Citation: | ZHOU Aorigele, WANG Ying, TANG Juxing, et al. Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits[J]. Northwestern Geology, 2022, 55(3): 286-296. DOI: 10.19751/j.cnki.61-1149/p.2022.03.023 |
董国臣, 莫宣学, 赵志丹, 等. 拉萨北部林周盆地林子宗火山岩层序新议[J]. 地质通报, 2005, 24(6):549-557.
|
DONG Guochen, MO Xuanxue, ZHAO Zhidan, et al. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Lhunzhub basin, northern Lhasa, Tibet, China. Geological Bulletin of China[J], 2005, 24(6):549-557.
|
吕鹏瑞, 姚文光, 张辉善, 等. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 2020, 94(08):2291-2310.
|
LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica. 2020, 94(08):2291-2310.
|
马元, 许志琴, 李广伟, 等. 藏南冈底斯白垩纪弧后盆地的地壳变形及初始高原的形成[J]. 岩石学报, 2017, 33(12):3861-3872.
|
MA Yuan, XU Zhiqin, LI Guangwei, et al. Crustal deformation of the Gangdese Cretaceous back-arc basin and formation of Proto-plateau, South Tibet[J]. Acta Petrologica Sinica, 2017, 33(12):3861-3872.
|
孟元库, 徐志琴, 马士委, 等. 藏南冈底斯地体谢通门-曲水韧性剪切带40Ar/39Ar年代学约束[J]. 地质论评, 2016a, 62(4):795-806.
|
MENG Yuanku, XU Zhiqin, MA Shiwei, et al. The 40Ar/39Ar Geochronological Constraints on the Xaitongmoin-Quxu Ductile Shear Zone in the Gangdese Batholith, Southern Xizang(Tibet)[J]. Geological Review, 2016a, 62(4):795-806.
|
孟元库, 许志琴, 马士委, 等. 藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束[J]. 地球科学, 2016b, 41(7):1081-1098.
|
MENG Yuanku, XU Zhiqin, MA Shiwei, et al. Deformational characteristics and geochronological constraints of Quxu ductile shear zone in Middle Gangdese magmatic belt, South Tibet[J]. Earth Science, 2016b, 41(7):1081-1098.
|
王根厚, 曾庆高, 普布次仁. 西藏谢通门-乌郁斜滑韧性剪切带研究[J]. 西藏地质, 1995, (1):93-98.
|
WANG Genhou, ZENG Qinggao, PUBU Ciren. A study of Xietongmen-Wuyu Oblique-Sliding Ductile Shear Zone in Tibet[J]. Tibet Geology, 1995, (1):93-98.
|
王英, 郑德文, 李又娟, 等. 国际标样Fish Canyon Tuff锆石的(U-Th)/He年龄测定[J]. 地震地质, 2019, 41(5):1302-1315.
|
WANG Ying, ZHENG Dewen, LI Youjuan, et al. (U-TH)/He Dating of International standard Fish Canyon Tuff Zircon[J]. Seismology and Egology, 2019, 41(5):1302-1315.
|
王英, 郑德文, 武颖, 等. 磷灰石单颗粒(U-Th)/He测年实验流程的建立及验证[J]. 地震地质, 2017, 39(06):1143-1157.
|
WANG Ying, ZHENG Dewen, WU Ying, et al. Measurement procedure of single-grain apatite (U-Th)/He dating and its validation by Durango apatite standard[J]. Seismology and Egology, 2017, 39(06):1143-1157.
|
袁万明, 侯增谦, 李胜荣, 等. 西藏甲马多金属矿区热历史的裂变径迹证据[J]. 中国科学:D 辑, 2001a, 31(B12):117-121.
|
YUAN Wanming, HOU Zengqian, LI Shengrong, et al. Fission track evidence for thermal history of the Jiama polymetallic mining area, Tibet[J]. Scientia Sinica Terrae, 2001, 31(B12):117-121.
|
袁万明, 王世成, 李胜荣, 等. 西藏冈底斯带构造活动的裂变径迹证据[J]. 科学通报(中文版), 2001b, 46(20):1739-1742.
|
YUAN Wanming, WANG Shicheng, LI Shengrong, et al. Fission track evidence of tectonic activity in the Gangdise belt, Tibet[J]. Chinese Science Bulletin, 2001b, 46(20):1739-1742.
|
赵珍, 陆露, 吴珍汉, 等. 西藏冈底斯新生代以来的抬升过程——磷灰石裂变径迹热史模拟的证据[J]. 地质通报, 2017, 36(9):1553-1561.
|
ZHAO Zhen, LU Lu, WU Zhenhan, et al. Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apatite fission track[J]. Geological Bulletin of China, 2017, 36(9):1553-1561.
|
Chu Meifei, Chung Sunlin, Song Biao, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9):745-748.
|
Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3-4):173-196.
|
Cooke D R. Porphyry Cu-Au-Mo deposits, FUTORES II Conference-Future Understanding of Tectonics, Ores, Resources, Environment and Sustainability, James Cook University, Townsville, QLD, 2017:25.
