ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
ZHANG Jianfang,CHEN Haoran,WU Jianghan,et al. Review on the Progress of Genetic Research Methods of Fluorite Deposits[J]. Northwestern Geology,2024,57(4):97−112. doi: 10.12401/j.nwg.2024055
Citation: ZHANG Jianfang,CHEN Haoran,WU Jianghan,et al. Review on the Progress of Genetic Research Methods of Fluorite Deposits[J]. Northwestern Geology,2024,57(4):97−112. doi: 10.12401/j.nwg.2024055

Review on the Progress of Genetic Research Methods of Fluorite Deposits

More Information
  • Received Date: May 01, 2024
  • Revised Date: June 02, 2024
  • Accepted Date: June 02, 2024
  • Available Online: June 05, 2024
  • Fluorite is a strategically important nonmetallic mineral, the research on its genesis is of significant importance. This paper reviews the progress of genetic research methods in order to promote the in-depth study of the genesis of domestic fluorite deposits and make a contribution to a new round of prospecting breakthrough strategy. The distribution characteristics and genetic types of fluorite deposits worldwide and in China are summarized. Furthermore, the current status and progress of the main research methods in fluid inclusions, ore-forming fluids and material sources, and ore-forming geochronology are reviewed. The fluid inclusion assemblage and in-situ composition techniques of single fluid inclusion of fluorite are summarized, and the source of H-O-Sr-Ca-Nd isotope tracer and the fine reflection of in-situ trace rare earth elements on the mineralization process are discussed. The author proposes that the in-situ analysis technique should be employed to test the fluid inclusions and fluorite components, thereby enabling a more accurate description of the evolution process of ore-forming fluid components. The application of Lu-Hf, U-Pb, Sm-Nd, (U-Th)/He and fission track geochronology of fluorite is not only important for the accurate determination of the ore-forming age of fluorite-bearing deposits, but also necessary for the correct interpretation of deposit uplift and denudation in ore-forming exploration.

  • 曹华文, 张寿庭, 高永璋, 等. 内蒙古林西萤石矿床稀土元素地球化学特征及其指示意义[J]. 地球化学, 2014, 432): 131140.

    CAO Huawen, ZHANG Shouting, GAO Yongzhang, et al. REE geochemistry of fluorite from Linxi fluorite deposit and its geological implications, Inner Mongolia Autonomous Region[J]. Geochimica, 2014, 432): 131140.
    曹华文, 张伟, 裴秋明, 等. 滇西小龙河、来利山锡矿床的萤石、方解石微量元素地球化学特征[J]. 矿物岩石地球化学通报, 2016, 355): 925935. doi: 10.3969/j.issn.1007-2802.2016.05.013

    CAO Huawen, ZHANG Wei, PEI Qiuming, et al. Trace Element Geochemistry of Fluorite And Calcite from the Xiaolonghe Tin Deposits and Lailishan Tin Deposits in Western Yunnan, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 355): 925935. doi: 10.3969/j.issn.1007-2802.2016.05.013
    曹俊臣. 初论中国层控萤石矿床分类及某些地球化学特征[J]. 地质与勘探, 1985,217): 814.
    曹俊臣. 热液脉型萤石矿床萤石气液包裹体氢、氧同位素特征[J]. 地质与勘探, 1994, 304): 2829.
    陈登, 刘志臣, 汤子程, 等. 贵州务川涪洋地区萤石矿床稀土元素地球化学特征[J]. 矿物学报, 2023, 436): 861872.

    CHEN Deng, LIU Zhichen, TANG Zicheng, et al. Geochemical characteristics of rare earth elements of samples in some fluorite deposits in the Fuyang area, Wuchuan, Guizhou, China[J]. Acta Mineralogica Sinica, 2023, 436): 861872.
    陈怀录, 张良旭, 吕鸿图. 马衔山萤石矿床萤石裂变径迹年龄的测定及成矿时代探讨[J]. 科学通报, 1987,14): 10871090.
    陈军元, 刘艳飞, 颜玲亚, 等. 石墨、萤石等战略非金属矿产发展趋势研究[J]. 地球学报, 2021, 422): 287296.

    CHEN Junyuan, LIU Yanfei, YAN Lingya, et al. Research on Development Trend of Strategic Nonmetallic Minerals such as Graphite and Fluorite[J]. Acta Geoscientica Sinica, 2021, 422): 287296.
    陈应华, 蓝廷广, 唐燕文, 等. 闪锌矿中单个流体包裹体成分LA-ICP-MS分析及其指示意义: 以南岭新田岭钨矿床为例[J]. 矿床地质, 2023, 425): 859876.

    CHEN Yinghua, LAN Tingguang, TANG Yanwen, et al. LA-ICP-MS analysis of single fluid inclusions in sphalerite and its implications: A case study from Xintianling tungsten deposit in Nanling region, South China[J]. Nineral Deposits, 2023, 425): 859876.
    戴慧, 黄文清, 曹素巧, 等. 激光拉曼光谱在包裹体研究中的应用[J]. 宝石和宝石学杂志(中英文), 2022, 245): 146154.

    DAI Hui, HUANG Wenqing, CAO Suqiao, et al. Application of Laser Raman Spectroscopy in the Study of Inclusion[J]. Journal of Gems & Gemmology, 2022, 245): 146154.
    董会, 曹佰迪, 董敏, 等. 天然流体包裹体均一状态下拉曼光谱研究[J]. 西北地质, 2021, 544): 274279.

