ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274-282. DOI: 10.12401/j.nwg.2023104
Citation: LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274-282. DOI: 10.12401/j.nwg.2023104

Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique

More Information
  • Received Date: April 23, 2023
  • Revised Date: May 09, 2023
  • Accepted Date: May 30, 2023
  • Available Online: June 03, 2023
  • The LA–ICP–MS U–Pb dating technique is a crucial tool that has been widely employed in geological sciences. Despite its relative maturity, several critical issues still require attention in practical applications. This article provides a brief discussion of five critical aspects of this technique, including sample preparation, selection of dating results, lead loss, common lead, and presentation and interpretation of dating results. Firstly, for the U–Pb dating of complex minerals, it is recommended to employ mineral identification and location techniques in combination with LA–ICP–MS instruments for in–situ analysis directly on rock thin sections or polished sections, without mineral separation. However, attention must be paid to Pb contamination in sample preparation. Secondly, for the selection of dating results for detrital minerals, the 206Pb/207Pb age is utilized to represent the crystallization age of grains older than 1.5 Ga, while the 206Pb/238U age is employed for grains younger than 1.5 Ga. The determination and selection of the maximum depositional age of sedimentary rocks mainly rely on statistical methods and sometimes require the combination of geochemical data and geological background information as supplementary criteria. Thirdly, for young samples with continuous age distribution on the concordia line, various methods such as the concordia diagram, weighted mean diagram, CL images, and element contents should be used to identify whether there is an inconsistent lead loss line or not. Furthermore, this article focuses on a rarely used common lead correction method for detrital mineral U–Pb dating. Finally, this article emphasizes the theoretical basis that, when evaluating the quality of the weighted mean value, the closer the MSWD is to 1, the higher the data quality is. In summary, to conduct U–Pb dating studies on minerals using LA–ICP–MS technology, it is essential to consider multiple factors comprehensively to obtain accurate, reliable, and geologically meaningful dating results.

