ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
ZHOU Aorigele, WANG Ying, TANG Juxing, et al. Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits[J]. Northwestern Geology, 2022, 55(3): 286-296. DOI: 10.19751/j.cnki.61-1149/p.2022.03.023
Citation: ZHOU Aorigele, WANG Ying, TANG Juxing, et al. Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits[J]. Northwestern Geology, 2022, 55(3): 286-296. DOI: 10.19751/j.cnki.61-1149/p.2022.03.023

Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits

More Information
  • Received Date: December 12, 2021
  • Revised Date: April 24, 2022
  • Available Online: August 25, 2022
  • Gangdese Oligocene-Miocene porphyry copper belt is the important component of Tethys metallogenic domain, where numerous giant and large porphyry-skarn Cu-Mo-Au deposits have been discovered. However, the Tibetan Plateau that hosts this copper belt has suffered intense and rapid uplifting and erosion since Oligocene. How these Oligocene-Miocene deposits preserved in that environment suffering rapid uplifting and erosion remains as mystery and how the temporal and spatial distribution of erosion dominate the Oligocene-Miocene deposits in the belt remains unsettled. Basing on the zircon and apatite (U-Th)/He dating on the vertical section inner Gangdese arc 40km north of Zedong area, the author discovered an early Miocene (17.3~15.1 Ma) intense and rapid erosion event in the Gangdese porphyry Cu belt, during which the average erosion rate was >1.82 km/Ma, the erosion amount was 4 km. And then the erosion rate decreased to 0.14~0.19 km/Ma with the erosion amount from 15.1 Ma to present of ~2.5 km. Integrating the previous thermo-chronological data, the author reveals that the early Miocene intense erosion zone in the Gangdese porphyry Cu belt was E-W trending and controlled by the southward thrusting of Xietongmen-Oiga shear zone. Even though the contemporaneous erosional event was also developed on the southern and northern sides, the intensities were significantly lower than the shear zone area, indicating that the uplifting and erosion in the plateau has varied temporally and spatially since Miocene. Besides, the Oligocene and Miocene porphyry deposits are distributed in the weak erosion zones on the southern and northern sides of the early Miocene E-W trending intense erosional belt respectively, indicating that the differential erosion is one of the restrictive factors for the temporal and spatial distribution of Oligocene-Miocene deposits in the belt.
  • 董国臣, 莫宣学, 赵志丹, 等. 拉萨北部林周盆地林子宗火山岩层序新议[J]. 地质通报, 2005, 24(6):549-557.
    DONG Guochen, MO Xuanxue, ZHAO Zhidan, et al. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Lhunzhub basin, northern Lhasa, Tibet, China. Geological Bulletin of China[J], 2005, 24(6):549-557.
    吕鹏瑞, 姚文光, 张辉善, 等. 特提斯成矿域中新世斑岩铜矿岩石成因、源区、构造演化及其成矿作用过程[J]. 地质学报, 2020, 94(08):2291-2310.
    LÜ Pengrui, YAO Wenguang, ZHANG Huishan, et al. Petrogenesis, source, tectonic evolution and mineralization process of the Miocene porphyry Cu deposits in the Tethyan metallogenic domain[J]. Acta Geologica Sinica. 2020, 94(08):2291-2310.
    马元, 许志琴, 李广伟, 等. 藏南冈底斯白垩纪弧后盆地的地壳变形及初始高原的形成[J]. 岩石学报, 2017, 33(12):3861-3872.
    MA Yuan, XU Zhiqin, LI Guangwei, et al. Crustal deformation of the Gangdese Cretaceous back-arc basin and formation of Proto-plateau, South Tibet[J]. Acta Petrologica Sinica, 2017, 33(12):3861-3872.
    孟元库, 徐志琴, 马士委, 等. 藏南冈底斯地体谢通门-曲水韧性剪切带40Ar/39Ar年代学约束[J]. 地质论评, 2016a, 62(4):795-806.
    MENG Yuanku, XU Zhiqin, MA Shiwei, et al. The 40Ar/39Ar Geochronological Constraints on the Xaitongmoin-Quxu Ductile Shear Zone in the Gangdese Batholith, Southern Xizang(Tibet)[J]. Geological Review, 2016a, 62(4):795-806.
    孟元库, 许志琴, 马士委, 等. 藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束[J]. 地球科学, 2016b, 41(7):1081-1098.
    MENG Yuanku, XU Zhiqin, MA Shiwei, et al. Deformational characteristics and geochronological constraints of Quxu ductile shear zone in Middle Gangdese magmatic belt, South Tibet[J]. Earth Science, 2016b, 41(7):1081-1098.
    王根厚, 曾庆高, 普布次仁. 西藏谢通门-乌郁斜滑韧性剪切带研究[J]. 西藏地质, 1995, (1):93-98.
    WANG Genhou, ZENG Qinggao, PUBU Ciren. A study of Xietongmen-Wuyu Oblique-Sliding Ductile Shear Zone in Tibet[J]. Tibet Geology, 1995, (1):93-98.
    王英, 郑德文, 李又娟, 等. 国际标样Fish Canyon Tuff锆石的(U-Th)/He年龄测定[J]. 地震地质, 2019, 41(5):1302-1315.
    WANG Ying, ZHENG Dewen, LI Youjuan, et al. (U-TH)/He Dating of International standard Fish Canyon Tuff Zircon[J]. Seismology and Egology, 2019, 41(5):1302-1315.
    王英, 郑德文, 武颖, 等. 磷灰石单颗粒(U-Th)/He测年实验流程的建立及验证[J]. 地震地质, 2017, 39(06):1143-1157.
    WANG Ying, ZHENG Dewen, WU Ying, et al. Measurement procedure of single-grain apatite (U-Th)/He dating and its validation by Durango apatite standard[J]. Seismology and Egology, 2017, 39(06):1143-1157.
    袁万明, 侯增谦, 李胜荣, 等. 西藏甲马多金属矿区热历史的裂变径迹证据[J]. 中国科学:D 辑, 2001a, 31(B12):117-121.
