ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
CHEN Jiping, LUO Ting, WANG Hui, et al. Zircon Hf Isotope Characteristics and Source of Mafic-ultramafic Intrusions in Huangshan Region, Xinjiang[J]. Northwestern Geology, 2016, 49(4): 51-61.
Citation: CHEN Jiping, LUO Ting, WANG Hui, et al. Zircon Hf Isotope Characteristics and Source of Mafic-ultramafic Intrusions in Huangshan Region, Xinjiang[J]. Northwestern Geology, 2016, 49(4): 51-61.

Zircon Hf Isotope Characteristics and Source of Mafic-ultramafic Intrusions in Huangshan Region, Xinjiang

More Information
  • Received Date: March 01, 2016
  • Revised Date: May 02, 2016
  • Available Online: July 28, 2022
  • Published Date: December 04, 2016
  • Huangshandong, Xiangshan and Tudun plutons are multiple-phase intrusive complexs, which show clear intrusive contact boundaries with wall rock. These intrusions are mainly composed of peridotite and gabbro. Peridotite has orthopyroxene or plagioclase, while clinopyroxene is augite or diopside. The Huangshandong, Xiangshan and Tudun plutons are mainly tholeiitic in composition, and some of them show calc-alkaline and alkaline characteristics. Chondrite-normalized rare earth element patterns show flat feature or slight enrichment in LREE. Zircon Hf isotopic compositions indicate that the Huangshandong, Xiangshan and Tudun intrusive complexes are derived from the depleted mantle source.Huangshandong, Xiangshan and Tudun plutons are not the remnants of subducted oceanic crust or Alaska-type rocks, but they are formed by the underplating of depleted mantle source.
  • 白云来. 新疆哈密黄山-镜儿泉镍铜成矿系统的地质构造背景[J]. 甘肃地质学报, 2000, 9(2): 1-7.
    BAI Yunlai. Geotectonic settings of Huangshan-Jingerquan Nickel-Copper metallogenic system in Hami, Xinjiang[J]. Acta Geologica Gansu, 2000, 9(2): 1-7.
    朱文斌, 马瑞士, 王赐银. 论新疆东部黄山-镜儿泉杂岩带的构造属性[J]. 地质科学, 1996, 31(1): 22-32.
    ZHU Wenbin, MA Ruishi, WANG Ciyin. Tectonic attribute of Huangshan-Jingerquan complex in Eastern Xinjiang, China[J]. Sceentia Geologica Sinica, 1996, 31(1): 22-32.
    郭继春, 胡受奚, 顾连兴, 等. 东天山 (E85-90) 加里东沟-弧-盆褶皱系的地质特征及其构造演化[J]. 南京大学学报 (自然科学版), 1992, 28(3): 431-438.
    GUO Jichun, HU Shouxi, GU Lianxing, et al. Geological features and tectontc evolution East TianshanCaledonian trench-arc-basin foldbelt[J]. Journal of NanJing University(Natural Sciences Edition), 1992, 28(3): 431-438.
    王润民, 李楚思. 新疆哈密黄山东铜镍硫化物矿床成岩成矿的物理化学条件[J]. 成都地质学院学报, 1987, 14(3): 1-9.
    WANG Runmin, LI Chusi. Physicochemicalcondition of rock formation and mineralization of Huangshandong magmatogenic sulfide deposit HaMi, Xinjiang, China[J]. Journal of Chengdu College of Geology, 1987, 14(3): 1-9(in Chinese with English abstract).
    张耀华. 新疆黄山东基性-超基性杂岩体地质特征及其含矿性[J]. 西北地质, 1987, (4): 15-31.
    蔡土赐. 新疆维吾尔自治区岩石地层[M]. 武汉: 中国地质大学(武汉)出版社, 1999: 1-430.
    陈继平,廖群安,张雄华,等. 东天山地区黄山东与香山镁铁-超镁铁质杂岩体对比[J].地球科学,2013, 38(6):1-14.
    CHEN Jiping, LIAO Qunan, ZHANG Xionghua, et al. Contrast of Huangshandong and Xiangshan Mafic-Ultramafic complex, East Tianshan[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6):1-14(in Chinese with English abstract).
    刘民武. 中国几个镍矿床的地球化学比较研究[D]. 西安:西北大学, 2003.
    LIU Minwu. Geochemical comparison of several nickel deposits in China[D]. Xi'an:Northwest University, 2003(in Chinese with English abstract).
    张魁武, 沈步明, 李达周, 等. 阿拉斯加型超镁铁质岩的岩石化学特征[J]. 地质论评, 1988, 34(3): 377-382.
    顾连兴, 诸建林, 郭继春, 等. 造山带环境中的东疆型镁铁-超镁铁杂岩[J]. 岩石学报, 1994, 10(4): 356-399.
    GU Lianxing, ZHU Jianlin, GUO Jichun, et al. The East Xinjiang-type Mafic-Ultramafic complexes in orogenic environments[J]. Acta Petrologica Sinica, 1994, 10(4): 356-399(in Chinese with English abstract).
    吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2):185-220.
    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185-220(in Chinese with English abstract).
    夏林圻, 张国伟, 夏祖春, 等. 天山古生代洋盆开启、闭合时限的岩石学约束-来自震旦纪、石炭纪火山岩的证据[J]. 地质通报, 2002, 21(2): 55-62.
    XIA Linqi, ZHANG Guowei, XIA Zuchun, et al. Constraints on the timing of opening and closing of the Tianshan Paleozonic oceanic basin: ecvidence from Sinina and Carboniferous volcanic rocks[J]. Geological Bulietin of China, 2002, 21(2): 55-62(in Chinese with English abstract).
    夏林圻, 夏祖春, 徐学义, 等. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 2007, 26(1): 77-89.
    XIA Linqi, XIA Zuchun, XU Xueyi, et al. The discrimination between continental basalt and islanf arc basalt based on geochemical method[J]. Acta Petroligical et Mineralogica, 2007, 26(1): 77-89(in Chinese with English abstract).
    夏明哲, 姜常义, 钱壮志, 等. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因[J]. 岩石学报, 2010, 26(8): 2413-2430.
    XIA Mingzhe, JIANG Changyi, QIAN Zhuangzhi, et al. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2010, 26(8): 2413-2430(in Chinese with English abstract).