    DONG Hui, CAO Baidi, DONG Min, et al. Study on the Raman Spectra of Natural Fluid Inclusions Under Uniform State[J]. Northwestern Geology, 2021, 544): 274279.
    董文超, 庞绪成, 司媛媛, 等. 河南嵩县车村萤石矿床稀土元素特征及地质意义[J]. 中国稀土学报, 2020, 385): 706714.

    DONG Wenchao, PANG Xucheng, SI Yuanyuan, et al. REE Geological Characteristics of Checun Fluorite Deposit in Song County, Henan Province[J]. Journal of The Chiness Society of Rare Earths, 2020, 385): 706714.
    方贵聪, 王登红, 陈毓川, 等. 南岭萤石矿床成矿规律及成因[J]. 地质学报, 2020, 941): 140178.

    FANG Guicong, WANG Denghong, CHEN Yuchuan, et al. Metallogenic Regularities and genesis of the fluorite deposits in Nanlingregion[J]. Acta Geological Sinica, 2020, 941): 140178.
    方乙, 张寿庭, 邹灏, 等. 浅覆盖区萤石矿综合勘查方法研究——以内蒙古林西赛波萝沟门萤石矿为例[J]. 成都理工大学学报(自然科学版), 2014, 411): 94101.

    FANG Yi, ZHANG Shouting, ZOU Hao, et al. Comprehensive exploration method for fluorite deposits in grasslands covered area: A case study of the Saiboluogoumen fluorite deposit in Linxi, Inner Mongolia, China[J]. Journal of Chengdu University of Technology (Science & Technology edition), 2014, 411): 94101.
    龚雪婧, 孟贵祥, 汤贺军, 等. 湘东光明萤石矿黑云母花岗岩地球化学特征及其对萤石成矿的启示[J]. 地质通报, 2023, 429): 14321452.

    GONG Xuejing, MENG Guixiang, TANG Hejun, et al. Geochemical characteristics of biotite granite in the Guangming fluorite deposit in eastern Hunan, China: Implications to fluorite mineralization[J]. Geological Bulletin of China, 2023, 429): 14321452.
    郭宇, 陈登, 汤子程, 等. 黔东北地区金亮萤石矿床稀土元素地球化学特征与成矿物质来源[J]. 矿物学报, 2023, 436): 873881.

    GUO Yu, CHEN Deng, TANG Zicheng, et al. Ceochemical characteristics of rare earth elements and the source of ore-forming materials in the Jinliang fluorite deposit in the northeastern Guizhou[J]. Acta Mineralogica Sinica, 2023, 436): 873881.
    何佳乐, 潘忠习, 杜谷. 激光拉曼光谱技术在地矿领域的应用与研究进展[J]. 中国地质调查, 2022, 95): 111119.

    HE Jiale, PAN Zhongxi, DU Gu. Application and research progress of Laser Raman spectroscopy in geology and mineral resources[J]. Geological Survey of China, 2022, 95): 111119.
    何俊, 齐泽秋, 李为用, 等. 单种矿物单颗粒Rb-Sr同位素等时线定年的成矿年代学应用前景[J]. 华东地质, 2024, 451): 1625.

    HE Jun, QI Zeqiu, LI Weiyong, et al. Application prospect of the single-grain mineral Rb-Sr isotopic isochron dating in metallogenic geochronology[J]. East China Geology, 2024, 451): 1625.
    蒋子琦, 蓝廷广, 郭海浩, 等. 适用于单个流体包裹体LA-ICP-MS分析的多元素流体包裹体标样合成及飞秒激光分析方法的建立[J]. 矿物岩石地球化学通报, 2024: https://doi.org/10.19658/j.issn.1007-2802.2023.42.109.

    JIANG Ziqi, LAN Tingguang, GUO Haihao, et al. Synthesis of multi-element fluid inclusion standards suitable for the LA-ICP-MS analysis and establishment of the femtosecond laser analytical method[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024: https://doi.org/10.19658/j.issn.1007-2802.2023.42.109.
    李敬, 张寿庭, 商朋强, 等. 萤石资源现状及战略性价值分析[J]. 矿产保护与利用, 2019, 396): 6268.

    LI Jing, ZHANG Shouting, SHANG Pengqiang, et al. Present Situation and Analysis of Strategic Value of Fluorite Resource[J]. Conservation and Utilization of Mineral Resources, 2019, 396): 6268.
    李敏, 邹灏, 陈海锋, 等. 黔东北双河重晶石-萤石矿床流体包裹体组合研究及成因[J]. 矿物岩石地球化学通报, 2021, 404): 858870.

    LI Min, ZOU Hao, CHEN Haifeng, et al. Study on Fluid Inclusion Assemblages ( FIA) and Origin of the Shuanghe Barite-fluorite Deposit in the Northeastern Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 404): 858870.
    李晓东, 张艳, 韩润生, 等. 流体包裹体研究进展及其在矿床学中的应用[J]. 地质论评, 2022, 686): 23052318.

    LI Xiaodong, ZHANG Yan, HAN Runsheng, et al. Research progress of fluid inclusions and its application in ore deposit[J]. Geological Review, 2022, 686): 23052318.
    李阳, 邹灏, 刘行, 等. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用[J]. 岩矿测试, 2020, 392): 300310.

