ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
ZHANG Fan, WANG Guangcai, ZHANG Maosheng, et al. Identification of Produced Water and Characteristics of Hydrochemistry and Stable Hydrogen−Oxygen Isotopes of Contaminated Groundwater[J]. Northwestern Geology, 2023, 56(3): 98-108. DOI: 10.12401/j.nwg.2023096
Citation: ZHANG Fan, WANG Guangcai, ZHANG Maosheng, et al. Identification of Produced Water and Characteristics of Hydrochemistry and Stable Hydrogen−Oxygen Isotopes of Contaminated Groundwater[J]. Northwestern Geology, 2023, 56(3): 98-108. DOI: 10.12401/j.nwg.2023096

Identification of Produced Water and Characteristics of Hydrochemistry and Stable Hydrogen−Oxygen Isotopes of Contaminated Groundwater

More Information
  • Received Date: March 19, 2023
  • Revised Date: April 22, 2023
  • Available Online: May 22, 2023
  • Identifying the source of pollution in groundwater and understanding the hydrochemical characteristics of contaminated groundwater by such pollution are very important for pollution prevention of groundwater. As the waste water of petroleum and natural gas industry, the produced water has the characteristics of complex components and great harmfulness. In view of the problems that there was less research on the contaminated groundwater by produced water, and the characteristics of the contaminated groundwater and the method to identify the pollution source were still unclear, the paper toke a polluted groundwater site in Yan’an as the research area, applied the methods of hydrogeochemistry and stable hydrogen−oxygen isotopes to describe the hydrochemical and isotopic characteristics of the groundwater contaminated by produced water, and compared the sodium−chloride coefficients, magnesium−chloride coefficients, desulfurization coefficients and carbonate balance coefficients of groundwater and reservoir water to identify the produced water. The results showed that the contaminated groundwater by produced water in this area was characterized by high TDS and depleted stable hydrogen−oxygen isotope; The chemical types were mainly Cl−Na type and Cl−Mg·Ca·Na type, and with the decrease of the influence of produced water, the groundwater changes from Cl−Na type to Cl−Mg·Ca·Na type and then to HCO3·SO4−Na·Ca·Mg type. The relationship of ion proportions was more chaotic than that of normal groundwater and had no linear law. The sodium−chloride coefficients, magnesium−chloride coefficients, desulfurization coefficients and carbonate balance coefficients of polluted groundwater by produced water were all within the range of Chang 6 reservoir water, indicating that the relevant parameters for judging the conditions of oil and gas accumulation could be used to identify produced water. This study described the hydrochemical and stable hydrogen−oxygen isotopic characteristics of contaminated groundwater by produced water, and proposed a method to identify produced water by comparing the relevant parameters of groundwater and reservoir water, which were of great significance to the identification, recognition, investigation, monitoring and repair of polluted sites by produced water.

  • 焦艳军, 王广才, 崔霖峰, 等. 济源盆地地表水和地下水的水化学及氢、氧同位素特征[J]. 环境化学, 2014, 33(06): 962-968 doi: 10.7524/j.issn.0254-6108.2014.06.023

    JIAO Yanjun, WANG Guangcai, CUI Linfeng, et al. Characteristics of hydrochemistry and stable hydrogen, oxygen isotopes in surface water and groundwater in Jiyuan Basin[J]. Environmental Chemistry, 2014, 33(06): 962-968. doi: 10.7524/j.issn.0254-6108.2014.06.023
    梁晓伟, 牛小兵, 李卫成, 等. 鄂尔多斯盆地油田水化学特征及地质意义[J]. 成都理工大学学报(自然科学版), 2012, 39(05): 502-508

    LIANG Xiaowei, NIU Xiaobing, LI Weicheng, et al. Chemical character of oil-field water in Ordos Basin and geological significance[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(05): 502-508.
    楼章华, 苏一哲, 朱蓉, 等. 四川盆地新场构造带上三叠统须家河组二段地层水化学动态特征及其成因[J]. 石油与天然气地质, 2021, 42(04): 841-851 doi: 10.11743/ogg20210406

    LOU Zhanghua, SU Yizhe, ZHU Rong, et al. Dynamic chemical characteristics and origin of formation water in the second member of Xujiahe Formation, Xinchang structural belt, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(04): 841-851. doi: 10.11743/ogg20210406
    张茂省, 孙传尧, 校培喜, 等. 延安市宝塔区地质灾害详细调查示范[J]. 西北地质, 2007,40(02): 29-55 doi: 10.3969/j.issn.1009-6248.2007.02.002

