Processing math: 100%
ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
WANG Xiaoyong, XU Youning, ZHAO Zhenhong, et al. Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area[J]. Northwestern Geology, 2023, 56(4): 162-168. DOI: 10.12401/j.nwg.2023130
Citation: WANG Xiaoyong, XU Youning, ZHAO Zhenhong, et al. Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area[J]. Northwestern Geology, 2023, 56(4): 162-168. DOI: 10.12401/j.nwg.2023130

Stable Isotope Characteristics and Geological Significance of Acid Wastewater in a Stone Coal Mining Area

More Information
  • Received Date: January 05, 2023
  • Revised Date: July 05, 2023
  • Available Online: July 17, 2023
  • The sulfate concentration of the water body in the Ziyang stone coal mining area exceeds the standard, and the pollution is becoming more and more serious. Identifying the source of sulfate pollution is extremely important for the prevention of pollution and the guarantee of drinking water safety. The production mechanism of acid wastewater was analyzed and identified using sulfate and oxygen stable isotopes. The results show that the sulfate produced by the sulfide oxidation of stone coal was the main source of sulfate in acid wastewater. Calculated by the IsoSource mass conservation model, the contribution rate of acid wastewater to groundwater sulfate is about 36.5%. The application of multiple isotopes provides a new approach for the comprehensive identification of sulfate sources in acid wastewater and the quantitative study of its impacts on groundwater and provides a scientific basis for mine development and ecological environmental protection and restoration.

  • 丁坤, 王瑞廷, 刘凯, 等. 南秦岭柞水-山阳矿集区龙头沟金矿床硫化物微量元素和硫同位素地球化学特征[J]. 地质与勘探, 2021, 57(5): 969-980.

    DING Kun, WANG Ruiting, LIU Kai, et al. Sulfide trace elements and sulfur isotope geochemistry of the Longtougou gold deposit, Zhashui - Shanyang ore district, South Qinling[J]. Geology and Exploration, 2021, 57( 5) : 0969 - 0980.
    顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011

    GU Weizu. Isotope hydrology[M]. Beijing: Science Press, 2011
    顾慰祖, 林曾平, 费光灿, 等. 环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J]. 水科学进展, 2000, 11(01): 14-20

    GU Weizu, LIN Zengping, FEI Guangchan, et al. The use of environmental sulphur isotopes in the study of the Cambrian-Ordovician aquifer system in the south of Datong[J]. Advances in Water Science, 2000, 11(01): 14-20.
    胡德银, 张宏德, 王化锋等. 浅议安康石煤地质特征及“十二五”开发设想[J]. 科技信息, 2011, (23): 45-47 doi: 10.3969/j.issn.1001-9960.2011.23.030

    HU Deyin, ZHANG Hongde, WANG Huafeng, et al. Yee Shallow AnKang Stone Coal Geological Features and " Second Five " Development Vision[J], SCIENCE & TECHNOLOGY INFORMATION, 2011, (23): 45-47. doi: 10.3969/j.issn.1001-9960.2011.23.030
    庞振甲, 成欢, 冀月飞. 陕西省略阳县陶家沟地区地质地球物理特征及找矿预测[J]. 西北地质, 2022, 55(1): 93-100

    PANG Zhenjia, CHENG Huan, JI Yuefei. Geophysical Characteristics and Prospecting Prediction of Taojiagou Area in Lueyang County, Shaanxi Province[J]. Northwestern Geology, 2022, 55(1): 93-100.
    邱述兰. 利用多同位素(δ34S, δ15N, 87Sr/86Srδ13CDIC)方法示踪岩溶农业区地下水中硝酸盐和硫酸盐的污染[D]. 重庆: 西南大学, 2012

    QIU Shulan. Use of multiple environmental isotopes(δ34S, δ15N, 87Sr/86Srand δ13CDIC)to trace sulfate and nitrate contaminations of karst groundwater in an agricultural area-A case from Wingmuguan Subterranean Stream System[D]. Chongqing: Southwest University, 2012
    徐友宁, 张江华, 何芳, 等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129-139

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology, 2022, 55(3): 129-139.
    张俊, 尹立河, 顾小凡, 等. 同位素水化学指示的新疆孔雀河流域地下水与地表水关系[J]. 西北地质, 2021, 54(1): 185-195

