ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
CHEN Jingyuan,MA Ying,CHEN Jinniu,et al. Hydrochemical and Sulfur Isotope Characteristics of Deep Brine in the Yahu Structure Zone of Qaidam Basin[J]. Northwestern Geology,2025,XX(XX):1−18. doi: 10.12401/j.nwg.2024090
Citation: CHEN Jingyuan,MA Ying,CHEN Jinniu,et al. Hydrochemical and Sulfur Isotope Characteristics of Deep Brine in the Yahu Structure Zone of Qaidam Basin[J]. Northwestern Geology,2025,XX(XX):1−18. doi: 10.12401/j.nwg.2024090

Hydrochemical and Sulfur Isotope Characteristics of Deep Brine in the Yahu Structure Zone of Qaidam Basin

More Information
  • Received Date: December 26, 2023
  • Revised Date: July 18, 2024
  • Accepted Date: September 24, 2024
  • Available Online: December 12, 2024
  • The resluts of exploration and investigation on deep brine in the anticlines of Qaidam Basin showed the deep brine of Paleogene-Neogene anticlines is rich in lithium, boron, bromine and iodine with a good prospecting potential. To discuss the hydrochemical characteristics and the origin of the deep brine of the Yahu structure in the middle of Qaidam Basin, the hydrochemical and sulfur isotopic characteristics of the deep brine were analyzed. The results show: ①The hydrochemical type of deep brines in the Yahu structure are chloride-type. The K+, Na+ and Mg2+ content is low, indicating no prospecting value, while Li+, B2O3, Br, I, Sr2+ content are high, and the majority are higher than comprehensive evaluation index with a good resources potential. ②The δ34s value of deep brine is 44.00 ~ 46.55‰ with an average value of 45.21‰, which is considered that the δ34s value of brine is caused by the bacterial sulfate reduction under good enclosed conditions. ③The characteristics of ion coefficients and others reveal the deep brine in the study area originated from the ancient lake which was sealed up during the sedimentary period of the Pliocene strata, and a series of metamorphosim and transformation such as water-rock interaction and bacterial reduction occurred during the burial process. Due to Himalayaorogeny, the deep magmatic hydrothermal fluid with high Li and B rose along the deep fault and mix with the brine to form the calcium chloride deep brine.

  • 曹琴, 周训, 张欢, 等. 四川盆地卧龙河储卤构造地下卤水的水化学特征及成因[J]. 地质通报, 2015, 345): 990997. doi: 10.3969/j.issn.1671-2552.2015.05.019

    CAO Qin, ZHOU Xun, ZHANG Huan, et al. Hydrochemical characteristics and genesis of the subsurface brines in the Wolonghe brine-bearing structure of Sichuan basin[J]. Geological Bulletin of China, 2015, 345): 990997. doi: 10.3969/j.issn.1671-2552.2015.05.019
    陈启林, 张小军, 黄成刚, 等. 柴达木盆地英西地区渐新统硫酸盐硫同位素组成及其地质意义[J]. 地质论评, 2019, 653): 558572.

    CHEN Qilin, ZHANG Xixoajun, HUANG Chenggang et al. Sulfur isotopic composition of sulphate in Oligocene Series in Yingxi area, Qaidam basin, and its geological significance[J]. Geological Review, 2019, 653): 558572.
    樊启顺, 马海州, 谭红兵, 等. 柴达木盆地西部卤水特征及成因探讨[J]. 地球化学, 2007, 366): 601611. doi: 10.3321/j.issn:0379-1726.2007.06.008

    FAN Qishun, MA Haizhou, TAN Hongbing, et al. Characteristics and origin of brines in western Qaidiam basin[J]. Geochimica, 2007, 366): 601611. doi: 10.3321/j.issn:0379-1726.2007.06.008
    樊启顺, 马海州, 谭红兵, 等. 柴达木盆地西部油田卤水的硫同位素地球化学特征[J]. 矿物岩石地球化学通报, 2009, 282): 137142. doi: 10.3969/j.issn.1007-2802.2009.02.006

