ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    Advance Search
    ZHANG Chenbo,HUANG Qi,HAN Xiangyi,et al. Sedimentary Environment and Organic Matter Enrichment Mechanisms of the Dark Mudstone in the Lower Devonian Suotoushan Formation, Yanyuan Basin, Upper Yangtze Region[J]. Northwestern Geology,xxxx,x(x):1−16. doi: 10.12401/j.nwg.2025042
    Citation: ZHANG Chenbo,HUANG Qi,HAN Xiangyi,et al. Sedimentary Environment and Organic Matter Enrichment Mechanisms of the Dark Mudstone in the Lower Devonian Suotoushan Formation, Yanyuan Basin, Upper Yangtze Region[J]. Northwestern Geology,xxxx,x(x):1−16. doi: 10.12401/j.nwg.2025042

    Sedimentary Environment and Organic Matter Enrichment Mechanisms of the Dark Mudstone in the Lower Devonian Suotoushan Formation, Yanyuan Basin, Upper Yangtze Region

    More Information
    • Received Date: October 30, 2024
    • Revised Date: March 23, 2025
    • Accepted Date: March 23, 2025
    • Available Online: April 29, 2025
    • The dark mudstone of the Suotoushan Formation in the Lower Devonian of the Yanyuan Basin represents a new stratigraphic horizon for shale gas exploration in the Upper Yangtze region. Investigating its sedimentary environment and organic matter enrichment mechanisms holds significant implications for unconventional oil and gas exploration along the western margin of the Upper Yangtze Plate. This study reconstructs the paleoclimate, paleoproductivity, paleo-redox conditions, and paleosalinity during the deposition of the Suotoushan Formation dark mudstone through analyses of rock macro/microscopic characteristics, mineral composition, elemental geochemistry, and organic geochemistry, while exploring organic matter enrichment mechanisms. Results indicate that the Suotoushan Formation was deposited in a rimmed platform environment, comprising five sedimentary subfacies: lagoon, reef flat, platform margin, collapsed slope, and basin. The mudstone exhibits favorable shale gas generation potential with an average TOC content of 1.86%, mean vitrinite reflectance (Ro) of 1.15%, dominant Type II1 and II2 organic matter, and high brittleness index averaging 64.41. During deposition, the basin experienced warm-humid paleoclimate, hydrothermal activity, high aquatic productivity, anoxic reducing bottom water, and low salinity conditions. The study concludes that the combined effects of restricted lagoon environment, warm-humid climate, anoxic conditions, low-salinity water, and elevated paleoproductivity collectively facilitated the development of organic-rich mudstone in the Suotoushan Formation.

    • Algeo T J, Kuwahara Kiyoko, Sano Hiroyoshi, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J]. Palaeogeography Palaeoclimatology Palaeoecology, 20111-2): 6583.
      Algeo T J, Maynard JB. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 20043-4): 289318.
      Becker R T, Marshall J E A, Da Silva A C, et al. The devonian period[M]//Geologic time scale 2020. Elsevier, 2020: 733-810.
      Choi J H, Hariya Y. Geochemistry and depositional environment of Mn oxide deposits in the Tokoro Belt, northeastern Hokkaido, Japan[J]. Economic Geology, 1992, 875): 12651274. doi: 10.2113/gsecongeo.87.5.1265
      Curtis J B. Fractured shale-gas systems[J]. AAPG bulletin, 2002, 8611): 19211938.
      Dal C J, Mietto P, Newton R J, et al. Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts[J]. Geology, 2012, 401): 7982. doi: 10.1130/G32473.1
      Demaison G. J. Moore G. T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry, 19801): 931.
      Gallego-Torres D, Martinez-Ruiz F, Paytan A, et al. Pliocene-Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition[J]. Palaeogeography Palaeoclimatology Palaeoecology, 20072-4): 424439.
      Ghadeer, Samer G. Macquaker, Joe H S. Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments[J]. Journal Of The Geological Society, 20115): 11211132.
      Hatch J. R, Leventhal J. S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A.[J]. Chemical Geology, 1992, 991): 6582.
      Jin X C, Shah Subhash N, Roegiers, et al. Fracability evaluation in shale reservoirs - An integrated petrophysics and geomechanics approach[C]. 2014: 153-166.
      Jones B, Manning D. A. C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 19941-4): 111129.
      Katz B J. Controlling Factors on Source Rock Development—A Review of Productivity, Preservation, and Sedimentation Rate[M]. 2005.
      Ketris M P, Yudovich Y E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals[J]. International journal of coal geology, 2009, 782): 135148.
      Kimura H, Watanabe Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 200111): 995998.
      Kuhn G, Diekmann B. Late Quaternary variability of ocean circulation in the southeastern South Atlantic inferred from the terrigenous sediment record of a drift deposit in the southern Cape Basin (ODP Site 1089)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 1823-4): 287303.
      Marchig V, Gundlach H, Möller P, et al. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology, 1982, 503): 241256.
      Rickman R, Mullen M, Petre E, et al. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition?. SPE, 2008: SPE-115258-MS.
      Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin[J]. Chemical Geology, 20031−4): 229273.
      Schoepfer Shane D, Shen Jun, Wei Hengye, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 23-52.
      Stow DAV, Huc A Y, Bertrand P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 20014): 491498.
      Pedersen T. F.; S. E. Calvert. Anoxia vs productivity; what controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG bulletin, 1990, Vol. 74(4): 454-466.
      Taylor S R, Mclennan S M. The Continental Crust: its Composition and Evolution. An evaluation of the geochemical record preserved in sedimentary Rocks[M]. Oxford: lackwell Scientific Publishers, 1985.
      Wang X L, Miao X D. Weathering history indicated by the luminescence emissions in Chinese loess and paleosol[J]. Quaternary Science Reviews, 2006, 2513/14): 17191726.
      Yao C Y, Ma D S, Ding H F, et al. Trace elements and stable isotopic geochemistry of an Early Cambrian chert-phosphorite unit from the lower Yurtus Formation of the Sugetbrak section in the Tarim Basin[J]. Science China Earth Sciences, 2014, 57: 454464.
      Zhang S H, Liu C Y, Liang H, et al. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China[J]. International Journal of Coal Geology, 2018, 185: 4460.
      Zhang X G, Lin C Y, Zahid M A, et al. Paleosalinity and water body type of Eocene Pinghu Formation, Xihu Depression, East China Sea Basin[J]. Journal of Petroleum Science and Engineering, 2017, 469-478.
      蔡媛, 孔祥鑫, 姜在兴, 等. 潜江凹陷古近系盐间地层沉积环境与有机质富集——以潜江组三段下亚段10号韵律为例[J]. 石油学报, 2022, 435): 605616+636. doi: 10.7623/syxb202205003