    YUAN Wanming, HOU Zengqian, LI Shengrong, et al. Fission track evidence for thermal history of the Jiama polymetallic mining area, Tibet[J]. Scientia Sinica Terrae, 2001, 31(B12):117-121.
    袁万明, 王世成, 李胜荣, 等. 西藏冈底斯带构造活动的裂变径迹证据[J]. 科学通报(中文版), 2001b, 46(20):1739-1742.
    YUAN Wanming, WANG Shicheng, LI Shengrong, et al. Fission track evidence of tectonic activity in the Gangdise belt, Tibet[J]. Chinese Science Bulletin, 2001b, 46(20):1739-1742.
    赵珍, 陆露, 吴珍汉, 等. 西藏冈底斯新生代以来的抬升过程——磷灰石裂变径迹热史模拟的证据[J]. 地质通报, 2017, 36(9):1553-1561.
    ZHAO Zhen, LU Lu, WU Zhenhan, et al. Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apatite fission track[J]. Geological Bulletin of China, 2017, 36(9):1553-1561.
    Chu Meifei, Chung Sunlin, Song Biao, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9):745-748.
    Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68(3-4):173-196.
    Cooke D R. Porphyry Cu-Au-Mo deposits, FUTORES II Conference-Future Understanding of Tectonics, Ores, Resources, Environment and Sustainability, James Cook University, Townsville, QLD, 2017:25.
    Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:characteristics, distribution, and tectonic controls[J]. Economic geology, 2005, 100(5):801-818.
    Copeland P, Harrison T M, Pan Y, et al. Thermal evolution of the Gangdese batholith, southern Tibet:a history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236.
    Dai Jingen, Wang Chengshan, Hourigan Jeremy, et al. Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau:Evidence from Apatite and Zircon (U-Th)/He Thermochronology[J]. Journal of Geology, 2013, 121(2):155-172.
    Farley K A, Wolf R A, Silver L T. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica Et Cosmochimica Acta, 1996, 60(21):4223-4229.
    Ge Yukui, Li Yalin, Wang Xiaonan, et al. Oligocene-Miocene burial and exhumation of the southernmost Gangdese mountains from sedimentary and thermochronological evidence[J]. Tectonophysics, 2018, 723:68-80.
    Harrison T M, Yin A, Grove M, et al. The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet[J]. Journal of Geophysical Research-Solid Earth, 2000, 105(B8):19211-19230.
    Ji Weiqiang, Wu Fuyuan, Liu Chuanzhou, et al. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Science in China Series D-Earth Sciences, 2009, 52(9):1240-1261.
    Kesler Stephen E, Wilkinson Bruce H. The role of exhumation in the temporal distribution of ore deposits[J]. Economic Geology, 2006, 101(5):919-922.
    Li Guangwei, Tian Yuntao, Kohn Barry P, et al. Cenozoic low temperature cooling history of the Northern Tethyan Himalaya in Zedang, SE Tibet and its implications[J]. Tectonophysics, 2015a, 643:80-93.
    Li Guangwei, Kohn Barry, Sandiford Mike, et al. Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet:Insights from low-temperature thermochronology[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(1):101-112.
    Li Y L, Wang C S, Dai J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen:A review[J]. Earth-Science Reviews, 2015b, 143:36-61.
    Mo Xuanxue, Niu Yaoling, Dong Guochen, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250(1-4):49-67.
    Sillitoe Richard H. Porphyry Copper Systems[J]. Economic Geology, 2010, 105(1):3-41.
    Tremblay M M, Fox M, Schmidt J L. Erosion in southern Tibet shut down at~10 Ma due to enhanced rock uplift within the Himalaya[J]. Proceedings of the National Academy of Sciences, 2015, 112(39):12030-12035.
    Wen Daren, Liu Dunyi, Chung Sunlin, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3-4):191-201.
    Williams H, Turner S, Kelley S, et al. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisional volcanism[J]. Geology, 2001, 29(4):339-342.
    Yang Zhiming, Goldfarb Richard, Chang Zhaoshan. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate[J]. Society of Economic Geologists, 2016, 19:279-300.
    Yanites B J, Kesler S E. A climate signal in exhumation patterns revealed by porphyry copper deposits[J]. Nature Geoscience, 2015, 8(6):462.
    Yin A, Harrison T M, Ryerson F J, et al. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet[J]. Journal of Geophysical Research, 1994, 99(B9):18175-18201.
    Yin A, Harrison T M, Murphy M A, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11):1644-1664.
    Zhao Junxing, Qin Kezhang, Xiao Bo, et al. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet:Constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 2016, 36:390-409.
    Zhou Aorigele, Dai Jingen, Li Yalin, et al. Differential exhumation histories between Qulong and Xiongcun porphyry copper deposits in the Gangdese copper metallogenic Belt:Insights from low temperature thermochronology[J]. Ore Geology Reviews, 2019, 107:801-819.
    Zhou Aorigele, Tang Juxing, Zheng Ming. Eocene uplift and exhumation in Gangdese area:Evidence from zircon U-Pb ages and Al-in-biotite geobarometer[J]. China Geology, 2020, 3(4):652-655.
  • Related Articles