    FAN Qishun, MA Haizhou, TAN Hongbing, et al. Geochemistry characteristics of sulfur isotope in oilfield brine of the western Qaidam basin[J]. Bulletin of Mineralpgy, Petrology and Geochemistry, 2009, 282): 137142. doi: 10.3969/j.issn.1007-2802.2009.02.006
    付建龙, 吴蝉, 舒树兰, 等. 柴达木盆地西部油田水钾硼锂富集规律及影响因素研究[J]. 盐湖研究, 2006, 144): 2225. doi: 10.3969/j.issn.1008-858X.2006.04.004

    FU Jianlong, WU Chan, SHU Shulan, et al. Study on the characteristics and influencing factor for the enrichment of potassium, lithium and boron in the oil field waters of western Qaidam basin[J]. Journal of Salt Lake Research, 2006, 144): 2225. doi: 10.3969/j.issn.1008-858X.2006.04.004
    葛文胜, 蔡克勤. 柴达木盆地西北部锶矿成矿系统研究[J]. 现代地质, 2001, 151): 5358+117. doi: 10.3969/j.issn.1000-8527.2001.01.010

    GE Wensheng, CAI Keqin. Mineralization System of celestite deposits in northwesterm Qaidam basin[J]. Geoscience, 2001, 151): 5358+117. doi: 10.3969/j.issn.1000-8527.2001.01.010
    韩光, 樊启顺, 刘久波, 等. 柴达木盆地中西部背斜构造深层卤水水化学特征与成因[J]. 盐湖研究, 2021, 294): 111. doi: 10.12119/j.yhyj.202104001

    HAN Guang, FAN Qishun, LIU Jiubo, et al. Oriain and hydrochemistry of deep brines from anticlinal reservoir in the western-centeral Qaidam basin[J]. Journal of Salt Lake Research, 2021, 294): 111. doi: 10.12119/j.yhyj.202104001
    韩光, 樊启顺, 许建新, 等. 柴达木盆地西部鄂博梁Ⅱ号构造深层卤水储层特征与锂硼资源富集成因[J]. 盐湖研究, 2022, 302): 7078. doi: 10.12119/j.yhyj.202202008

    HAN Guang, FAN Qishun, XU Jianxin, et al. Characterist of deep brine reservoris and orign of enrichment of lithium and boron resources in the Eboliang Ⅱ structure in the western Qaidam basin[J]. Journal of Salt Lake Research, 2022, 302): 7078. doi: 10.12119/j.yhyj.202202008
    韩佳君. 柴达木盆地西部地下卤水起源演化与资源量评价[D]. 北京: 北京中国地质大学(北京), 2013.

    HAN Jiajun. Hydrochemical Characteristics, origin, evolution and resources of the subsurface brines in western Qaidam basin[D]. Beijing: China University of Geosciences(Beijing), 2013.
    韩佳君, 周训, 姜长龙, 等. 柴达木盆地西部地下卤水水化学特征及其起源演化[J]. 现代地质, 2013, 276): 14541464. doi: 10.3969/j.issn.1000-8527.2013.06.025

    HAN Jiajun, ZHOU Xun, JIANG Changlong, et al. Hydrochemical characteristics, origin and evolution of the subsurface brines in western Qaidam basin[J]. Geoscience, 2013, 276): 14541464. doi: 10.3969/j.issn.1000-8527.2013.06.025
    韩佳明, 高举, 杜坤, 等. 煤矿地下水库水体水化学特征及其成因解析[J]. 煤炭科学技术, 2020, 4811): 223231.