      Cai Y, Kong X X, Jiang Z X et al. Sedimentary environment and organic matter enrichment of Paleogene inter-salt strata in Qianjiang sag: a case study from 10th rhythmite of the Lower Member 3 of Qianjiang Formation[J]. Acta Petrolei Sinica, 2022, 435): 605616+636. doi: 10.7623/syxb202205003
      曹庆英. 透射光下干酪根显微组分鉴定及类型划分[J]. 石油勘探与开发, 19855): 1423+81-88.

      Cao Q Y. Identification Of Micro components And Types of Kerogen Under Transmitted Light[J]. Petroleum Exploration and Development, 19855): 1423+81-88.
      常晓琳, 黄元耕, 陈中强, 等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报, 2020, 381): 150165.

      Chang X L, Huang Y G, Chen Z Q et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 381): 150165.
      程锦翔, 邓敏, 杨贵来, 等. 四川盐源地区名胜剖面志留系龙马溪组黑色泥页岩地球化学特征及物源构造背景分析[J]. 沉积与特提斯地质, 2024, 444): 840853.

      Cheng J X, Deng M, Yang G L, et al. Analysis of geochemical characteristics and provenance tectonic background of black shale in Silurian Longmaxi Formation of Mingsheng section in Yanyuanarea, Sichuan Province[J]. Sedimentary Geology and Tethyan Geology, 2024, 444): 840853.
      邓敏, 程锦翔, 王正和, 等. 盐源-宁蒗地区早泥盆世古地理特征及油气潜力分析[J]. 沉积与特提斯地质, 20204): 2535.

      Deng M, Cheng J X, Wang Z H, et al. A study on paleogeography of the Early Devonian and potential of hydrocarbon resources in Yanyuan-Ninglang area, southwest of China[J]. Sedimentary Geology and Tethyan Geology, 20204): 2535.
      方立羽. 宁蒗盐源地区云宁地1井泥盆系储层特征研究[D]. 中国地质大学(北京), 2020.

      Fang L Y. Study on Reservoir Characteristics of Devonianof Well 1, Ninglang, Yunnan Province in Ninglang Yanyuan Region[D]. China University of Geosciences(Beijing), 2020.
      胡受权, 郭文平. 云南宁蒗地区菱形构造格局及其联合构造型式[J]. 矿物岩石, 1995, 154): 9399.

      Hu S Q, Guo W P. Rhombohedral Structure Framwork And Its Junction Structure Style In Ninglang Area Of Yunnan[J]. Mineralogy and Petrology, 1995, 154): 9399.
      黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 20052): 163170. doi: 10.3321/j.issn:1005-2321.2005.02.018

      Huang Y J, Wang C S, Wang Y L. Progress in the study of proxies of pale ocean productivity[J]. Earth Science Frontiers, 20052): 163170. doi: 10.3321/j.issn:1005-2321.2005.02.018
      姜在兴, 梁超, 吴靖, 等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报, 2013, 346): 10311039. doi: 10.7623/syxb201306001

      Jiang Z X, Liang C, Wu J, et al. Several issues in sedimentological studies on hydro carbon bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 346): 10311039. doi: 10.7623/syxb201306001
      李浩, 陆建林, 李瑞磊, 等. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J]. 地球科学, 2017, 4210): 17741786.