    LI Yang, ZOU Hao, LIU Hang, et al. Application of SILLS Software in Data Processing of Single Fluorite Fluid Inclusion LA-ICP-MS Trace Element Analysis[J]. Rock and Mineral Analysis, 2020, 392): 300310.
    李育彪, 杨旭. 我国萤石资源及选矿技术进展[J]. 矿产保护与利用, 2022, 422): 4958.

    LI Yubiao, YANG Xu. Overview of Fluorite Resources and Processing Technology in China[J]. Conservation and Utilization of Mineral Resources, 2022, 422): 4958.
    李长江, 蒋叙良. 浙江萤石矿床的裂变径迹年龄测定及有关问题讨论[J]. 地球化学, 1989, 182): 181188. doi: 10.3321/j.issn:0379-1726.1989.02.009

    LI Cangjiang, JIANG Xuliang. Fission-track Dating of Fluorite Deposits in Zhejiang Province and Some Related Probolems[J]. Geochimica, 1989, 182): 181188. doi: 10.3321/j.issn:0379-1726.1989.02.009
    刘道荣, 商朋强. 中国萤石矿床分类及稀土元素地球化学特征[J]. 地质与勘探, 2023, 592): 211222.

    LIU Daorong, SHANG Pengqiang. Classification and REE geochemical characteristics of fluorite deposits in China[J]. Geology and Exploration, 2023, 592): 211222.
    刘道荣, 商朋强. 中国萤石矿床流体包裹体研究进展[J]. 地质科学, 2024, 592): 510521. doi: 10.12017/dzkx.2024.035

    LIU Daorong, SHANG Pengqiang. Progress of fluid inclusion research in fluorite deposits in China[J]. Chinese Journal of Geology, 2024, 592): 510521. doi: 10.12017/dzkx.2024.035
    刘秋颖. 中国萤石资源供需形势分析及对策建议[J]. 矿产勘查, 2023, 1410): 17981804.

    LIU Qiuying. Analysis of supply-demand situation of fluorite resources in China and suggestions[J]. Mineral Exploration, 2023, 1410): 17981804.
    倪培, 范宏瑞, 潘君屹, 等. 流体包裹体研究进展与展望(2011-2020)[J]. 矿物岩石地球化学通报, 2021, 404): 802818+1001.

    NI Pei, FAN Hongrui, PAN Junyi, et al. Progress and Prospect of Fluid Inclusion Research in the Past Decade in China (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 404): 802818+1001.
    裴秋明, 张寿庭, 曹华文, 等. 内蒙古林西地区小北沟萤石矿床地质特征及找矿潜力分析[J]. 桂林理工大学学报, 2016, 363): 426434.

    PEI Qiuming, ZHANG Shouting, CAO Huawen, et al. Features and potential analysis of Xiaobeigou fluorite deposit in Linxi, Inner Mongolia[J]. Journal of Guilin University of Technology, 2016, 363): 426434.
    裴秋明. 大兴安岭南段萤石矿成矿规律及隐伏—半隐伏矿体预测[D]. 北京:中国地质大学(北京), 2018.

    PEI Qiuming. A studyon metallogenetic regularity and prognosis of concealed ore body in southern Great Xing’an Range, Northeastern China[D]. Beijing: China University of Geosciences (Beijing), 2018.
    彭建堂, 胡瑞忠, 蒋国豪. 萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J]. 岩石学报, 2003, 194): 785791.

    PENG Jiantang, HU Ruizhong,JIANG Guohao. Samarium-Neodymium isotope system of fluorites from the Qinglong antimony deposit, Guizhou Province: Constraints on the mineralizing age and ore-forming materials' sources[J]. Acta Petrowgica Sinica, 2003, 194): 785791.
    王春连, 王九一, 游超, 等. 战略性非金属矿产厘定、关键应用和供需形势研究[J]. 地球学报, 2022, 433): 267278.

    WANG Chunlian, WANG Jiuyi, YOU Chao, et al. A Study on Strategic Non-metallic Mineral Definition, Key Applications, and Supply and Demand Situation[J]. Acta Geoscientica Sinica, 2022, 433): 267278.
    王吉平, 商朋强, 熊先孝, 等. 中国萤石矿床分类[J]. 中国地质, 2014, 412): 315325.

    WANG Jiping, SHANG Pengqiang, XIONG Xianxiao, et al. The classification of fluorite deposits in China[J]. Geology in China, 2014, 412): 315325.
    王吉平, 朱敬宾, 李敬, 等. 中国萤石矿预测评价模型与资源潜力分析[J]. 地学前缘, 2018, 253): 172178.

    WANG Jiping, ZHU Jingbin, LI fing, et al. Prediction model and resource potential assessment of fluorite deposits in China[J]. Earth Science Frontiers, 2018, 253): 172178.
    王志海, 叶美芳, 董会, 等. 流体包裹体盐度低温拉曼光谱测定方法研究[J]. 岩矿测试, 2014, 336): 813821.

    WANG Zhihai, YE Meifang, DONG Hui, et al. Study on Salinity Determination of Fluid Inclusions by Cryogenic Raman Spectroscopy[J]. Rock and Mineral Analysis, 2014, 336): 813821.
    吴迪, 欧光习, 马剑, 等. 单个流体包裹体原位成分分析方法及其地质应用[J]. 天然气与石油, 2022, 404): 9097+107.