    HAN Jiaming, GAO Ju, DU Kun, et al. Analysis of hydrochemical characteristics and formation mechanism in coal mine underground reservoir[J]. Coal Science and Technology, 2020, 4811): 223231.
    何邦超. 柴达木盆地中西部碱石山背斜深层卤水赋存特征研究[J]. 中国煤炭地质, 2022, 347): 2227. doi: 10.3969/j.issn.1674-1803.2022.07.05

    HE Bangchao. Study on Jianshishan anticline deep brine hosting features in midwestern Qaidam basin[J]. Coal Geology of China, 2022, 347): 2227. doi: 10.3969/j.issn.1674-1803.2022.07.05
    Hoefs, 刘季花, 石学法, 等. 稳定同位素地球化学[M]. 北京: 海洋出版社, 2002.

    Hoefs J, LIU Jihua, SHI Xuefa, et al. Geochemistry of stable isotope[M]. Beijing: China Ocean Press, 2002.
    焦鹏程. 罗布泊盐湖钾盐矿床形成的地球化学研究[J]. 矿床地质, 2006, 25S1): 225228.

    JIAO Pengcheng. Geochemistry of salt lake potash deposits in the Lop Nur, Xinjiang[J]. Mineral Deposits, 2006, 25S1): 225228.
    李洪普, 郑绵平, 侯献华, 等. 柴达木西部南翼山构造富钾深层卤水矿的控制因素及水化学特征[J]. 地球学报, 2015, 361): 4150. doi: 10.3975/cagsb.2015.01.05

    LI Hongpu, ZHENG Mianping, HOU Xianhua, et al. Control factors and water chemical characteristics of potassium-rich deep brine in Nanyishan structure of western Qaidam basin[J]. Acta Geoscientica Sinica, 2015, 361): 4150. doi: 10.3975/cagsb.2015.01.05
    李洪普, 潘彤, 李永寿, 等. 柴达木盆地西部构造裂隙孔隙卤水地球化学组成及来源示踪[J]. 地球科学, 2022, 471): 3644. doi: 10.3321/j.issn.1000-2383.2022.1.dqkx202201005

    LI Hongpu, PAN Tong, LI Yongshou, et al. Geochemical composition and origin tracing of structural fissure and pore brine in western Qaidam basin[J]. Earth Science, 2022, 471): 3644. doi: 10.3321/j.issn.1000-2383.2022.1.dqkx202201005
    李建森, 李廷伟, 马海州, 等. 柴达木盆地西部新近系和古近系油田卤水水化学特征及其地质意义[J]. 水文地质工程地质, 2013, 406): 2836.

    LI Jiansen, LI Tingwei, MA Haizhou, et al. Investigation of the chemical characteristics and its geological significance of the Tertiary oilfield brine in the western Qaidam basin[J]. Hydrogeology & Engineering Geology, 2013, 406): 2836.
    李建森, 李廷伟, 彭喜明, 等. 柴达木盆地西部第三系油田水水文地球化学特征[J]. 石油与天然气地质, 2014, 351): 5055. doi: 10.11743/ogg20140107

    LI Jiansen, LI Tingwei, PENG Ximing, et al. Hydrogeochemical behaviors of oilfield water in the Tertiary in western Qaidam basin[J]. Ool & Gas Geology, 2014, 351): 5055. doi: 10.11743/ogg20140107
    李建森, 蔡进福, 樊启顺, 等. 柴达木盆地盐湖K、B、Li资源的成矿地球化学系统[J]. 盐湖研究, 2022, 303): 1220. doi: 10.12119/j.yhyj.202203002

    LI Jiansen, CAI Jinfu, FAN Qishun, et al. Metallogenic geochemical system of K, B and Li resources in salt lakes of Qaidam basin[J]. Journal of Salt Lake Research, 2022, 303): 1220. doi: 10.12119/j.yhyj.202203002
    李庆宽. 察尔汗盐湖卤水硫同位素地球化学特征及影响因素[D]. 青海: 中国科学院研究生院(青海盐湖研究所), 2016.

    LI Qingkuan. The geochemical characteristics and impact factors of sulfur isotope of the brine in Qarhan salt lake[D]. Qinghai: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2016.
    李双慧, 黄选明, 朱宏军, 等. 基于水化学和环境同位素的准格尔煤田地下水循环特征[J]. 南水北调与水利科技, 2021, 193): 561571, 589.

