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application[J]. Acta Geologica Sinica,2015,89(12):2400−2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
    许雅雯, 王家松, 郭虎, 等. U-Pb同位素测年新方法-激光烧蚀等离子体质谱法直接测定探针片中锆石和磷灰石年龄[J]. 地质调查与研究, 2015, 38(1): 67−76.

    XU Yawen, WANG Jiasong, GUO Hu, et al. A new method of u-pb isotopic dating: in polished thin section u-pb dating of zircon, apatite using laser ablation-MC-ICP-MS[J]. Geological Survey and Research,2015,38(1):67−76.
    杨岳衡, 孙金凤, 谢烈文, 等. 地质样品Nd同位素激光原位等离子体质谱(LA-MC-ICPMS)测定[J]. 科学通报, 2008, 53(5): 568−576. doi: 10.3321/j.issn:0023-074X.2008.05.012

    YANG Yueheng, SUN Jinfeng, XIE Liewen, et al. In-situ Nd isotopic measurement of natural geological samples by LA-MC-ICP-MS[J]. Chinese Science Bulletin,2008,53(5):568−576. doi: 10.3321/j.issn:0023-074X.2008.05.012
    杨岳衡, 吴福元, 谢烈文, 等. 地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J]. 岩石学报, 2009, 25(12): 3431−3441.

    YANG Yueheng, WU Fuyuan, XIE Liewen, et al. In-situ Sr isotopic measurement of natural geological samples by LA-MC-ICP-MS[J]. Acta Petrologica Sinica,2009,25(12):3431−3441.
    赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753.

    ZHAO Linghao, ZHAN Xiuchun, ZENG Lingsen, et al. Direct Calibration Method for LA-HR-ICP-MS Apatite U-Pb Dating[J]. Rock and Mineral Analysis,2022,41(5):744−753.
    钟福军, 夏菲, 王玲, 等. 诸广中部鹿井铀矿田辉绿岩磷灰石U-Pb年龄、地球化学特征及其与铀成矿关系[J]. 地质学报, 2023, 97(8): 2593−2608.

    ZHONG Fujun, XIA Fei, WANG Ling, et al. Geochronology and geochemistry of dolerite in the Lujing uranium ore field of central Zhuguangshan complex, and its relationshipwith uranium mineralization[J]. Acta Geologica Sinica,2023,97(8):2593−2608.
    周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857−864. doi: 10.3975/cagsb.2012.06.03

    ZHOU Hongying, GENG Jianzhen, CUI Yurong, et al. In Situ U-Pb Dating of Apatite Using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica,2012,33(6):857−864. doi: 10.3975/cagsb.2012.06.03
    周红英, 李怀坤, 张健, 等. 新太古代花岗片麻岩中麻粒岩包体磷灰石U-Pb定年对燕辽裂陷槽中元古代长城群底界年龄的制约[J]. 地质调查与研究, 2020, 43(2): 81−88.