    ZHANG Maosheng, SUN Chuanyao, XIAO Peixi, et al. A Demonstration Project for Detailed Geo-hazard Survey in Baota District, Yan an[J]. Northwestern Geology, 2007,40(02): 29-55. doi: 10.3969/j.issn.1009-6248.2007.02.002
    曾溅辉, 吴琼, 杨海军, 等. 塔里木盆地塔中地区地层水化学特征及其石油地质意义[J]. 石油与天然气地质, 2008(02): 223-229 doi: 10.3321/j.issn:0253-9985.2008.02.011

    ZENG Jianhui, WU Qiong, YANG Haijun, et al. Chemical characteristics of formation water in Tazhong area of the Tarim Basin and their petroleum geological significance[J]. Oil & Gas Geology, 2008(02): 223-229. doi: 10.3321/j.issn:0253-9985.2008.02.011
    战常武. 曲塘次凹油田地层水特征及其石油地质意义[J]. 承德石油高等专科学校学报, 2020, 22(04): 21-23+34 doi: 10.3969/j.issn.1008-9446.2020.04.006

    ZHAN Changwu. Characteristics of Formation Water and Its Petroleum Geological Significance in Qutang Sub Sag[J]. Journal of Chengde Petroleum College, 2020, 22(04): 21-23+34. doi: 10.3969/j.issn.1008-9446.2020.04.006
    张景涛, 史浙明, 王广才, 等. 柴达木盆地大柴旦地区地下水水化学特征及演化规律[J]. 地学前缘, 2021, 28(04): 194-205 doi: 10.13745/j.esf.sf.2020.6.40

    ZHANG Jingtao, SHI Zheming, WANG Guangcai, et al. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin[J]. Earth Science Frontiers, 2021, 28(04): 194-205. doi: 10.13745/j.esf.sf.2020.6.40
    张俊, 尹立河, 顾小凡, 等. 同位素水化学指示的新疆孔雀河流域地下水与地表水关系[J]. 西北地质, 2021, 54(01): 185-195 doi: 10.19751/j.cnki.61-1149/p.2021.01.016

    ZHANG Jun, YIN Lihe, GU Xiaofan, et al. Study on the Relationship Between Groundwater and Surface Water in Xinjiang Kongque River Basin Using Isotopes and Hydrochemistry method[J]. Northwestern Geology, 2021, 54(01): 185-195. doi: 10.19751/j.cnki.61-1149/p.2021.01.016
    张治波, 刘腾, 李丽荣, 等. 鄂尔多斯盆地CD区块长6地层水化学性质及其地质意义[J]. 矿物岩石, 2017, 37(03): 61-68 doi: 10.19719/j.cnki.1001-6872.2017.03.009

    ZHANG Zhibo, LIU Teng, LI Lirong, et al. Chemical Characteristics and Geological Significance of Chang 6 Formation Water in CD Area of Ordos Basin[J]. Journal of Mineralogy and Petrology, 2017, 37(03): 61-68. doi: 10.19719/j.cnki.1001-6872.2017.03.009
    周新平, 邓秀芹, 李士祥, 等. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(01): 109-120 doi: 10.12108/yxyqc.20210111

    ZHOU Xinping, DENG Xiuqin, LI Shixiang, et al. Characteristics of formation water and its geological significance of lower combination of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2021, 33(01): 109-120. doi: 10.12108/yxyqc.20210111
    周训, 胡伏生, 何江涛, 等. 地下水科学概论[M]. 北京: 地质出版社, 2014