    LI Shuanghui, HUANG Xuanming, ZHU Hongjun, et al. Characterization of ground water circulation in the Jungar coal field based on water chemistry and environmental isotopes[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 193): 561571, 589.
    李廷伟, 谭红兵, 樊启顺. 柴达木盆地西部地下卤水水化学特征及成因分析[J]. 盐湖研究, 2006, 144): 2632. doi: 10.3969/j.issn.1008-858X.2006.04.005

    LI Tingwei, TAN Hongbing, FAN Qinshun, et al. Hydrochemical characteristics and origin analysis of the underground brines in west Qaidam basin[J]. Journal of Salt Lake Research, 2006, 144): 2632. doi: 10.3969/j.issn.1008-858X.2006.04.005
    李雯霞, 张西营, 苗卫良, 等. 柴达木盆地北缘冷湖三号构造油田水水化学特征[J]. 盐湖研究, 2016, 242): 1218.

    LI Wenxia, ZHANG Xiying, MIAO Weiliang, et al. Hydrochemical charateristics of oilfield waters in Lenghu No. 3 structure area of north edge of Qaidam basin[J]. Journal of Salt Lake Research, 2016, 242): 1218.
    李政. 四川盆地富钾卤水地球化学特征及成因探讨[D]. 四川: 成都理工大学, 2014.

    LI Zheng. Geochemical characteristics of potassium-rich brine in Sichuan basin and its genesis[D]. Sichuan: Chengdu University of Technology, 2014.
    刘溪溪, 岳鑫, 袁文虎, 等. 柴达木盆地西部狮子沟背斜构造区深部卤水水化学特征及演化分析[J]. 盐湖研究, 2019, 271): 7381. doi: 10.12119/j.yhyj.201901008

    LIU Xixi, YUE Xin, YUAN Wenhu, et al. Hydrochemical characteristics and evolutionary process of deep brines from Shizigou anticline structure in Qaidam basin, China[J]. Journal of Salt Lake Research, 2019, 271): 7381. doi: 10.12119/j.yhyj.201901008
    刘重芃, 张宏鑫, 何军, 等. 浅层地下水水化学和同位素地球化学特征研究—以江汉平原西部为例[J]. 资源环境与工程, 2020, 142): 251255.

    LIU Chongpeng, ZHANG Hongxin, HE Jun, et al. Study on hydrochemical and isotope geochemical characteristics of shallow groundwater[J]. Resources Environment & Engineering, 2020, 142): 251255.
    卢鋆, 潘彤, 李永寿, 等. 柴达木盆地中部一里坪-西台吉乃尔地区深层卤水水化学特征及成因初探[J]. 地质学报, 2021, 957): 21292137. doi: 10.3969/j.issn.0001-5717.2021.07.011

    LU Jun, PAN Tong, LI Yongshou, et al. A preliminary investigation of hydrochemical characteristics and genesis of deep brine in the central Qaidam basin[J]. Acta Geologica Sinca, 2021, 957): 21292137. doi: 10.3969/j.issn.0001-5717.2021.07.011
    潘彤, 张金明, 李洪普, 等. 柴达木盆地盐类矿产成矿单元划分[J]. 吉林大学学报(地球科学版), 2022, 525): 14461460.

    PAN Tong, ZHANG Jinming, LI Hongpu, et al. Division of salt minerals metallogenic units in Qaidam basin[J]. Jilin University(Earth Science Edition), 2022, 525): 14461460.
    任坤, 潘晓东, 兰干江, 等. 硫氧同位素解析典型岩溶地下河流域硫酸盐季节变化特征和来源[J]. 环境科学, 2021, 429): 42674274.

    REN Kun, PAN Xiaodong, LAN Ganjiang, et al. Seasonal variation and sources identification of dissolved sulfate in a typical karst subterranean stream basin using sulfur and oxygen isotopes[J]. Environmental Science, 2021, 429): 42674274.
    史忠生, 陈开远, 何生. 东濮凹陷古近系锶、硫、氧同位素组成及古环境意义[J]. 地球科学(中国地质大学学报), 2005, 304): 430436.

