ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
HAN Baohua, HU Yonghao, DUAN Xingxing, et al. Accumulation Status of Heavy Metals in Northwest China and Analysis of Causes in Typical Areas[J]. Northwestern Geology, 2022, 55(3): 318-325. DOI: 10.19751/j.cnki.61-1149/p.2022.03.026
Citation: HAN Baohua, HU Yonghao, DUAN Xingxing, et al. Accumulation Status of Heavy Metals in Northwest China and Analysis of Causes in Typical Areas[J]. Northwestern Geology, 2022, 55(3): 318-325. DOI: 10.19751/j.cnki.61-1149/p.2022.03.026

Accumulation Status of Heavy Metals in Northwest China and Analysis of Causes in Typical Areas

More Information
  • Received Date: March 11, 2022
  • Revised Date: May 08, 2022
  • Available Online: August 25, 2022
  • Since 2004, a total of 290 700 km2 of 1:250 000 land quality geochemical survey has been completed in Northwest China. The contents of eight heavy metals elements such as cadmium, mercury, arsenic, lead, chromium, copper, nickel and zinc in 66006 topsoils have been obtained by X-ray fluorescence spectrometry (XRF), atomic fluorescence spectrometry (AFS) and inductively coupled plasma mass spectrometry (ICP-MS/AES). The content and accumulation of heavy metals in topsoil in Northwest China were analyzed by using the methods of Geo-accumulation index, single factor index and Nemerow multi-factor index. On this basis, the causes of heavy metal accumulation in typical areas such as Baiyin and Laji mountain are discussed. The results show that:① the single pollution indexes of cadmium, mercury, arsenic, lead, chromium, copper, nickel and zinc in the soil are more than 99.26%, indicating that the soil in Northwest China is not polluted by heavy metals and they are as a whole in good condition. ② The sites above the screening value of soil heavy metals in Northwest China are up to 52.7% and dominated by geological accumulation, which only four sites reach the control value. It shows that, the content of heavy metals in soil is very difficult to reach the control value under natural conditions and pose low-risk threat to ecosystem health. The sites above the screening value caused by human factors are mainly distributed in Baiyin, Tongguan, Xi'an and other areas, and the points greater than the control value are concentrated in Baiyin and Tongguan. ③ It is recommended to carry out in-depth research, especially the bioavailability of soil heavy metals in the arid area of Northwest China, so as to further optimize the control value and screening value of heavy metals under different backgrounds.
  • 陈凤, 董泽琴, 王程程, 等. 锌冶炼区耕地土壤和农作物重金属污染状况及风险评价[J]. 环境科学, 2017, 38(10):4360-4369.
    CHEN Feng, DONG Zeqin, WANG Chengcheng, et al. Heavy metal contamination of soils and crops near a zinc smelter[J]. Environmental Science, 2017, 38(10):4360-4369.
    郭华明, 杨素珍, 沈照理. 富砷地下水研究进展[J].地球科学进展, 2007(11):1109-1117.
    GUO Huaming, YANG Suzhen, SHEN Zhaoli. High arsenic groundwater in the world:overview and research perspectives[J]. Advances in Earth Science, 2007(11):1109-1117.
    胡春华, 蒋建华, 周文斌. 环鄱阳湖区农家菜地土壤重金属风险评价及来源分析[J]. 地理科学, 2012, 32(06):771-776.
    HU Chunhua, JIANG Jianhua, ZHOU Wenbin. Risk evaluation and sources analysis of heavy metals in vegetable field soil of rural area around poyang lake[J]. Scientia Geographica Sinica, 2012, 32(06):771-776.
    黄玉春. 白银厂及其小外围块状硫化物矿床产出特征[J].西北地质, 1991(03):33-35.
    黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J].农业环境科学学报, 2013(3):409-417.