    WU Di, OU Guangxi, MA Jian, et al. In-situ composition analytical method of single fluid inclusion and its geological application[J]. Natural Gas and Oil, 2022, 404): 9097+107.
    吴越, 张长青, 田广. 四川跑马铅锌矿萤石稀土元素地球化学特征与指示意义[J]. 矿物学报, 2013, 333): 295301.

    WU Yue, ZHANG Changqing, TIAN Guang. REE Geochemistry of Fluorite from Paoma Lead-Zinc Deposit in Sichuan Province, China and Its Geological Implications[J]. Acta Mieralogica Sinica, 2013, 333): 295301.
    向蜜, 龚迎莉, 刘涛, 等. 钙同位素地球化学研究新进展及其在碳酸岩-共生硅酸盐研究中的应用[J]. 地质学报, 2021, 9512): 39373960.

    XIANG Mi, GONG Yingli, LlU Tao, et al. New advances in calcium isotope geochemistry and its application to carbonatite and associated silicate rocks[J]. Acta Geologica Sinica, 2021, 9512): 39373960.
    许成, 黄智龙, 漆亮, 等. 四川牦牛坪稀土矿床萤石REE配分模式的影响因素[J]. 矿物学报, 2001, 213): 557559.

    XU Cheng, HUANG Zhilong, QI Liang, et al. Factors affecting the REE patterns of fluorites in Maoniuping ore deposit, Sichuan Province[J]. Acta Mineralogica Sinica, 2001, 213): 557559.
    许若潮, 龙训荣, 刘飚, 等. 湘南界牌岭锡多金属矿床萤石LA-ICP-MS微量元素地球化学特征及意义[J]. 矿床地质, 2022, 411): 158173.

    XU Ruochao, LONG Xunrong, LIU Biao, et al. LA-ICP-MS trace element analysis of fluorite and implications in Jiepailing tinpolymetallic deposit from South of Hunan Province[J]. Mineral Deposits, 2022, 411): 158173.
    杨莉, 袁万明, 洪树炯, 等. 裂变径迹技术及其地质应用[J]. 中国地质调查, 2022, 93): 104112.

    YANG Li, YUAN Wanming, HONG Shujiong, et al. Fission track technology and its geological applications[J]. Geological Survey of China, 2022, 93): 104112.
    叶锡芳. 浙江萤石矿床成矿规律与成矿模式[J]. 西北地质, 2014, 471): 208220. doi: 10.3969/j.issn.1009-6248.2014.01.019

    YE Xifang. Mineralization and Metallogenic Model of Fluorite Deposits in the Zhejiang Area[J]. Northwestern Geology, 2014, 471): 208220. doi: 10.3969/j.issn.1009-6248.2014.01.019
    占岗乐, 吴火星. 江西南城小竺萤石矿成矿作用及找矿方向[J]. 华东地质, 2021, 423): 302309.

    ZHAN Gangle, WU Huoxing. Mineralization and prospecting direction of Xiaozhu fluorite deposit in Nancheng, Jiangxi Province[J]. East China Geology, 2021, 423): 302309.
    张生辉, 王振涛, 李永胜, 等. 中国关键矿产清单、应用与全球格局[J]. 矿产保护与利用, 2022, 425): 138168.

    ZHANG Shenghui, WANG Zhentao, LI Yongsheng, et al. List, application and global pattern of critical minerals of China[J]. Conservation and Utilization of Mineral Resources, 2022, 425): 138168.
    张寿庭, 曹华文, 郑硌, 等. 内蒙古林西水头萤石矿床成矿流体特征及成矿过程[J]. 地学前缘, 2014, 215): 3140.

    ZHANG Shouting, CAO Huawen, ZHENG Luo, et al. Characteristics of ore-forming fhuids and mineralization processes of the Shuitou fluorite deposit in Linxi, inner Mongolia Autonomous Region[J]. Earth Seience Frontiers, 2014, 215): 3140.
    赵辛敏, 高永宝, 燕洲泉, 等. 阿尔金卡尔恰尔超大型萤石矿带成因: 来自年代学、稀土元素和Sr-Nd同位素的约束[J]. 西北地质, 2023, 561): 3147. doi: 10.12401/j.nwg.2022035

    ZHAO Xinmin, GAO Yongbao, YAN Zhouquan, et al. Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr-Nd Isotopes Constraints[J]. Northwestern Geology, 2023, 561): 3147. doi: 10.12401/j.nwg.2022035
    中华人民共和国自然资源部. 中国矿产资源报告2023[M]. 北京: 地质出版社,2023.
    朱敬宾, 王吉平, 商朋强, 等. 中国萤石矿床锶同位素、氢氧同位素地球化学特征[J]. 化工矿产地质, 2021, 431): 716. doi: 10.3969/j.issn.1006-5296.2021.01.002

    ZHU Jingbin, WANG Jiping, SHANG Pengqiang, et al. Geochemical characteristics of strontium and hydrogen and oxygen isotopes in fluorite deposits in China[J]. Geology of Chemical Minerals, 2021, 431): 716. doi: 10.3969/j.issn.1006-5296.2021.01.002
    邹灏, 张寿庭, 方乙, 等. 中国萤石矿的研究现状及展望[J]. 国土资源科技管理, 2012, 295): 3542. doi: 10.3969/j.issn.1009-4210.2012.05.006

    ZOU Hao, ZHANG Shouting, FANG Yi, et al. Current Situation and Prospeet of Fluorite Deposit Researches in China[J]. Scientific and Technological Management of Land and Resources, 2012, 295): 3542. doi: 10.3969/j.issn.1009-4210.2012.05.006
    邹灏, 徐旃章, 张寿庭, 等. 重庆彭水火石垭重晶石-萤石矿床控矿因素与成因[J]. 成都理工大学学报(自然科学版), 2013, 401): 8996.