    ZHOU Hongying,LI Huaikun,ZHANG Jian,et al. U-Pb dating of apatite from the granulite xenoliths in the Neoarchaean granitic gneiss: constraints on the base age of the Mesoproterozoic Changchengian Group in the Yanliao Aulacogen,northern North China Craton[J]. Geological Survey and Research,2020,43(2):81−88.
    Amelin Y, Li C, Naldrett A J. Geochronology of the Voisey's Bay intrusion, Labrador, Canada, by precise U–Pb dating of coexisting baddeleyite, zircon, and apatite[J]. Lithos,1999,47(1-2):33−51. doi: 10.1016/S0024-4937(99)00006-7
    Barfod G H, Krogstad E J, Frei R, et al. Lu–Hf and PbSL geochronology of apatites fromProterozoic terranes: a first look at Lu–Hf isotopic closure inmetamorphic apatite[J]. Geochimica Et Cosmochimica Acta,2005,69:1847−1859. doi: 10.1016/j.gca.2004.09.014
    Barnes S J, Maier W D, Ashwal L D. Platinum-group element distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa[J]. Chemical Geology,2004,208(1-4):293−317. doi: 10.1016/j.chemgeo.2004.04.018
    Chamberlain K R, Schmitt A K, Swapp S M, et al. In situ U–Pb SIMS (IN-SIMS) micro-baddeleyite dating of mafic rocks: method with examples[J]. Precambrian Research,2010,183(3):379−387. doi: 10.1016/j.precamres.2010.05.004
    Chen H, Sun X, Li D, et al. In situ apatite U-Pb dating for the ophiolite-hosted Nianzha orogenic gold deposit, Southern Tibet[J]. Ore Geology Reviews,2022,144:104811. doi: 10.1016/j.oregeorev.2022.104811
    Chen H, Wang N, Wu C, et al. Geochemistry, Zircon U-Pb Dating and Hf Isotopic Characteristics of Neoproterozoic Granitoids in the Yaganbuyang Area, Altyn Tagh, NW China[J]. Acta Geologica Sinica (English Edition),2018,92(4):1366−1383. doi: 10.1111/1755-6724.13632
    Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U–Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology,2013,353:151−172. doi: 10.1016/j.chemgeo.2012.04.022
    Chew D M, O’Sullivan G, Caracciolo L, et al. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis[J]. Earth Science Reviews, 2020, 202, 103093.
    Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals,2021,11(10):1095. doi: 10.3390/min11101095
    Chew D M, Spikings R A. Geochronology and thermochronology using apatite: time and temperature, lower crust to surface[J]. Elements,2015,11(3):189−194. doi: 10.2113/gselements.11.3.189
    Chew D M, Sylvester P J, Tubrett M N. U–Pb and Th–Pb dating of apatite by LA-ICP-MS[J]. Chemical Geology,2011,280(1-2):200−216. doi: 10.1016/j.chemgeo.2010.11.010
    Fan Y, Liu S, Feng C, et al. U-Pb geochronology, whole-rock geochemical and Sr-Nd-Pb-Hf isotopic compositions: constraints on the origin and geodynamic setting of Neoproterozoic granitoids from the South Altyn terrane, Tibetan Plateau[J]. Geochemical Journal,2019,53(6):379−406. doi: 10.2343/geochemj.2.0574
    Gehrels G, Yin A, Wang X. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophys Research,2003,108(B9):2423.
    Guo Q, Li Q, Zhu Z, et al. An Acid-Based Method for Highly Effective Baddeleyite Separation from Gram-Sized Mafic Rocks[J]. ACS Omega,2022,7:3634−3638. doi: 10.1021/acsomega.1c06264
    Hamlyn P R, Bonatti E. Petrology of mantle-derived ultramafics from the Owen Fracture Zone, northwest Indian Ocean: implications for the nature of the oceanic upper mantle[J]. Earth and Planetary Science Letters,1980,48(1):65−79. doi: 10.1016/0012-821X(80)90171-5
    Heaman L M, LeCheminant A N. The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: An evaluation of three mineral standards[J]. Chemical Geology,2000,163(1-4):43−62. doi: 10.1016/S0009-2541(99)00133-3
    Herzberg C, Asimow PD, Arndt N, et al. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites[J]. Geochemistry, Geophysics, Geosystems. 2007, 8(2): 1-34.
    Hirschmann M M, Stolper E M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB[J]. Contributions to Mineralogy and Petrology,1996,124:185−208. doi: 10.1007/s004100050184
    Kamenetsky V S, Crawford A J, Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks[J]. Journal of Petrology,2002,42:655−671.
    Lan Z, Zhang G, Cao R, et al. Apatite U-Pb geochronological and geochemical constraints on the Mazhala Au-Sb deposit in South Tibet, China[J]. Ore Geology Reviews,2023,158:169−1368.
    Larsen R B, Grant T B, Sørensen B E, et al. Portrait of a giant deep-seated magmatic conduit system: The Seiland Igneous Province[J]. Lithos,2018,296:600−622.