    SHI Zhongsheng, CHEN Kaiyuan, HE Sheng. Strontium, sulfur and oxygen isotopic compositions and significance of paleoenvironment of Paleogene of Dongpu Depression[J]. Earth Science-Journal of China University of Geosciences, 2005, 304): 430436.
    孙英, 周金龙, 梁杏, 等. 塔里木盆地南缘浅层高碘地下水的分布及成因: 以新疆民丰县平原区为例[J]. 地球科学, 2021, 4608): 29993011.

    SUN Ying, ZHOU Jinlong, LIANG Xin, et al. Distribution and genesis of shallow high-iodine groundwater in southern margin of Tarim basin: A Case Study of Plain Area in Minfeng County, Xinjiang[J]. Earth Science, 2021, 4608): 29993011.
    汤良杰, 金之钧, 张明利, 等. 柴达木盆地构造古地理分析[J]. 地学前缘, 2000, 74): 421429. doi: 10.3321/j.issn:1005-2321.2000.04.009

    TANG Liangjie, JIN Zhijun, ZHANG Mingli, et al. An Analysis on tectono-paleogeography of the Qaidam basin NW China[J]. Earth Science Frontier, 2000, 74): 421429. doi: 10.3321/j.issn:1005-2321.2000.04.009
    王春连, 刘成林, 徐海明, 等. 湖北江陵凹陷古新统沙市组四段硫酸盐硫同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 433): 691703.

    WANG Chunlian, LIU Chenglin, XU Haiming, et al. Sulfur isotopic composition of sulfate and its geological significance of member 4 of palaeocene Shashi fromation in Jiangling depression of Hubei Province[J]. Jilin University(Earth Science Edition), 2013, 433): 691703.
    王弭力, 刘成林, 杨智琛, 等. 罗布泊罗北凹地特大型钾矿床特征及其成因初探[J]. 地质论评, 1997, 433): 249. doi: 10.3321/j.issn:0371-5736.1997.03.016
    王海敏, 李玉成, 王旭, 等. 邯邢东部平原馆陶组地下热水化学特征及成因分析[J]. 河北地质大学学报, 2022, 456): 8291.

    WANG Haimin, LI Yucheng, WANG Xu, et al. Hydrochemical characteristics and formation of geothermal water in Guantao Formation of Eastern Hanxing Plain[J]. Journal of Hebei Geo University, 2022, 456): 8291.
    王巧焕, 卢玉东. 内蒙古腰坝绿洲地下水化学特征及成因分析[J]. 华中农业大学学报, 2021, 405): 8188.

    WANG Qiaohuan, LU Yudong. Hydrochemical characteristics and causes of ground water in Yaoba Oasis of Inner Mongolia[J]. Journal of Huazhong Agricultural University, 2021, 405): 8188.
    王亚东, 张涛, 李仕远, 等. 地震剖面记录的柴达木盆地西部地区新生代构造变形特征[J]. 世界地质, 2011, (2): 213-223.

    WANG Yadong, ZHANG Tao, LI Shiyuan, et al. Cenozoic tectonic deformation characteristics of western Qaidam basin inferred by seismic profile[J]. Global Geology, 2011, (2): 213-233.
    吴丁丁, 姚震, 贾凤超, 等. 新疆哈密盆地地下水水化学特征及成因分析[J]. 干旱区资源与环境, 2020, 347): 133141.

    WU Dingding, YAO Zhen, JIA Fengchao, et al. Hydro-geochemical characteristics and genetic analysis of groundwater in Hami basin, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 347): 133141.
    肖应凯, 王蕴慧. 青海柴达木盆地盐湖硼同位素地球化学研究[J]. 自然科学进展: 国家重点实验室通讯, 1999, 97): 616618.