    ZOU Hao, XU Zhanzhang, ZHANG Shouting, et al. Ore-control factors and genesis of Huoshiya barite-fluorite deposit in Pengshui, Chongqing, China[J]. Journal of Chengdu University of Technology (Science & Technology edition), 2013, 401): 8996.
    邹灏, 张强, 包浪, 等. 浙江天台盆地下陈萤石矿床地质特征及ESR年代学[J]. 成都理工大学学报(自然科学版), 2016, 431): 8694.

    ZOU Hao, ZHANG Qiang, BAO Lang, et al. Geological characteristics and ESR dating of Xiachen fluorite deposit in Tiantai basin, Zhejiang, China[J]. Journal of Chengdu University of Technology (Science& Technology edition), 2016, 431): 8694.
    Alaminia Z, Tadayon M, Griffith E M, et al. Tectonic-controlled sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment, Komsheche, NE Isfahan, Central Iran[J]. Chemical Geology, 2021, 566: 120084. doi: 10.1016/j.chemgeo.2021.120084
    Banerjee A, Chakrabarti R. A geochemical and Nd, Sr and stable Ca isotopic study of carbonatites and associated silicate rocks from the ~65 Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India: Implications for crustal contamination, carbonate recycling, hydrothermal alteration and source-mantle mineralogy[J]. Lithos, 2019, 326−327: 572585. doi: 10.1016/j.lithos.2019.01.007
    Barker S L L, Bennett V C, Cox S F, et al. Sm-Nd, Sr, C and O isotope systematics in hydrothermal calcite-fluorite veins: Implications for fluid-rock reaction and geochronology[J]. Chemical Geology, 2009, 2681−2): 5866. doi: 10.1016/j.chemgeo.2009.07.009
    Bau M, Dulski P. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 1995, 1192): 213223.
    Bau M, Romer R L, Luders V, et al. Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England[J]. Mineralium Deposita, 2003, 388): 9921008. doi: 10.1007/s00126-003-0376-x
    Bedoya A, Glorie S, Hand M, et al. Apatite Triple Dating (Lu-Hf, U-Pb, FT) Constrains Deformation and Cooling in the Coompana and Madura Provinces, Western Australia[J]. Lithosphere, 2024, 202314): 122.
    Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 573): 683684. doi: 10.1016/0016-7037(93)90378-A
    Bodnar R J, Lecumberri-Sanchez P, Moncada D, et al. 13.5 - Fluid Inclusions in Hydrothermal Ore Deposits[A]. In: Holland Heinrich D, Turekian Karl K (editors). Treatise on Geochemistry (Second Edition)[M]. Oxford: Elsevier, 2014, 119−142.
    Cao H W, Li G M, Zhang R Q, et al. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes[J]. Gondwana Research, 2021, 92: 72101. doi: 10.1016/j.gr.2020.12.020
    Chernyshev I V, Golubev V N, Aleshin A P, et al. Fluorite as an Sm-Nd geochronometer of hydrothermal processes: Dating of mineralization hosted in the Strel’tsovka uranium ore field, eastern Baikal region[J]. Geology of Ore Deposits, 2017, 586): 447455.
    Chesley J T, Halliday A N, Kyser T K, et al. Direct dating of mississippi valley-type mineralization; use of Sm-Nd in fluorite[J]. Economic Geology, 1994, 895): 11921199. doi: 10.2113/gsecongeo.89.5.1192
    Chesley J T, Halliday A N, Scrivener R C. Samarium-Neodymium Direct Dating of Fluorite Mineralization[J]. Science, 1991, 2525008): 949951. doi: 10.1126/science.252.5008.949
    Deng X H, Chen Y J, Bagas L, et al. Isotope (S-Sr-Nd-Pb) constraints on the genesis of the ca. 850Ma Tumen Mo–F deposit in the Qinling Orogen, China[J]. Precambrian Research, 2015, 266: 108118. doi: 10.1016/j.precamres.2015.05.019
    Dill H G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium[J]. Earth-Science Reviews, 2010, 1001−4): 1420. doi: 10.1016/j.earscirev.2009.10.011
    Duan Z P, Jiang S Y, Su H M, et al. Textural features and in situ trace element analysis of fluorite from the Wujianfang fluorite deposit, Inner Mongolia (NE China): Insights into fluid metasomatism and ore-forming process[J]. Ore Geology Reviews, 2022, 147: 104982. doi: 10.1016/j.oregeorev.2022.104982
    Evans N J, Wilson N S F, Cline J S, et al. Fluorite (U-Th)/He thermochronology: Constraints on the low temperature history of Yucca Mountain, Nevada[J]. Applied Geochemistry, 2005, 206): 10991105. doi: 10.1016/j.apgeochem.2005.02.008
    Fang Y, Zou H, Bagas L, et al. Fluorite deposits in the Zhejiang Province, southeast China: The possible role of extension during the late stages in the subduction of the Paleo-Pacific oceanic plate, as indicated by the Gudongkeng fluorite deposit[J]. Ore Geology Reviews, 2020, 117: 103276. doi: 10.1016/j.oregeorev.2019.103276