    HUANG Yizong, HAO Xiaowei, LEI Ming, et al. The remediation technology and remediation practice of heavy metals-contaminated soil[J]. Journal of Agro-Environment Science, 2013(3):409-417.
    梁学峰, 韩君, 徐应明, 等.海泡石及其复配原位修复镉污染稻田[J].环境工程学报, 2015, 9(9):4571-4577.
    LIANG Xuefeng, HAN Jun, XU Yingming, et al. In-situ remediation of cd polluted paddy soil using sepiolite and combined amendments[J]. Chinese Journal of Environmental Engineering, 2015, 9(9):4571-4577.
    刘燕玲, 刘树庆, 薛占军, 等.保定市郊污灌区土壤重金属潜在生态风险评价[J].安徽农业科学, 2011, 39(17):10330-10332.
    LIU Yanling, LIU Shuqing, XUE Zhanjun, et al. Assessment of potential ecological risk of soil heavy metals in sewage irrigated area of baoding suburban[J]. Journal of Anhui Agricultural Sciences, 2011, 39(17):10330-10332.
    刘瑞平, 徐友宁, 张江华, 等.含重金属的尾矿渣场复垦还田种植农作物的安全技术[J].西北地质, 2019, 52(02):236-246.
    LIU Ruiping, XU Youning, ZHANG Jianghua, et al. Safe technology of crops in reclaimed farm land of heavy metals tail slag field[J]. Northwestern Geology, 2019, 52(02):236-246.
    张江华, 徐友宁, 陈华清, 等.小秦岭金矿区土壤-小麦重金属累积效应对比研究[J].西北地质, 2020, 53(03):284-294.
    ZHANG Jianghua, XU Youning, CHEN Huaqing, et al. Comparative study of the accumulated effect of heavy metals on soil and wheat in xiaoqinling gold mining area[J]. Northwestern Geology, 2020, 53(03):284-294.
    郑国璋. 关中娄土剖面中重金属元素的垂直分布规律研究[J].地球学报, 2008, 29(1):109-115.
    ZHENG Guozhang. The vertical distribution regularity of heavy metal elements in guanzhong tier soil profile[J]. Acta Geoscientica Sinica, 2008, 29(1):109-115.
    郑武. 广西桂东北地区农业土壤环境若干重金属元素背景值的调查[J].农村生态环境, 1993, (4):39-42, 63-64.
    ZHENG Wu. Study on background values of some heavy metal in agricultural soils of northeastguangxi province[J]. Rural Eco-environment, 1993, (4):39-42, 63-64.
    周启星. 老工矿区污染生态问题与今后研究展望[J]. 应用生态学报, 2005, 16(6):1146-1150.
    ZHOU Qixing. Pollution-ecological problems of old industrial and mining areas and future research prospects[J]. Chinese Journal of Applied Ecology, 2005, 16(6):1146-1150.
    Boyle R W, Jonasson I R. The geochemistry of arsenic and its use as an indicator element in geochemical prospecting[J]. 1973, 2(3):251-296.
    Deschamps F, Guillot S, Godard M, et al. In situ characterization of serpentinites from forearc mantle wedges:Timing of serpentinization and behavior of fluid-mobile elements in subduction zones[J]. Chemical Geology, 2010, 269(3-4):262-277.
    Hattori K H, Guillot S. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge[J]. Geology, 2003, 31(6):525-528.
    Hattori K, Takahashi Y, Guillot S, et al. Occurrence ofarsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study[J]. Geochimica et Cosmochimica Acta:Journal of the Geochemical Society and the Meteoritical Society, 2005, 69(23):5585-5596.
    Kifayatullah Khan, Yonglong Lu, Hizbullah Khan, et al. Heavy metals in agricultural soils and crops and their health risks in swat district, northern pakistan[J]. Food and Chemical Toxicology, 2013, 58:449-458.
    Kulkarni Harshad V, Mladenov N, McKnight M D, et al. Dissolved fulvic acids from ahigh arsenic aquifer shuttle electrons to enhance microbial iron reduction[J]. The Science of the Total Environment, 2018, 615:1390-1395.
    Liu Dexin et al. Heavy metal pollution in urban soil from 1994 to 2012 in kaifeng city, China[J]. Water, Air, & Soil Pollution, 2016, 227(5):1-10.
    P L Smedley, D G Kinniburgh. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5):517-568.
    Xiao Qing, Zong Yutong, Lu Shenggao. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China[J]. Ecotoxicology and Environmental Safety, 2015, 120:377-385.
  • Related Articles