  • Cited by

    Periodical cited type(16)

    1. 杜新强,方永军,郭辉,陆向勤. 面向地下水资源可持续开发利用的地下水适宜埋深研究进展. 中国环境科学. 2024(09): 4987-4998 .
    2. 田晶,徐静静. 新疆地区地下水与煤炭资源的绿色矿业开采技术及管理策略研究. 吉林水利. 2024(10): 29-34 .
    3. 王润泽,费敏,梁世川,薛豪威,楼晓. 基于SBAS-InSAR技术监测西安市地表形变特征. 测绘通报. 2023(01): 173-178 .
    4. 来弘鹏,姚毅,高强,康佐. 地铁隧道穿西安地裂缝的研究进展及“先盾后扩”法的应用展望. 现代隧道技术. 2023(01): 23-33+46 .
    5. 李佳琦,徐佳,刘杰,易长荣,顾立军. 天津地面沉降严重区分布特征及变化规律. 中国地质灾害与防治学报. 2023(02): 53-60 .
    6. 黄强兵,彭博,苟玉轩,杨晓强,王立新,贾少春. 西安地铁盾构隧道穿越地裂缝带的适应性与应对措施. 地球科学与环境学报. 2023(03): 445-459 .
    7. 冯旻譞,齐琦,董英,曾磊,张新社,刘文辉,李勇,王涛,张戈. 利用Sentinel-1A数据监测大西安2019~2022年大西安地表形变. 西北地质. 2023(03): 178-185 . 本站查看
    8. 王帅伟,孙伟超,刘松波,王秀艳,刘长礼,孙琳. 基于“海绵体”原位试验的环境地质适宜性评价及应用——以河南省新乡市为例. 地质与资源. 2023(03): 345-351 .
    9. 史元博,朱兴国,卢全中,杨利荣,刘聪,龚方圆,岳乐平. 西安凹陷f12地裂缝发育区第四系及裂缝沉降特征. 西北地质. 2023(05): 185-196 . 本站查看
    10. 田鹏刚,牛建辉,杨永林,张德林,张鑫,蒲靖. 西安市典型区地面沉降时空演化特征研究. 测绘科学. 2023(10): 194-205 .
    11. 李承霖,王家鼎,谷天峰. 西北地区高填方地基沉降的预测模型研究及分析. 西北地质. 2022(01): 225-235 . 本站查看
    12. 孙月敏,杨天亮,卢全中,刘聪,占洁伟. 基于SBAS-InSAR的西安市鱼化寨地区地面沉降与地裂缝时空演变特征研究. 工程地质学报. 2022(02): 553-564 .
    13. 杨驰,陶福平,袁旭东. 陕西省主要盆地区地下水动态特征分析. 西北地质. 2022(03): 345-354 . 本站查看
    14. 冉培廉,李少达,杨晓霞,戴可人,苟继松. 基于SBAS-InSAR技术的西安市地面沉降监测. 河南理工大学学报(自然科学版). 2021(03): 66-74 .
    15. 耿艺成,周维博,史方方,董艳慧. 西安市平原区地下水污染风险研究. 环境工程. 2020(05): 215-222 .
    16. 王浩,段磊,王文科. 秦岭北麓地下水位动态特征与影响因素. 西北地质. 2020(02): 280-288 . 本站查看

    Other cited types(5)

Catalog

    Article views (52) PDF downloads (33) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return