    Farley K A. (U-Th)/He Dating: Techniques, Calibrations, and Applications[J]. Reviews in Mineralogy and Geochemistry, 2002, 471): 819844. doi: 10.2138/rmg.2002.47.18
    Galindo C, Tornos F, Darbyshire D P F, et al. The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study[J]. Chemical Geology, 1994, 1123−4): 351364. doi: 10.1016/0009-2541(94)90034-5
    Gigoux M, Négrel P, Guerrot C, et al. δ44Ca of Stratabound Fluorite Deposits in Burgundy (France): Tracing Fluid Origin and/or Fractionation Processes[J]. Procedia Earth and Planetary Science, 2015, 13: 129133. doi: 10.1016/j.proeps.2015.07.031
    Glorie S, Mulder J, Hand M, et al. Laser ablation (in situ) Lu-Hf dating of magmatic fluorite and hydrothermal fluorite-bearing veins[J]. Geoscience Frontiers, 2023: 101629.
    Grønlie A, Harder V, Roberts D. Preliminary fission-track ages of fluorite mineralisation along fracture zones, inner Trondheimsfjord, Central Norway[J]. Norsk Geologisk Tidsskrift, 1990, 703): 173178.
    Günther D, Audétat A, Frischknecht R, et al. Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation-inductively coupled plasmamass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1998, 134): 263270. doi: 10.1039/A707372K
    Halliday A N, Shepherd T J, Dickin A P, et al. Sm-Nd evidence for the age and origin of a Mississippi Valley type or deposit[J]. Nature, 1990, 3446261): 5456. doi: 10.1038/344054a0
    Hayes T S, Miller M M, Orris G J, et al. Chapter G. Fluorine, in Critical Mineral Resources of the United States[A]. In: Schulz Klaus J, DeYoung Jr John H, Seal Robert R, et al (editors). Economic and Environmental Geology and Prospects for Future Supply[M]. Reston: U. S. Geological Survey, 2017, G1−G80.
    Heijlen W, Vos K, Kartalis N, et al. The formation of vein-type barite (± base metal, gold) deposits in northern Madagascar and its link with Mesozoic Pangean rifting[J]. Mineralium Deposita, 2024, 59: 255273. doi: 10.1007/s00126-023-01205-8
    Hintzen R, Werner W, Hauck M, et al. Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry[J]. European Journal of Mineralogy, 2023, 353): 403426. doi: 10.5194/ejm-35-403-2023
    Kinnaird J A, Kruger F J, Cawthorn R G. Rb-Sr and Nd-Sm isotopes in fluorite related to the granites of the Bushveld Complex[J]. South African Journal of Geology, 2004, 1073): 413430. doi: 10.2113/107.3.413
    Koul S L, Chadderton L T. The chemical etching of fission fragment tracks in natural fluorite[J]. Radiation Effects, 1988, 1064): 319333. doi: 10.1080/00337578808225712
    Lenoir L, Blaise T, Chourio-Camacho D, et al. The origin of fluorite-barite mineralization at the interface between the Paris Basin and its Variscan basement: insights from fluid inclusion chemistry and isotopic (O, H, Cl) composition[J]. Mineralium Deposita, 2024, 59: 397417. doi: 10.1007/s00126-023-01219-2
    Lenoir L, Blaise T, Somogyi A, et al. Uranium incorporation in fluorite and exploration of U-Pb dating[J]. Geochronology, 2021, 3: 19227.
    Li S, Zhang W, Cai J, et al. Multiple pulses of fluids involved in the formation of carbonatite-related REE deposits as revealed by fluorite[J]. Ore Geology Reviews, 2023, 159: 105546. doi: 10.1016/j.oregeorev.2023.105546
    Liu B, Wu Q H, Li H, et al. Fault-controlled fluid evolution in the Xitian W-Sn-Pb-Zn-fluorite mineralization system (South China): Insights from fluorite texture, geochemistry and geochronology[J]. Ore Geology Reviews, 2020, 116: 103233. doi: 10.1016/j.oregeorev.2019.103233
    Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 119): 899904. doi: 10.1039/JA9961100899
    Mernagh T P, Wilde A R. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1989, 534): 765771. doi: 10.1016/0016-7037(89)90022-7
    Möller P, Bau M, Dulski P, et al. REE and yttrium fractionation in fluorite and their bearing on fluorite formation[M]. Stuttart: Proceedings of the Ninth Quadrennial IAGOD Symposium, 1998, 575−592.
    Möller P, Parekh P P, Schneider H J. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis[J]. Mineralium Deposita, 1976, 111): 111116. doi: 10.1007/BF00203098
    Munoz M, Premo W, Courjault-Rade P. Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France[J]. Mineralium Deposita, 2005, 398): 970975. doi: 10.1007/s00126-004-0453-9