    XIAO Yingkai, WANG Yunhui. Boron isotope geochemistry of salt lake in Qaidam basin, Qinghai Province[J]. Advances in Natural Science: Communications of State Key Laboratory of Natural Science, 1999, 97): 616618.
    许建新, 秦成功, 韩积斌, 等. 锂元素及其同位素对南翼山油田卤水形成演化的指示意义[J]. 盐湖研究, 2023, 311): 1124. doi: 10.12119/j.yhyj.202301002

    XU Jianxin, QIN Chenggong, HAN Jibin, et al. Geochemistry of Li and its isotope: inplications for origin and evolution of oil field water in Nanyishan tectonic area, Qaidam basin, Northwest China[J]. Journal of Salt Lake Research, 2023, 311): 1124. doi: 10.12119/j.yhyj.202301002
    徐凯, 许建新, 常政, 等. 柴达木盆地南翼山油田卤水水化学及氢氧同位素地球化学特征[J]. 盐湖研究, 2021, 294): 4351. doi: 10.12119/j.yhyj.202104005

    XU Kai, XU Jianxin, CHANG Zheng, et al. Hydrochemical, hydrogen and oxygen isotopic characteristics of Nanyishan oilfield brine, Qaidam basin[J]. Journal of Salt Lake Research, 2021, 294): 4351. doi: 10.12119/j.yhyj.202104005
    杨谦, 吴必豪, 王绳祖, 等. 察尔汗盐湖钾盐矿床地质[M]. 北京: 地质出版社, 1993.

    YANG Qian, WU Bihao, WANG Shengzu, et al. Geology of potassium salt deposit in Chaerhan salt lake[M]. Beijing: Geology Press, 1993.
    余小灿, 刘成林, 徐海明, 等. 湖北江陵凹陷古近系卤水中锂的来源与富集机理[C]. 中国矿物岩石地球化学学会矿床地球化学专业委员会、中国地质学会矿床地质专业委员会、中国科学院地球化学研究所矿床地球化学国家重点实验室. 第九届全国成矿理论与找矿方法学术讨论会论文摘要集, 2019: 559.
    赵凡, 孙德强, 闫存凤, 等. 柴达木盆地中新生代构造演化及其与油气成藏关系[J]. 天然气地球科学, 2013, 245): 940957.

    ZHAO Fan, SUN Deqiang, YAN Cunfeng, et al. Meso-Cenozoic tectonic evolution of Qaidam basin and its relationship with oil and gas accumulation[J]. Natural Gas Geoscience, 2013, 245): 940957.
    赵加凡, 陈小宏, 金龙. 柴达木盆地第三纪盐湖沉积环境分析[J]. 西北大学学报(自然科学版), 2005, 353): 342346.

    ZHAO Jiafan, CHEN Xiaohong, JIN Long. Analysis on sedimentary environment of the third stage saline lake in Qaidam basin[J]. Journal of Northwestern University(Natural Science Edition), 2005, 353): 342346.
    赵为永, 魏学斌, 雷涛, 等. 青海省南翼山构造深层卤水矿床特征及分布规律研究[J]. 能源与环保, 2021, 435): 3945.

    ZHAO Weiyong, WEI Xuebin, LEI Tao, et al. Study on deposit characteristics and distribution of deep brine in Nanyishan, Qinghai Province[J]. China Energy and Environmental Protectio, 2021, 435): 3945.
    张江华, 梁永平, 王维泰, 等. 硫同位素技术在北方岩溶水资源调查中的应用实例[J]. 中国岩溶, 2009, 283): 235241. doi: 10.3969/j.issn.1001-4810.2009.03.002

    ZHANG Jianghua, LIANG Yongping, WANG Weitai, et al. A practical use of 34 S in the investigation of karst groundwater resource in North China[J]. Carsologica Sinica, 2009, 283): 235241. doi: 10.3969/j.issn.1001-4810.2009.03.002
    张涛, 宋春晖, 王亚东, 等. 柴达木盆地西部地区晚新生代构造变形及其意义[J]. 地学前缘, 2012, 195): 312321.