    Li C, Ripley E M, Maier W D. Olivine-hosted sulfide melt inclusions as an exploration tool for magmatic Ni-Cu-(PGE) deposits: a case study from Jinchuan deposit (China)[J]. Economic Geology,2014,109:2079−2089. doi: 10.2113/econgeo.109.8.2079
    Li Q, Li X, Wu F, et al. In-situ SIMS U–Pb dating of phanerozoic apatite with low U and high common Pb[J]. Gondwana Research,2012,21(4):745−756. doi: 10.1016/j.gr.2011.07.008
    Li Qiuli, Li Xianhua, Li Yu, et al. Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique[J]. Journal of Analytical Atomic Spectrometry,2010,25:1107−1113. doi: 10.1039/b923444f
    Li Y S, Zhang J X, Yu S Y, et al. Origin of Early Paleozoic garnet peridotite and associated garnet pyroxenite in the south AltynTagh, NW China: constraints from geochemistry, SHRIMP U-Pb zircon dating and Hf isotopes[J]. Journal of Asian Earth Sciences,2015,100:60−77. doi: 10.1016/j.jseaes.2015.01.004
    Li Y, Song S, Yang X, et al. Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: implications for Rodinia break-up[J]. International Geology Review,2021,65(7):1000−1016.
    Li Y, Yuan F, Simon M J, et al. Combined garnet, scheelite and apatite U–Pb dating of mineralizing events in the Qiaomaishan Cu–W skarn deposit, eastern China[J]. Geoscience Frontiers,2023,14(1):101459. doi: 10.1016/j.gsf.2022.101459
    Liu L, Wang C, Cao Y T, et al. Geochronology of multi-stage metamorphic events: constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China[J]. Lithos,2012,136:10−26.
    Liu L, Wang C, Chen D L, et al. Petrology and geochronology of HP-UHP rocks from the South Altyn Tagh, northwestern China[J]. Journal of Asian Earth Sciences,2009,35:232−244. doi: 10.1016/j.jseaes.2008.10.007
    Liu L, Zhang A, Chen D, et al. Implications Based on LA-ICP-MS Zircon U-Pb Ages of Eclogite and Its Country Rock from Jianggalesayi Area, Altyn Tagh, China[J]. Earth Science Frontiers,2007,14(1):98−107. doi: 10.1016/S1872-5791(07)60004-9
    Liu M, Su S, Yao Y, et al. Discovery and genesis of two types of olivines and its significance to metallogeny in Jinchuan magmatic copper-nickel (PGE) sulfide deposit[J]. Acta Petrologica Sinica,2020,36(4):1151−1170. doi: 10.18654/1000-0569/2020.04.11
    Liu T T, Song W L, Kynicky J, et al. Automated Quantitative Characterization REE Ore Mineralogy from the Giant Bayan Obo Deposit, Inner Mongolia, China[J]. Minerals,2022,12:426.
    Marfin A E, Radomskaya T A, Ivanov A V, et al. U–Pb dating of apatite, titanite and zircon of the Kingash mafic–ultramafic massif, Kan Terrane, Siberia: from Rodinia break-up to the reunion with the Siberian Craton[J]. Journal of Petrology,2021,62(9):egab049. doi: 10.1093/petrology/egab049
    Margaret L O, Drew A L, Daniel F S, et al. Deformation and metasomatism recorded by single-grain apatite petrochronology[J]. Geology,2022,50(6):697−703. doi: 10.1130/G49809.1
    McDowell F W, McIntosh W C, Farley K A. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard[J]. Chemical Geology,2005,214:249−263. doi: 10.1016/j.chemgeo.2004.10.002
    Monteleone B D, Baldwin S L, Webb L E, et al. Late Miocene–Pliocene eclogite facies metamorphism, D’Entrecasteaux Islands, SE Papua New Guinea[J]. Journal of Metamorphic Geology,2007,25:245−265. doi: 10.1111/j.1525-1314.2006.00685.x
    Moody J B. Serpentinization: a review[J]. Lithos,1976,9(2):125−138. doi: 10.1016/0024-4937(76)90030-X
    Oosthuyzen E J, Burger A J. The suitability of apatite as an age indicator by the uranium-lead isotope method[J]. Earth and Planetary Science Letters,1973,18:29−36. doi: 10.1016/0012-821X(73)90030-7
    O'Sullivan G J, Chew D M, Kenny G, et al. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews,2020b,201:103044. doi: 10.1016/j.earscirev.2019.103044
    O'Sullivan G J, Chew D M, Samson S D. Detecting magma-poor orogens in the detrital record[J]. Geology,2016,44(10):871−874. doi: 10.1130/G38245.1
    O'Sullivan G J, Chew D M. The clastic record of a Wilson Cycle: Evidence from detrital apatite petrochronology of the Grampian-Taconic fore-arc[J]. Earth and Planetary Science Letters,2020a,552:1116588.
    Patrick D. Roycroft, Martine Cuypers. The Etymology of The Mineral Name ‘Apatite’: A Clarification[J]. Irish Journal of Earth Sciences,2015,33:71−75. doi: 10.1353/ijes.2015.0000
    Piccoli P M, Candela P A. Apatite in igneous systems[A]. In: Kohn M L, Rakovan J, Hughes J M (eds). Phosphates, Geochemical, Geobiological and Materials Importance: Reviews in Mineralogy and Geochemistry[M]. Mineralogical Society of America, Chantilly, VA, USA, 2002, 48: 255–292.