  • Antonio S, Larry M H, Thomas C, et al. In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS[J]. International Journal of Mass Spectrometry, 2006, 253, 87–97. doi: 10.1016/j.ijms.2006.03.003
    Becquerel H. Sur les radiations émises par phosphorescence[J]. Comptes Rendus, 1896, 122, 420-421.
    Bowes D R. The geology and geochemistry of lead ore deposits[J]. Earth-Science Reviews, 1977, 13(4), 315-384.
    Cawood P A, Nemchin A A, Strachan R A. Provenance record of Laurentian passive-margin strata in the northern Caledonides: Implications for paleodrainage and paleogeography[J]. Geological Society of America Bulletin, 2007, 119, 993-1003. doi: 10.1130/B26152.1
    Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting [J]. Geology, 2012, 40(10), 875−878.
    Condon D J, Bowring S A. A user’s guide to Neoproterozoic geochronology[A]. In Arnaud E, Halverson G P, Shields-Zhou G (Eds.). The Geological Record of Neoproterozoic Glaciations [R]. Geological Society of London, 2011: 135-146.
    Chiarenzelli J, Kratzmann D, Selleck B, et al. Age and provenance of Grenville supergroup rocks, Trans-Adirondack Basin, constrained by detrital zircons[J]. Geology, 2014, 43, 183-186.
    David J, Chew D, Petrus J. Apatite U-Pb dating with LA-ICP MS[J]. Chemical Geology, 2011, 280(1-2), 1-20. doi: 10.1016/j.chemgeo.2010.07.008
    Dickinson W R, Gehrels G E. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1-2), 115–125. doi: 10.1016/j.jpgl.2009.09.013
    Fleet M E. The geochemistry of lead[A]. In Holland H D, Turekian K K (Eds. ). Treatise on geochemistry[M]. Oxford: Elsevier, 2003, 9: 1–51.
    Fripiat J J. Lead isotopes in minerals[A]. In Henderson P (Ed. ). Rare earth element geochemistry[M]. Amsterdam: Elsevier, 1984: 571–584.
    Hiess J, Condon D J, McLean N, et al. 238U/235U systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335, 1610–1614. doi: 10.1126/science.1215507
    Herriott T M, Crowley J L, Schmitz M D, et al. Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA[J]. Geology, 2019, 47(11), 1044-1048. doi: 10.1130/G46312.1
    Horstwood M S A, Košler J, Gehrels G, et al. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting[J]. Geostandards and Geoanalytical Research, 2016, 40(3), 311−332.
    Hisatoshi I, Shimpei U, Futoshi N, et al. Zircon U–Pb dating using LA-ICP-MS: Quaternary tephras in Yakushima Island, Japan[J]. Journal of Volcanology and Geothermal Research, 2017, 338, 92-100. doi: 10.1016/j.jvolgeores.2017.02.003
    Jaffey A H, Flynn K F, Glendenin L E, et al. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5), 1889-1906. doi: 10.1103/PhysRevC.4.1889
    Li Y G, Song S G, Yang X Y, et al. Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: implications for Rodinia break-up[J]. International Geology Review, 2023a, 65(7): 1000-1016. doi: 10.1080/00206814.2020.1857851
    Li Y, Yuan F, Simon M J, Li X, et al. (2023). Combined garnet, scheelite and apatite U–Pb dating of mineralizing events in the Qiaomaishan Cu–W skarn deposit, eastern China[J]. Geoscience Frontiers, 2023b, 14(1): 17-32.
    Lin M, Zhang G, Li N, et al. (2021). An Improved In Situ Zircon U‐Pb Dating Method at High Spatial Resolution (≤ 10 μm spot) by LA‐MC‐ICP‐MS and its Application[J]. Geostandards and Geoanalytical Research, 2021, 45(2): 265-285. doi: 10.1111/ggr.12374
    Lin J, Liu Y, Yang Y, et al. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios[J]. Solid Earth Sciences, 2016. 1(1), 5-27. doi: 10.1016/j.sesci.2016.04.002
    Liu E, Zhao J X, Wang H, et al. LA-ICPMS in-situ U-Pb Geochronology of Low-Uranium Carbonate Minerals and Its Application to Reservoir Diagenetic Evolution Studies[J]. Journal of Earth Science, 2021, 32, 872–879. doi: 10.1007/s12583-020-1084-5
    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin, 2013, 58, 3863-3878.
    Merriman R J. Lead[A]. In Linnen R L, Samson I M (Eds. ). Rare element geochemistry and mineral deposits[R]. Geological Association of Canada Short Course Notes, 2007, 17: 201-230.
    Patterson C. Age of meteorites and the Earth[J]. Geochimica et Cosmochimica Acta, 1956a, 10, 230-237. doi: 10.1016/0016-7037(56)90036-9
    Patterson C. Isotopic ages of the Earth and Moon[J]. Proceedings of the National Academy of Sciences, 1956b, 42(4), 194-199. doi: 10.1073/pnas.42.4.194
    Rutherford E. A Radioactive Substance emitted from Thorium Compounds[J]. Philosophical Magazine, 1900, 49(293), 1-14.
    Richard A C, Derek H C W. U–Pb dating of perovskite by LA-ICP-MS: An example from the Oka carbonatite, Quebec, Canada[J]. Chemical Geology, 2006, 235, 21–3. doi: 10.1016/j.chemgeo.2006.06.002
    Schaltegger U, Schmitt A K, Horstwood M S A. U-Th-Pb zircon geochronology by ID-TIMS, SIMS and laser ablation ICP-MS: Recipes, interpretations and opportunities[J]. Chemical Geology, 2015, 402, 89-110. doi: 10.1016/j.chemgeo.2015.02.028
    Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589. doi: 10.1016/j.gsf.2015.11.006
    Spencer C J, Prave A R, Cawood P A, et al. Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA[J]. Geological Society of America Bulletin, 2014, 126(7-8), 1117-1128. doi: 10.1130/B30884.1
    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2), 207-221. doi: 10.1016/0012-821X(75)90088-6
    Tang Y, Cui K, Zheng Z, et al. LA-ICP-MS UPb geochronology of wolframite by combining NIST series and common lead-bearing MTM as the primary reference material: Implications for metallogenesis of South China[J]. Gondwana Research, 2020, 83, 217-231. doi: 10.1016/j.gr.2020.02.006
    Vermeesch P. Maximum depositional age estimation revisited[J]. Geoscience Frontiers, 2021, 12(2), 843-850. doi: 10.1016/j.gsf.2020.08.008
    Vermeesch P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341, 140-146. doi: 10.1016/j.chemgeo.2013.01.010
    Voice P J, Kowalewski M, Eriksson K A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains[J]. The Journal of Geology, 2011, 119: 109-126. doi: 10.1086/658295
    Wendt I, Carl C. The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience section, 1991, 86(4), 275-285.
  • Related Articles

Catalog

    Article views (859) PDF downloads (157) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return