    ZHANG Tao, SONG Chunhui, WANG Yadong, et al. The late Cenozoic tectonic deformation in the western Qaidam basin and its implication[J]. Earth Science Frontier, 2012, 195): 312321.
    郑绵平, 张雪飞, 侯献华, 等. 青藏高原晚新生代湖泊地质环境与成盐成藏作用[J]. 地球学报, 2013, 342): 129138. doi: 10.3975/cagsb.2013.02.01

    ZHENG Mianping, ZHANG Xuefei, HOU Xianhua, et al. Geological environments of the late Cenozoic lakes and salt-forming and oil-gas pool-forming actions in the Tibetan Plateau[J]. Acta Geoscientica Sinica, 2013, 342): 129138. doi: 10.3975/cagsb.2013.02.01
    郑绵平, 张永生, 刘喜方, 等. 中国盐湖科学技术研究的若干进展与展望[J]. 地质学报, 2016, 909): 21232166. doi: 10.3969/j.issn.0001-5717.2016.09.004

    ZHENG Mianping, ZHANG Yongsheng, LIU Xifang, et al. Progress and prospects of salt lake research in China[J]. Acta Geologica Sinica, 2016, 909): 21232166. doi: 10.3969/j.issn.0001-5717.2016.09.004
    郑希民, 杨柳, 易定红, 等. 柴达木盆地西部古近系石膏及其硫同位素分布特征[J]. 沉积与特提斯地质, 2019, 394): 6570.

    ZHENG Ximin, YANG Liu, YI Dinghong, et al. Distrbution of gypsum and sulfur isotopes in the Palaeogene strata, western Qaidam basin, Qinghai[J]. Sedimentary Geology and Tethyan Geology, 2019, 394): 6570.
    周训, 曹琴, 尹菲, 等. 四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因[J]. 地质学报, 2015, 8911): 19081920.

    ZHOU Xun, CAO Qin, YIN Fei, et al. Characteristics of the brines and hot springs in the Triassic Carbonates in the high and steep fold zone of the eastern Sichuan basin[J]. Acta Geologica Sinica, 2015, 8911): 19081920.
    朱喜, 王贵玲, 马峰, 等. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义[J]. 地球科学, 2021, 467): 25942608.