    ZHANG Jun, YIN Lihe, GU Xiaofan, et al. Study on the Relationship Between Groundwater and Surface Water in Xinjiang Kongque River Basin Using Isotopes and Hydrochemistry method[J]. Northwestern Geology, 2021, 54(1): 185-195.
    张卫国, 侯恩科, 李军, 等. 陕南石煤及煤灰中磷元素的迁移规律[J]. 西安科技大学学报, 2021, 41(02): 316-322

    ZHANG Weiguo, HOU Enke, LI Jun, et al. Migration law of Phosphorus in stone coal and coal ash in southern Shaanxi province[J]. Journal of Xi’an University of Science and Technology, 2021, 41( 2): 316-322.
    张亚丽, 张志敏, 张继军, 等. 安康西部农田土壤硒形态及农作物富硒特征[J]. 西北地质, 2021, 54(3): 229-235

    ZHANG Yali, ZHANG Zhimin, ZHANG Jijun, et al. Soil Selenium Speciation in Cropland of Western Ankang and the Characteristics of Crop Selenium Enrichment[J]. Northwestern Geology, 2021, 54(3): 229-235.
    Balci N, Iii W, Mayer B, et al. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite[J]. Geochimica Et Cosmochimica Acta, 2007, 71(15), 3796-3811. doi: 10.1016/j.gca.2007.04.017
    Banfield J F, Nealson K H, Lovley D R. Geomicrobiology: Interactions between microbes and minerals[J]. Mineralogical Magazine, 1998, 62(5), 725-726.
    Bottrell S, Tellam J, Bartlett R, et al. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK[J]. Applied Geochemistry, 2008, 23(8), 2382-2394. doi: 10.1016/j.apgeochem.2008.03.012
    Everdingen R O V, Krouse H R. Isotope composition of sulphates generated by bacterial and abiological oxidation[J]. Nature, 1985, 315(6018): 395-396. doi: 10.1038/315395a0
    Jezierski P, Szynkiewicz A, Jedrysek M O. Natural and Anthropogenic Origin Sulphate in an Mountainous Groundwater System: S and O Isotope Evidences[J]. Water Air & Soil Pollution, 2006, 173(1/4): 81-101.
    Laura V . Fertilizer characterization: isotopic data (N, S, O, C, and Sr). [J]. Environmental Science & Technology, 2004, 38(12): 3254. DOI:doi: 10.1021/es0348187.
    Lewis J S , Krouse H R . Isotopic composition of sulfur and sulfate produced by oxidation of FeS[J]. Earth and Planetary Science Letters, 1969, 5(6): 425-428.
    Mingyu W , Sheng H , Bianfang C , et al. A review of processing technologies for vanadium extraction from stone coal[J]. Mineral Processing & Extractive Metallurgy, 2018: 1-9.
    Qibo H , Xiaoqun Q , Qiyong Y , et al. Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using δ13CDIC and δ34S in karst area, northern China[J]. Environmental Earth Sciences, 2016, 75(1): 1-10. doi: 10.1007/s12665-015-4873-x
    Schippers A , Sand W . Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur[J]. Applied & Environmental Microbiology, 1999, 65(1): 319.
    Stempvoort D R V, Krouse H R . Controls of δ18O in sulphate: Review of experimental data and application to specific environments[J]. Environmental Geochemistry of Sulfide Oxidation, 1994.
    Taylor B E , Wheeler M C , Nordstrom D K . Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation[J]. Nature, 1984, 308(5959): 538-541. doi: 10.1038/308538a0
    Tuttle M L W , Breit G N , Cozzarelli I M . Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA[J]. Chemical Geology, 2009, 265(3-4): 455-467. doi: 10.1016/j.chemgeo.2009.05.009
    Wang X , Zhang Y, Liu T, et al. Phase Transformation and Dissolution Behavior of Pyrite in the Roasting-Sulfuric Acid Leaching Process of Vanadium-Bearing Stone Coal[J]. Minerals, 2020, 10(6): 526-535 doi: 10.3390/min10060526
  • Related Articles

Catalog

    Article views (115) PDF downloads (40) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return