|
Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic geology, 2005, 100(5):801-818.
|
Copeland P, Harrison T M, Pan Y, et al. Thermal evolution of the Gangdese batholith, southern Tibet:a history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236.
|
Dai Jingen, Wang Chengshan, Hourigan Jeremy, et al. Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau:Evidence from Apatite and Zircon (U-Th)/He Thermochronology[J]. Journal of Geology, 2013, 121(2):155-172.
|
Farley K A, Wolf R A, Silver L T. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica Et Cosmochimica Acta, 1996, 60(21):4223-4229.
|
Ge Yukui, Li Yalin, Wang Xiaonan, et al. Oligocene-Miocene burial and exhumation of the southernmost Gangdese mountains from sedimentary and thermochronological evidence[J]. Tectonophysics, 2018, 723:68-80.
|
Harrison T M, Yin A, Grove M, et al. The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet[J]. Journal of Geophysical Research-Solid Earth, 2000, 105(B8):19211-19230.
|
Ji Weiqiang, Wu Fuyuan, Liu Chuanzhou, et al. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Science in China Series D-Earth Sciences, 2009, 52(9):1240-1261.
|
Kesler Stephen E, Wilkinson Bruce H. The role of exhumation in the temporal distribution of ore deposits[J]. Economic Geology, 2006, 101(5):919-922.
|
Li Guangwei, Tian Yuntao, Kohn Barry P, et al. Cenozoic low temperature cooling history of the Northern Tethyan Himalaya in Zedang, SE Tibet and its implications[J]. Tectonophysics, 2015a, 643:80-93.
|
Li Guangwei, Kohn Barry, Sandiford Mike, et al. Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet:Insights from low-temperature thermochronology[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(1):101-112.
|
Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen:A review[J]. Earth-Science Reviews, 2015b, 143:36-61.
|
Mo Xuanxue, Niu Yaoling, Dong Guochen, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1-4):49-67.
|
Sillitoe Richard H. Porphyry Copper Systems[J]. Economic Geology, 2010, 105(1):3-41.
|
Tremblay M M, Fox M, Schmidt J L. Erosion in southern Tibet shut down at~10 Ma due to enhanced rock uplift within the Himalaya[J]. Proceedings of the National Academy of Sciences, 2015, 112(39):12030-12035.
|
Wen Daren, Liu Dunyi, Chung Sunlin, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3-4):191-201.
|
Williams H, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4):339-342.
|
Yang Zhiming, Goldfarb Richard, Chang Zhaoshan. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate[J]. Society of Economic Geologists, 2016, 19:279-300.
|
Yanites B J, Kesler S E. A climate signal in exhumation patterns revealed by porphyry copper deposits[J]. Nature Geoscience, 2015, 8(6):462.
|
Yin A, Harrison T M, Ryerson F J, et al. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet[J]. Journal of Geophysical Research, 1994, 99(B9):18175-18201.
|
Yin A, Harrison T M, Murphy M A, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11):1644-1664.
|
Zhao Junxing, Qin Kezhang, Xiao Bo, et al. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet:Constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 2016, 36:390-409.
|
Zhou Aorigele, Dai Jingen, Li Yalin, et al. Differential exhumation histories between Qulong and Xiongcun porphyry copper deposits in the Gangdese copper metallogenic Belt:Insights from low temperature thermochronology[J]. Ore Geology Reviews, 2019, 107:801-819.
|
Zhou Aorigele, Tang Juxing, Zheng Ming. Eocene uplift and exhumation in Gangdese area:Evidence from zircon U-Pb ages and Al-in-biotite geobarometer[J]. China Geology, 2020, 3(4):652-655.