      Li H, Lu J L, Li R L, et al. Generation Paleoenvironment and Its Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in Changling Depression, South Songliao Basin[J]. Earth Science, 2017, 4210): 17741786.
      李庆辉, 陈勉, 金衍, 等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报, 2012, 318): 16801685.

      Li Q H, Chen M, Jin Y, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 318): 16801685.
      梁超, 籍士超, 操应长, 等. 深水页岩黄铁矿特征、形成及意义[J]. 中国科学: 地球科学, 2024, 54(02): 327-359.

      Liang C, Ji S C, Cao Y C, et al. Characteristics, origins, and significance of pyrites in deep-water shales. Science China EarthSciences, 2024, 54(02): 327-359.
      马玉孝, 刘家铎, 王洪峰, 等. 攀枝花地质[M]. 成都: 四川科学技术出版社, 2001.

      Ma Y X, Liu J D, Wang H F, et al. Geology of the Panzhihua Rigion[M]. Chengdu: Sichuan Science and Technology Press, 2001.
      潘松圻, 邹才能, 李勇, 等. 重大生物事件与化石能源形成演化——兼论地球系统框架下能源学发展[J]. 石油勘探与开发, 2021, 483): 498509. doi: 10.11698/PED.2021.03.06

      Pan S Q, Zou C N, Li Y, et al. Major biological events and fossil energy formation: On the development of energy science under the earth system framework[J]. Petroleum Exploration and Development, 2021, 483): 498509. doi: 10.11698/PED.2021.03.06
      王正和, 邓敏, 程锦翔, 等. 康滇古陆西侧断裂及岩浆活动对油气保存条件的影响: 以盐源盆地为例[J]. 地球科学, 2018, 第43卷(10): 3616-3624. Wang Z, Deng M, Cheng J, et al. Influence of Fault and Magmatism on Oil and Gas Preservation Condition, to the West of Kangdian Ancient Continent: Taking Yanyuan Basin as an Example[J]. Earth Science, 2018, 64(3): 610-622.
      余谦, 程锦翔, 张海全, 等. 盐源地区古生界页岩气地质条件分析[J]. 沉积与特提斯地质, 2020, 403): 118128.

      Yu Q, Cheng J X, Zhang H Q, et al. Analysis of shale gas geological conditions of Paleozoic in Yanyuan area[J]. Sedimentary Geology and Tethyan Geology, 2020, 403): 118128.
      张晨晨, 王玉满, 董大忠, 等. 四川盆地五峰组—龙马溪组页岩脆性评价与“甜点层”预测[J]. 天然气工业, 2016, 369): 5160. doi: 10.3787/j.issn.1000-0976.2016.09.006

      Zhang C C, Wang Y M, Dong D Z, et al. Evaluation of the Wufeng–Longmaxi shale brittleness and prediction of "sweet spot layers" in the Sichuan Basin[J]. Natural Gas Industry, 2016, 369): 5160. doi: 10.3787/j.issn.1000-0976.2016.09.006
      张茜, 王剑, 余谦, 等. 扬子地台西缘盐源盆地下志留统龙马溪组黑色页岩硅质成因及沉积环境[J]. 地质论评, 2018, 643): 610622.

      Zhang Q, Wang J, Yu Q, et al. The Silicon Source and Sedimentary Environment of the Lower SilurianLongmaxi Formation in Yanyuan Basin, Western Edgeof the Yangtze Platform[J]. Geological Review, 2018, 643): 610622.
      张世红, 朱鸿, 孟小红. 扬子地块泥盆纪—石炭纪古地磁新结果及其古地理意义[J]. 地质学报, 2001, 753): 303313. doi: 10.3321/j.issn:0001-5717.2001.03.003

      Zhang S H, Zhu H, Meng X H. New Paleomagnetic Results from the Devonian-Carboniferous Successions in the Southern Yangtze Block and Their Paleogeographic lmplications[J]. Acta Geologica Sinica, 2001, 753): 303313. doi: 10.3321/j.issn:0001-5717.2001.03.003
      张文正, 杨华, 解丽琴, 等. 湖底热水活动及其对优质烃源岩发育的影响—以鄂尔多斯盆地长7烃源岩为例[J]. 石油勘探与开发, 2010, 374): 424429.

      Zhang W Z, Yang H, Xie L Q, et al. Lake-bottom hydrothermal activities and their influences on the high-qualitysource rock development: A case from Chang7source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 374): 424429.
      钟康惠, 刘肇昌, 施央等. 盐源―丽江构造带是新生代陆内造山带[J]. 地质学报, 2004, 781): 3643. doi: 10.3321/j.issn:0001-5717.2004.01.005

      Zhong K H, LIU Z C, SHI Y, et al. Yanyuan-Lijiang Tectonic Zone: A Cenozoic Intracontinental Orogenic Belt[J]. Acta Geologica Sinica, 2004, 781): 3643. doi: 10.3321/j.issn:0001-5717.2004.01.005
      邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 地质出版社, 2013.

      Zou C N, Tao S Z, Hou L H, et al. Unconventional oil and gas geology[M]. Geological Publishing Co, 2013.
    • Related Articles

    Catalog

      Article views (48) PDF downloads (7) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return