    唐俊华, 顾连兴, 张遵忠, 等. 东天山黄山-镜儿泉过铝花岗岩矿物学, 地球化学及年代学研究[J]. 岩石学报, 2008, 24(5): 921-946.
    TANG Junhua, GU Lianxin, ZHANG Zunzhong, et al. Peralumious granite in Huangshan-Jingerquan area of eastern Tianshan: Geochemistry, mineralogy and geochronology[J]. Acta Petrologica Sinica, 2008, 24(5): 921-946(in Chinese with English abstract).
    DILEK Y. Ophiolite concept and its evolution. In: Dilek Y, Newcomb S. (Eds.)[J]. Ophiolite concept and the evolution of geological thought: Geological Society of America Special Papers. 2003: 1-16.
    SENGÖR AC, NATAL'IN BA. Phanerozoic analogues of Archaean oceanic basement fragments: Altaid ophiolites and ophirags[J]. Developments in Precambrian Geology, 2004, 13(1): 675-726.
    ROBINSON PT, ZHOU MF. The origin and tectonic setting of ophiolites in China[J]. Journal of Asian Earth Sciences, 2008, 32(5): 301-307.
    PEARCE JA, ROBINSON PT. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting[J]. Gondwana Research, 2010, 18(1): 60-81.
    NALDRETT AJ, VON Gruenewaldt G. Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes[J]. Economic Geology, 1989, 84(1): 180-187.
    ZHOU MF, ROBINSON PT, MALPAS J, et al. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21.
    ZHANG Q, WANG CY, LIU DY, et al. A brief review of ophiolites in China[J]. Journal of Asian Earth Sciences, 2008, 32(5): 308-324.
    SHI R, GRIFFIN W L, O''REILLY S Y, et al. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet[J]. Gondwana Research, 2012, 21(1): 194-206.
    HIMMELBERG GR, LONEY RA. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska[M]. Washington: United States Government Printing Office, 1995:1-47.
    KUSKY TM, GLASS A, TUCKER R. Structure, Cr-chemistry, and age of the Border Ranges Ultramafic-Mafic Complex: A suprasubduction zone ophiolite complex. In: Ridgway KD, Trop JM, Glen JM G, O'Neill JM.(Eds.), Tectonic growth of a collision continental margin: crustal evolution of Southern Alaska: Geological Society of America Special Papers, 2007, 431: 207-225.
    PIRAJNO F, MAO JW, ZHANG ZH, et al. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits[J]. Journal of Asian Earth Sciences, 2008, 32(2): 165-183.
    SANTOSH M, MARUYAMA S, YAMAMOTO S. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere[J]. Gondwana Research, 2009, 15(3): 324-341.
    AO SJ, XIAO WJ, HAN CM, et al. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 2010, 18(2): 466-478.
    CAI KD, SUN M, YUAN C, et al. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance[J]. Chemical Geology, 2012, 294(295): 26-41.
    SU BX, QIN K Z, SAKYA P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 20(2): 516-531.
    ZHOU MF, MICHAEL LESHER C, YANG ZX, et al. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 209(3): 233-257.
    GU L X, ZHU JL, GUO JC, et al. Geology and genesis of the mafic-ultramafic complexes in the Huangshan-Jingerquan (HJ) belt, East Xinjiang[J]. Chinese Journal of Geochemistry, 1995, 14(2): 97-116.
    YUAN HL, GAO S, DAI MN, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1): 100-118.
    MCDONOUGH WF, SUN SS. The composition of the Earth[J]. Chemical Geology, 1995, 120(3): 223-253.
    FREY FA, PRINZ M. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters, 1978, 38(1): 129-176.
    MIDDLEMOST E AK. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3): 215-224.
    MIYASHIOR A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355.
    COLEMAN RG, Ophiolites: ancient oceanic lithosphere[M]. Berlin: Springer-Verlag Berlin, 1977: 1-230.
    IRVINE T, BARAGAR W. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548.
    SUN SS, MCDONGOUGH WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
    SUN SS. Chemical composition and origin of the Earth's primitive mantle[J]. Geochimica et Cosmochimica Acta, 1982, 46(2): 179-192.
    BLICHERT-TOFT J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1): 243-258.
    GRIFFIN WL, PEARSON NJ, BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.
    AMELIN Y, LEE D, HALLIDAY AN, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399(6733): 252-255.
    SöDERLUND U, PATCHETT PJ, VERVOORT JD, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3): 311-324.
    IONOV DA, HOFMANN AW. Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters, 1995, 131(3): 341-356.
    TANG DM, QIN KZ, SU BX, et al. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures[J]. Lithos, 2013, 2(13):144-163
    SYLVESTER PJ. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1): 29-44.
  • Related Articles

Catalog

    Article views (2384) PDF downloads (2639) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return