    Schoene B, Bowring S A. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard McClure[J]. Contributions to Mineralogy and Petrology, 2006, 151: 615-630.
    Simonetti A, Heaman L M, Chacko T, et al. In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS[J]. International Journal of Mass Spectrometry,2006,253:87−97. doi: 10.1016/j.ijms.2006.03.003
    Söderlund U, Johansson L K H. A simple way to extract baddeleyite (ZrO2)[J]. Geochemistry Geophysics Geosystems,2002,3:1−7.
    Spear F S, Pyle J M. Apatite, monazite, and xenotime in metamorphic rocks[A]. In: Kohn M L, Rakovan J, Hughes J M (eds). Phosphates, Geochemical, Geobiological and Materials Importance: Reviews in Mineralogy and Geochemistry[M]. Mineralogical Society of America, Chantilly, VA, USA, 2002, 48, 293–335.
    Thomas B Grant, Rune B Larsen, Eric L Brown, et al. Mixing of heterogeneous, high-MgO, plume-derived magmas at the base of the crust in the Central Iapetus Magmatic Province (Ma 610-550): Origin of parental magmas to a global LIP event[J]. Lithos, 2020, 364–365, 105535.
    Thompson J M, Goemann K, Belousov I, et al. Assessment of the mineral ilmenite for U–Pb dating by LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,2021,36(6):1244−1260. doi: 10.1039/D1JA00069A
    Thomson S N, Gehrels G E, Ruiz J, et al. Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICP-MS[J]. Geochemistry Geophysics Geosystems,2012,13:Q0AA21.
    Tomkins H S, Williams I S, Ellis D J. In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway[J]. Journal of Metamorphic Geology,2005,23:201−215. doi: 10.1111/j.1525-1314.2005.00572.x
    Wang C, Liu L, Yang W Q, et al. Provenance and ages of the Altyn Complex in Altyn Tagh: implications for the early Neoproterozoic evolution of northwestern China[J]. Precambrian Research,2013,230:193−208. doi: 10.1016/j.precamres.2013.02.003
    Whitehouse M J, Platt J P. Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet[J]. Contributions to Mineralogy and Petrology,2003,145:61−74. doi: 10.1007/s00410-002-0432-z
    Williams I S. U-Th-Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes; McKibben, M. A., Shanks, W. C., III, Ridley, W. I., Eds.; Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1998, 7: 1–35.
    Wolfgang Müller. Strengthening the link between geochronology, textures and petrology[J]. Earth and Planetary Science Letters,2003,206(3-4):237−251. doi: 10.1016/S0012-821X(02)01007-5
    Wu Fuyuan Wu, Yang Yueheng, Xie Liewen, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology[J]. Chemical Geology,2006,234(1-2):1−126. doi: 10.1016/j.chemgeo.2006.04.001
    Wyllie P J. The origin of ultramafic and ultrabasic rocks[J]. Tectonophysics,1969,7(5-6):437−455. doi: 10.1016/0040-1951(69)90015-8
    Yu S Y, Zhang J X, del Real Pablo García. The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibetan Plateau: Constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks[J]. Journal of Asian Earth Sciences,2013,73:372−395. doi: 10.1016/j.jseaes.2013.04.042
    Zhang J X, Mattinson C G, Yu S Y, et al. Combined rutile-zircon thermometry and U-Pb geochronology: new constraints on Early Paleozoic HP/UHT granulite in the South Altyn Tagh, north Tibet, China[J]. Lithos,2014,200-201:241−257. doi: 10.1016/j.lithos.2014.05.006
    Zhang J X, Meng F C, Yang J S. A new HP/LT metamorphic terrane in the northern AltynTagh, western China[J]. International Geology Review,2005,47:371−386. doi: 10.2747/0020-6814.47.4.371
    Zhang J X, Yu S Y, Gong J H, et al. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, the eastern Tarim craton of northwestern China: evidence from zircon U-Pb datings and Hf isotopic analyses[J]. Precambrian Research,2013,226:21−42. doi: 10.1016/j.precamres.2012.11.014
    Zheng K, Wu C, Wei C, et al. Newly discovered Neoproterozoic A‐type granite in the Altun orogenic belt: A record of the initial breakup of Rodinia[J]. Geological Journal,2020,55(9):6013−6028. doi: 10.1002/gj.3759
    Zong K, Liu Y, Gao C, et al. In situ U–Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the ultrahigh-pressure metamorphism of the Sulu terrane, China[J]. Chemical Geology,2010,269(3-4):237−251. doi: 10.1016/j.chemgeo.2009.09.021

Catalog

    Article views (17) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return