|
LI Yan’e, ZHAO Zhenming, FENG Wei, MA Hongna, WANG Huaqi. 2025: Geological Hazard Failure Mode and Risk Control of Slopes along the Yellow River Highway: Taking the Suide Qingjian Section in Shaanxi Province as an Example. Northwestern Geology, 58(2): 186-196. DOI: 10.12401/j.nwg.2024109 | |
XUE Qiang, DONG Ying, ZHANG Maosheng, LI Lin, GAO Bo, MENG Xiaojie, GUO Xiaopeng. 2025: Discussion on Refined Identification, Verification, Prevention and Control Models for Geo-hazards Risk. Northwestern Geology, 58(2): 66-79. DOI: 10.12401/j.nwg.2024092 | |
SHI Yuanbo, ZHU Xingguo, LU Quanzhong, YANG Lirong, LIU Cong, GONG Fangyuan, YUE Leping. 2023: Drilling Sedimentation and Subsidence of Ground Fissure (f12) in Xi’an, Shaanxi. Northwestern Geology, 56(5): 185-196. DOI: 10.12401/j.nwg.2022046 | |
FENG Wei, TANG Yaming, JIA Jun, MA Hongna, LI Yan’e, HONG Bo, XUE Qiang, TANG Zhuo. 2023: A Method for Optimizing Territorial Space Planning of Mountain Towns Based on Geological Hazard Risk Assessment. Northwestern Geology, 56(3): 232-238. DOI: 10.12401/j.nwg.2023074 | |
MA Haizhen, DUAN Lei, ZHU Shifeng, YANG Gezhi, WANG Wenke, YAN Zicheng, JIN Bowen. 2021: Assessment of the Environmental Risk of Groundwater Source Based on Trapezoidal Fuzzy Number. Northwestern Geology, 54(2): 248-258. DOI: 10.19751/j.cnki.61-1149/p.2021.02.022 | |
ZHANG Maosheng, JIA Jun, WANG Yi, NIU Qian, MAO Yimin, DONG Ying. 2019: Construction of Geological Disaster Prevention and Control System Based on AI. Northwestern Geology, 52(2): 103-116. DOI: 10.19751/j.cnki.61-1149/p.2019.02.011 | |
FENG Li, ZHANG Mao-sheng, ZHANG Cheng-hang, GE Rui-hua, ZHANG Jiang-long. 2014: Risk Assessment of the Heiniwan Landslide in Hongkou County, Sichuan Province. Northwestern Geology, 47(3): 165-176. | |
MIN Ling-yuan. 2007: Study of Expansion-Prevention Test and Mechanism in The Wangzhuang Oilfield. Northwestern Geology, 40(1): 94-103. | |
ZHU Li-feng, LI Yi-zhao, LIU Fang, ZHU Hua. 2005: Features on ground fractures and exploration train of thought in Xi’an. Northwestern Geology, 38(4): 102-107. | |
CHEN Pei-pei, WU Qiang, ZHANG Shou-ren, WEI Ying-chun. 2003: Study of configuration of earth fissure in Yuci, Shanxi. Northwestern Geology, 36(1): 100-104. |
1. |
杜新强,方永军,郭辉,陆向勤. 面向地下水资源可持续开发利用的地下水适宜埋深研究进展. 中国环境科学. 2024(09): 4987-4998 .
![]() | |
2. |
田晶,徐静静. 新疆地区地下水与煤炭资源的绿色矿业开采技术及管理策略研究. 吉林水利. 2024(10): 29-34 .
![]() | |
3. |
王润泽,费敏,梁世川,薛豪威,楼晓. 基于SBAS-InSAR技术监测西安市地表形变特征. 测绘通报. 2023(01): 173-178 .
![]() | |
4. |
来弘鹏,姚毅,高强,康佐. 地铁隧道穿西安地裂缝的研究进展及“先盾后扩”法的应用展望. 现代隧道技术. 2023(01): 23-33+46 .
![]() | |
5. |
李佳琦,徐佳,刘杰,易长荣,顾立军. 天津地面沉降严重区分布特征及变化规律. 中国地质灾害与防治学报. 2023(02): 53-60 .
![]() | |
6. |
黄强兵,彭博,苟玉轩,杨晓强,王立新,贾少春. 西安地铁盾构隧道穿越地裂缝带的适应性与应对措施. 地球科学与环境学报. 2023(03): 445-459 .
![]() | |
7. |
冯旻譞,齐琦,董英,曾磊,张新社,刘文辉,李勇,王涛,张戈. 利用Sentinel-1A数据监测大西安2019~2022年大西安地表形变. 西北地质. 2023(03): 178-185 .
![]() | |
8. |
王帅伟,孙伟超,刘松波,王秀艳,刘长礼,孙琳. 基于“海绵体”原位试验的环境地质适宜性评价及应用——以河南省新乡市为例. 地质与资源. 2023(03): 345-351 .
![]() | |
9. |
史元博,朱兴国,卢全中,杨利荣,刘聪,龚方圆,岳乐平. 西安凹陷f12地裂缝发育区第四系及裂缝沉降特征. 西北地质. 2023(05): 185-196 .
![]() | |
10. |
田鹏刚,牛建辉,杨永林,张德林,张鑫,蒲靖. 西安市典型区地面沉降时空演化特征研究. 测绘科学. 2023(10): 194-205 .
![]() | |
11. |
李承霖,王家鼎,谷天峰. 西北地区高填方地基沉降的预测模型研究及分析. 西北地质. 2022(01): 225-235 .
![]() | |
12. |
孙月敏,杨天亮,卢全中,刘聪,占洁伟. 基于SBAS-InSAR的西安市鱼化寨地区地面沉降与地裂缝时空演变特征研究. 工程地质学报. 2022(02): 553-564 .
![]() | |
13. |
杨驰,陶福平,袁旭东. 陕西省主要盆地区地下水动态特征分析. 西北地质. 2022(03): 345-354 .
![]() | |
14. |
冉培廉,李少达,杨晓霞,戴可人,苟继松. 基于SBAS-InSAR技术的西安市地面沉降监测. 河南理工大学学报(自然科学版). 2021(03): 66-74 .
![]() | |
15. |
耿艺成,周维博,史方方,董艳慧. 西安市平原区地下水污染风险研究. 环境工程. 2020(05): 215-222 .
![]() | |
16. |
王浩,段磊,王文科. 秦岭北麓地下水位动态特征与影响因素. 西北地质. 2020(02): 280-288 .
![]() |