    Nägler T F, Pettke T, Marshall D. Initial isotopic heterogeneity and secondary disturbance of the Sm-Nd system in fluorites and fluid inclusions: A study on mesothermal veins from the central and western Swiss Alps[J]. Chemical Geology, 1995, 1253−4): 241248. doi: 10.1016/0009-2541(95)00091-Y
    Ni P, Li W S, Pan J Y, et al. Fluid Processes of Wolframite-Quartz Vein Systems: Progresses and Challenges[J]. Minerals, 2022, 122): 237. doi: 10.3390/min12020237
    Pan J Y, Ni P, Wang R C. Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions[J]. American Mineralogist, 2019, 1048): 10921116. doi: 10.2138/am-2019-6958
    Pei Q, Zhang S, Santosh M, et al. Geochronology, geochemistry, fluid inclusion and C, O and Hf isotope compositions of the Shuitou fluorite deposit, Inner Mongolia, China[J]. Ore Geology Reviews, 2017, 83: 174190. doi: 10.1016/j.oregeorev.2016.12.022
    Pei Q M, Zhang S T, Hayashi K I, et al. Nature and Genesis of the Xiaobeigou Fluorite Deposit, Inner Mongolia, Northeast China: Evidence from Fluid Inclusions and Stable Isotopes[J]. Resource Geology, 2019, 69: 148166. doi: 10.1111/rge.12191
    Pei Q M, Li C H, Zhang S T, et al. Vein-type fluorite mineralization of the Linxi district in the Great Xing'an Range, Northeast China: Insights from geochronology, mineral geochemistry, fluid inclusion and stable isotope systematics[J]. Ore Geology Reviews, 2022, 142: 104708. doi: 10.1016/j.oregeorev.2022.104708
    Pi T, Solé J, Taran Y. (U-Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico[J]. Mineralium Deposita, 2005, 398): 976982. doi: 10.1007/s00126-004-0443-y
    Piccione G, Rasbury E T, Elliott B A, et al. Vein fluorite U-Pb dating demonstrates post-6.2 Ma rare-earth element mobilization associated with Rio Grande rifting[J]. Geosphere, 2019, 156): 19581972. doi: 10.1130/GES02139.1
    Richardson C K, Holland H D. The solubility of fluorite in hydrothermal solutions, an experimental study[J]. Geochimica Et Cosmochimica Acta, 1979, 438): 13131325. doi: 10.1016/0016-7037(79)90121-2
    Richardson C K, Rye R O, Wasserman M D. The chemical and thermal evolution of the fluids in the Cave-in-Rock fluorspar district, Illinois; stable isotope systematics at the Deardorff Mine[J]. Economic Geology, 1988, 834): 765783. doi: 10.2113/gsecongeo.83.4.765
    Ronchi L H, Touray J C, Michard A, et al. The Ribeira Fluorite District, Southern Brazil - Geological and Geochemical (Ree, Sm-Nd Isotopes) Characteristics[J]. Mineralium Deposita, 1993, 284): 240252. doi: 10.1007/BF02421574
    Rosa D, Schneider J, Chiaradia M. Timing and metal sources for carbonate-hosted Zn-Pb mineralization in the Franklinian Basin (North Greenland): Constraints from Rb-Sr and Pb isotopes[J]. Ore Geology Reviews, 2016, 79: 392407. doi: 10.1016/j.oregeorev.2016.05.020
    Ruiz J, Kesler S E, Jones L M, et al. Geology and geochemistry of the Las Cuevas fluorite deposit, San Luis Potosi, Mexico[J]. Economic Geology, 1980, 758): 12001209. doi: 10.2113/gsecongeo.75.8.1200
    Ruiz J, Kesler S E, Jones L M. Strontium isotope geochemistry of fluorite mineralization associated with fluorine-rich igneous rocks from the Sierra Madre Occidental, Mexico; possible exploration significance[J]. Economic Geology, 1985, 801): 3342. doi: 10.2113/gsecongeo.80.1.33
    Sallet R, Moritz R, Fontignie D. Fluorite 87Sr/86Sr and REE constraints on fluid-melt relations, crystallization time span and bulk DSr of evolved high-silica granites. Tabuleiro granites, Santa Catarina, Brazil[J]. Chemical Geology, 2000, 1641): 8192.
    Scharrer M, Fusswinkel T, Markl G. Triple-halogen (Cl-Br-I) fluid inclusion LA-ICP-MS microanalysis to unravel iodine behavior and sources during marine fluid infiltration into the basement in unconformity settings[J]. Geochimica et Cosmochimica Acta, 2023, 357: 6476. doi: 10.1016/j.gca.2023.06.023
    Scharrer M, Reich R, Fusswinkel T, et al. Basement aquifer evolution and the formation of unconformity-related hydrothermal vein deposits: LA-ICP-MS analyses of single fluid inclusions in fluorite from SW Germany[J]. Chemical Geology, 2021, 575: 120260. doi: 10.1016/j.chemgeo.2021.120260
    Seal R R, Rye R O. Stable isotope study of fluid inclusions in fluorite from Idaho: Implications for continental climates during the Eocene[J]. Geology, 1993, 213): 219222. doi: 10.1130/0091-7613(1993)021<0219:SISOFI>2.3.CO;2