    ZHOU Xun, HU Fusheng, HE Jiangtao, et al. Introduction to Groundwater Science[M]. Beijing: Geological Publishing House, 2014.
    Al-Ghouti M A, Al-Kaabi M A, Ashfaq M Y, et al. Produced water characteristics, treatment and reuse: A review[J]. Journal of Water Process Engineering, 2019, 28: 222-239. doi: 10.1016/j.jwpe.2019.02.001
    Amakiri K T, Canon A R, Molinari M, et al. Review of oilfield produced water treatment technologies[J]. Chemosphere, 2022, 298: 134064. doi: 10.1016/j.chemosphere.2022.134064
    Atekwana E A, Seeger E J. Carbonate and carbon isotopic evolution of groundwater contaminated by produced water brine with hydrocarbons[J]. Applied Geochemistry, 2015, 63: 105-115. doi: 10.1016/j.apgeochem.2015.08.001
    Benko K L, Drewes J E. Produced Water in the Western United States: Geographical Distribution, Occurrence, and Composition[J]. Environmental engineering science, 2008, 25(2): 239–246. doi: 10.1089/ees.2007.0026
    Chen X L, Sheng Y Z, Wang G C, et al. Microbial compositional and functional traits of BTEX and salinity co-contaminated shallow groundwater by produced water[J]. Water Research, 2022, 215.
    Craig H. Isotopic Variations in Meteoric Waters[J]. Science (New York, N. Y. ), 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
    Dolan F C, Cath T Y, Hogue T S. Assessing the feasibility of using produced water for irrigation in Colorado[J]. Science of the Total Environment, 2018, 640-641: 619-628. doi: 10.1016/j.scitotenv.2018.05.200
    Fakhru’l-Razi A, Pendashteh A, Abdullah L C, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2): 530-551.
    Huang X J, Wang G C, Liang X Y, et al. Hydrochemical and Stable Isotope (δD and δ18O) Characteristics of Groundwater and Hydrogeochemical Processes in the Ningtiaota Coalfield, Northwest China[J]. Mine Water and the Environment, 2018, 37(1): 119-136. doi: 10.1007/s10230-017-0477-x
    Jiang W B, Xu X S, Hall R, et al. Characterization of produced water and surrounding surface water in the Permian Basin, the United States[J]. Journal of Hazardous Materials, 2022, 430.
    McDevitt B, McLaughlin M C, Blotevogel J, et al. Oil & gas produced water retention ponds as potential passive treatment for radium removal and beneficial reuse[J]. Environmental science. Processes & impacts, 2021, 23(3): 501-518.
    Miller H, Dias K, Hare H, et al. Reusing oil and gas produced water for agricultural irrigation: Effects on soil health and the soil microbiome[J]. Science of the Total Environment, 2020, 722.
    Ozgun H, Ersahin M E, Erdem S, et al. Effects of the pre-treatment alternatives on the treatment of oil-gas field produced water by nanofiltration and reverse osmosis membranes[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(8): 1576-1583.
    Patterson L A, Konschnik K E, Wiseman H, et al. Unconventional oil and gas spills: risks, mitigation priorities, and state reporting requirements[J]. Environmental science & technology, 2017, 51(5): 2563–2573.
    Sanchez-Rosario R, Hildenbrand Z L. Produced Water Treatment and Valorization: A Techno-Economical Review[J]. Energies, 2022, 15(13): 4319.
    Shariq L. Health Risks Associated With Arsenic and Cadmium Uptake in Wheat Grain Irrigated With Simulated Hydraulic Fracturing Flowback Water[J]. Journal of Environmental Health, 2019, 81(6): E1-E9.
    Shih J S, Saiers J, Anisfeld S, et al. Characterization and analysis of liquid waste from Marcellus Shale gas development[J]. Abstracts of Papers of the Amercian Chemical Society, 2015, 49(16): 9557-9565.
    Shores A, Laituri M. The state of produced water generation and risk for groundwater contamination in Weld County, Colorado[J]. Environmental science and pollution research international, 2018, 25(30): 30390-30400. doi: 10.1007/s11356-018-2810-8
    Warner N R, Jackson R B, Darrah T H, et al. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(30): 11961-11966. doi: 10.1073/pnas.1121181109
    Xu B Y, Wang G C. Surface water and groundwater contaminations and the resultant hydrochemical evolution in the Yongxiu area, west of Poyang Lake, China[J]. Environmental Earth Sciences, 2016, 75(3): 1-16.
    Zheng Z X, Zhang H D, Chen Z Y, et al. Hydrogeochemical and Isotopic Indicators of Hydraulic Fracturing Flowback Fluids in Shallow Groundwater and Stream Water, derived from Dameigou Shale Gas Extraction in the Northern Qaidam Basin. [J]. Environmental science & technology, 2017, 51(11): 5889-5898.
  • Related Articles

Catalog

    Article views (104) PDF downloads (27) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return