    ZHU Xi, WANG Guiling, MA Feng, et al. Hydrogeochemistry of geothermal waters from Taihang Mountain-Xiong’an new area and its indicating significance[J]. Earth Science, 2021, 467): 25942608.
    Boschetti T, Manzi V, Toscani L. Messinian Ca-Cl brines from Mediterranean basin: tracing diagenetic effects by Ca/Mg versus Ca/Sr dragram[J]. Aquat Geochem, 2013, 19: 195208. doi: 10.1007/s10498-013-9186-7
    Brugger J, Long N, McPhail D C, et al. An active amagmatic hydrothermal system: the Paralana hot springs, Northern Flinders Ranges, South Australia[J]. Chemical Geology, 2005, 222: 3564. doi: 10.1016/j.chemgeo.2005.06.007
    Canfield D E, Tseke A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature, 1996, 3826587): 127132. doi: 10.1038/382127a0
    Carpenter, A. B. Origin and chemical evolution of brines in sedimentary basins[J]. Oklahoma Geological Survey Circular, 1978, 79: 6077.
    Cheng F, Jolivet M, Guo Z J, et al. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review[J]. Earth-Science Reviews, 2021, 220: 103730. doi: 10.1016/j.earscirev.2021.103730
    Elenga, H I, Tan H B, Su J B, et al. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: evidence from B and Sr isotopes[J]. Geochemistry, 2021, 81: 125797125815. doi: 10.1016/j.chemer.2021.125797
    Fan Q S, Lowenstein TK, Wei H C, et al. Sr isotope and major ion compositional evidence for formation of Qarhan Salt Lake, western China[J]. Chemical Geology, 2018, 497: 128145. doi: 10.1016/j.chemgeo.2018.09.001
    Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 1703962): 10881090. doi: 10.1126/science.170.3962.1088
    Habicht K S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J]. Geochimica et Cosmochimica Acta, 1997, 6124): 53515361. doi: 10.1016/S0016-7037(97)00311-6
    Han G, Pan T, Li Q K, et al. Genesis of Neogene formation waters in the central Qaidam basin: clues from hydrochemistry and stable D-O-S-Sr isotopes[J]. Acta Geologica Sinica (English Edition), 2023, 976): 18011813. doi: 10.1111/1755-6724.15098
    Hao L W, Jia J T, Tao H F, et al. Origin of the dolomitic ooids formed in the Pliocene Shizigou formation in the Qaidam basin, Northern Tibet Plateau and implications for climate change[J]. Minerals, 2022, 1212): 1586. doi: 10.3390/min12121586
    Holser W T, KAPLAN I R. Isotope geochemistry of sedimentary sulfates[J]. Chemical Geology, 1966, 1: 93135. doi: 10.1016/0009-2541(66)90011-8
    Li J S, Chen F K, Ling Z Y, et al. Lithium sources in oilfield waters from the Qaidam basin, Tibetan Plateau: Geochemical and Li isotopic evidence[J]. Ore Geology Reviews, 2021, 139: 104481. doi: 10.1016/j.oregeorev.2021.104481
    Li J S, Li T W, Ma Y Q, et al. Distribution and origin of brine-type Li-Rb mineralization in the Qaidam basin, NW China[J]. Science China Earth Science, 2022, 653): 477489. doi: 10.1007/s11430-021-9855-6
    Li Y S, Pan T, Li H P, et al. Source and genesis of Ca-Cl type brines in Qaidam basin, Qinghai-Tibetan Plateau: evidence from hydrochemistry as well as B and Li isotopes[J]. Frontiers in Environmental Science, 2024, 11.
    Miao W L, Zhang X Y, Li Y L, et al. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam basin, China: quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes[J]. Hydrology, 2022, 614: 128630128714. doi: 10.1016/j.jhydrol.2022.128630
    Orberger B, Rojas W, Millot R, et al. Stable isotopes (Li, O, H) combined with brine chemistry: powerful tracers for Li origins in Salar deposits from the Puna region, Agentina[J]. Procedia Earth and Planetary Science, 2015, 13: 307311. doi: 10.1016/j.proeps.2015.07.072
    Raab M, Spiro B. Sulfur isotopic variations during seawater evaporation with fractional crystallization[J]. Chemical Geology: Isotope Geoscience section, 1991, 864): 323333. doi: 10.1016/0168-9622(91)90014-N
    Rittenhouse, G. Bromine in oil-field waters and its use in determining possibilities of origin of these waters[J]. American Association of Petroleum Geologists Bulletin, 1967, 51: 24302440.
    Stueber, A. M. , Walter, L. M. Origin and chemical evolution of formation waters from Silurian–Devonian strata in the Illinois basin, USA[J]. Geochimica et Cosmochimica Acta, 1991, 55: 309–325.
    Tan H B, Rao W B, Ma H Z, et al. Hydrogen, oxygen, helium and strontium isotopic constraints on the formation of oilfield waters in the western Qaidam basin, China[J]. Journal of Asian Earth Sciences, 2011, 402): 651660. doi: 10.1016/j.jseaes.2010.10.018
    Thode H G, Monster J. Sulfur-isotope geochemistry of petroleum, evaporites, and ancient seas[J]. AAPG Bulletin, 1965, 4: 367377.
    Vengosh A, Chivas A R, Mcculloch M T. Direct determinations of boron and chlorine isotope compositions in geological materials by negative thermal-ionization mass spectrometry[J]. Chemical Geology Isotope Geoscience, 1989, 794): 333343. doi: 10.1016/0168-9622(89)90039-0
  • Related Articles

Catalog

    Article views (36) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return