    Shafiei Bafti B, Dunkl I, Madanipour S. Timing of fluorite mineralization and exhumation events in the east Central Alborz Mountains, northern Iran: constraints from fluorite (U-Th)/He thermochronometry[J]. Geological Magazine, 2021, 1589): 16001616. doi: 10.1017/S0016756821000169
    Shepherd T J, Chenery S R. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study[J]. Geochimica et Cosmochimica Acta, 1995, 5919): 39974007. doi: 10.1016/0016-7037(95)00294-A
    Shepherd T J, Rankin A H, Richards J P, et al. Fluid Inclusion Techniques of Analysis, in Techniques in Hydrothermal Ore Deposits Geology1998, Society of Economic Geologists. p. 125-149.
    Siebel W, Hann H, Danišík M, et al. Age constraints on faulting and fault reactivation: a multi-chronological approach[J]. International Journal of Earth Sciences, 2010, 996): 11871197. doi: 10.1007/s00531-009-0474-9
    Silva D A d, Geraldes M C, McMaster M, et al. (U-Th)/He ages from the fluorite mineralization of the Tanguá alkaline intrusion[J]. Anuario do Instituto de Geociencias (Online), 2018, 412): 1421. doi: 10.11137/2018_2_14_21
    Tritlla J, Levresse G. Comments on “(U-Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico” by Pi et al. (Mineralium Deposita 39: 976-982)[J]. Mineralium Deposita, 2006, 413): 296299. doi: 10.1007/s00126-006-0053-y
    USGS. Mineral commodity summaries 2024[M]. U. S. Geological Survey, 2024.
    Walter B F, Jensen J L, Coutinho P, et al. Formation of hydrothermal fluorite-hematite veins by mixing of continental basement brine and redbed-derived fluid: Schwarzwald mining district, SW-Germany[J]. Journal of Geochemical Exploration, 2020, 212: 106512. doi: 10.1016/j.gexplo.2020.106512
    Wolff R, Dunkl I, Kempe U, et al. Variable helium diffusion characteristics in fluorite[J]. Geochimica et Cosmochimica Acta, 2016, 188: 2134. doi: 10.1016/j.gca.2016.05.029
    Wolff R, Dunkl I, Kempe U, et al. The Age of the Latest Thermal Overprint of Tin and Polymetallic Deposits in the Erzgebirge, Germany: Constraints from Fluorite (U-Th-Sm)/He Thermochronology[J]. Economic Geology, 2015, 1108): 20252040. doi: 10.2113/econgeo.110.8.2025
    Xu W G, Fan H R, Hu F F, et al. Geochronology of the Guilaizhuang gold deposit, Luxi Block, eastern North China Craton: Constraints from zircon U-Pb and fluorite-calcite Sm-Nd dating[J]. Ore Geology Reviews, 2015, 65: 390399. doi: 10.1016/j.oregeorev.2014.10.010
    Yu L M, Zou H, Santosh M, et al. The link between Paleo-Tethys subduction and regional metallogeny in the SW Yangtze Block: New evidence from the Zubu carbonate-hosted F-Pb-Zn deposit[J]. Ore Geology Reviews, 2022, 144: 104809. doi: 10.1016/j.oregeorev.2022.104809
    Zhao Y, Pei Q, Zhang S T, et al. Formation timing and genesis of Madiu fluorite deposit in East Qinling, China: Constraints from fluid inclusion, geochemistry, and H-O-Sr-Nd isotopes[J]. Geological Journal, 2020, 554): 25322549. doi: 10.1002/gj.3522
    Zou H, Fang Y, Zhang S T, et al. The source of Fengjia and Langxi barite-fluorite deposits in southeastern Sichuan, China: evidence from rare earth elements and S, Sr, and Sm-Nd isotopic data[J]. Geological Journal, 2017, 523): 470488. doi: 10.1002/gj.2779
    Zou H, Li M, Bagas L, et al. Fluid composition and evolution of the Langxi Ba-F deposit, Yangtze Block, China: New Insight from LA-ICP-MS study of individual fluid inclusion[J]. Ore Geology Reviews, 2020, 125: 103702. doi: 10.1016/j.oregeorev.2020.103702
    Zou H, Zhang S T, Chen A Q, et al. Hydrothermal Fluid Sources of the Fengjia Barite-fluorite Deposit in Southeast Sichuan, China: Evidence from Fluid Inclusions and Hydrogen and Oxygen Isotopes[J]. Resource Geology, 2016, 661): 2436. doi: 10.1111/rge.12084
    Zou H, Li Q L, Bagas L, et al. A Neoproterozoic low-δ18O magmatic ring around South China: Implications for configuration and breakup of Rodinia supercontinent[J]. Earth and Planetary Science Letters, 2021, 575: 117196 . doi: 10.1016/j.jpgl.2021.117196
  • Related Articles

  • Cited by

    Periodical cited type(2)

    1. 沈金祥,张建芳,曹华文,喻黎明,方乙,邹灏. 浙江缙云县吾山萤石矿床成因:来自稀土元素、流体包裹体、红外光谱的制约. 西北地质. 2024(04): 37-49+305 . 本站查看
    2. 张毅,高永宝,刘明,王元伟,陈康,张龙,景永康,刘靖宇. 阿尔金西段库木塔什萤石矿床成矿流体特征及成矿机制探讨. 西北地质. 2024(04): 21-36 . 本站查看

    Other cited types(0)

Catalog

    Article views (259) PDF downloads (183) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return