  • Cited by

    Periodical cited type(13)

    1. 吕振虎,张传新,陈小璐,杨刚,程福山,佟亮,陶先高. 砂砾岩尺寸及密度对压裂缝网扩展的影响. 断块油气田. 2024(02): 337-344 .
    2. 王蓓,胡艺潇,周伟,周浩,寇根,刘赛,许宁,祝鹏. 玛西斜坡百口泉组致密砂砾岩储层速敏特征及主控因素. 中国石油大学学报(自然科学版). 2024(04): 141-148 .
    3. 王波,郭强,王春伟,侯瑞卿,孙鑫,郭涛,陈伟. 基于低场核磁共振的致密储层孔隙结构特征及流体可动性研究:以敦煌盆地五墩凹陷侏罗系为例. 西北地质. 2024(05): 156-165 . 本站查看
    4. 唐勇,袁云峰,李辉,王亚飞,吕正祥,卿元华,李树博,陈洪,秦志军,王秋玉,谢知益. 准噶尔盆地阜康凹陷二叠系上乌尔禾组砂砾岩储层特征及发育模式. 石油实验地质. 2024(05): 965-978 .
    5. 吕敏,刘江斌,王茜,吴小斌,余皓天,崔宏俊,魏灿灿. 鄂尔多斯盆地延长东区块本溪组砂砾岩储层孔隙及可动流体差异赋存特征. 地质与勘探. 2023(02): 433-442 .
    6. 贾春明,潘拓,余海涛,岳喜伟,张洁,况昊,于景维. 准噶尔盆地沙湾凹陷风城组储层特征及物性控制因素分析. 西北地质. 2023(04): 49-61 . 本站查看
    7. 郭文建,姜颜良,卞保力,袁波,张学才,吴孔友,孙文洁,李天然. 准噶尔盆地南缘中段山前复杂构造变形特征及形成演化. 西北地质. 2023(04): 62-74 . 本站查看
    8. 孙灵辉,萧汉敏,谭龙,李博文,孙东盟,王鹏威. 致密砂砾岩储层孔隙结构对比及差异机制研究. 地质学报. 2022(06): 2155-2172 .
    9. 吴海光,康逊,秦明阳,连丽霞,李际,曹剑. 准噶尔盆地玛湖凹陷百口泉组砂砾岩非均质储层孔隙结构特征与成因. 中南大学学报(自然科学版). 2022(09): 3337-3353 .
    10. 魏云,沈秀伦,周伟,娄清香,蒋官澄,杨丽丽,张远凯. 准噶尔盆地砂砾岩储层压裂液损害及保护措施. 钻井液与完井液. 2022(04): 508-515 .
    11. 程宏杰,陈玉琨,宋平,李洲. 致密砂砾岩油藏CO_2驱传质规律研究. 应用化工. 2022(S1): 106-109 .
    12. 王松,邓宽海,于会永,朱建新,田刚,林元华,唐伟,郭长永. 玛湖凹陷百口泉组砾岩储层泡酸后岩石损伤及压裂泵压下降机理. 科学技术与工程. 2021(21): 8841-8850 .
    13. 施雷庭,张玉龙,叶仲斌,张景,王英伟,王睿麒,吴思彤. 玛湖砂砾岩致密油藏水平井CO_2吞吐现场试验效果分析. 油气藏评价与开发. 2021(06): 871-877+883 .

    Other cited types(4)

Catalog

    Article views (77) PDF downloads (42) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return