Citation: | ZHAO Haibo,ZHANG Qian,ZHANG Yong,et al. A Review of the Impurity Element Chemistry and Textures of Natural Quartz and Its Application to the Prospect of High Purity Quartz Deposit[J]. Northwestern Geology,2024,57(5):106−119. doi: 10.12401/j.nwg.2023180 |
At present, China's high-grade high-purity quartz (above 4N8) completely depends on imports. High-purity quartz is a strategic mineral to ensure the safety of chip, optical fiber, photovoltaic and high-end devices in China. In this paper, related references on the distribution characteristics of impurity elements in quartz are reviewed and summarized. The medium and high-grade high-purity quartz is mainly isomorphism, mainly including B, Li, Al, Ge, Ti, Fe, Mn, K and P elements. The prospecting directions of high purity quartz in China are as follows: hydrothermal vein quartz, metamorphic recrystallized quartz, greisen and quartz vein of tungsten-tin deposit, granite pegmatite quartz and highly differentiated evolution granite quartz. The high-grade high-purity quartz above 4N may be from non-metallogenic granite pegmatite. The geological background, quartz composition and source, controlling factors and other metallogenic theories related to the formation of high-purity quartz deposits, i.e. modelling the mineralisation of high purity quartz, are the basis for the breakthrough in prospecting and exploration of high-purity quartz deposits in China. All these not only indicate the prospecting of high-purity quartz, but also trace the magmatic-hydrothermal evolution for tungsten, tin, niobium, tantalum, lithium and other metal deposits. The geological exploration for high-purity quartz is in its infancy in China. This paper is a preliminary summary of the studies on exploration of high-purity quartz in the past years.
高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 027(02): 417-432
GAO Xiaoying, ZHENG Yongfei. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2): 417-432.
|
顾真安, 同继锋, 崔源声. 建材非金属矿产资源强国战略研究[J]. 中国工程科学, 2019, 21(01): 104-112 doi: 10.15302/J-SSCAE-2019.01.015
Gu Zhenan, Tong Jifeng, Cui Yuansheng, et al. Strategic Research on Nonmetallic Mineral Resources for Building Materials in China. Strategic Study of CAE, 2019, 21(01): 104-112. doi: 10.15302/J-SSCAE-2019.01.015
|
郭文达, 韩跃新, 朱一民, 等. 高纯石英砂资源及加工技术分析[J]. 金属矿山, 2019, (02): 22-28
GUO Wenda, HAN Yuexin, ZHU Yimin, et al. Analysis of High-purity Quartz Sand Resources and It’s Processing Technologies[J]. Metal Mine, 2019, 48(02): 22-28.
|
贺贤举, 管俊芳, 陈志强, 等. 安徽某地石英矿的工艺矿物学研究[J]. 硅酸盐通报, 2018, 37(08): 2543-2547+2554.
HE Xianju, GUAN Junfang, CHEN Zhiqiang, et al. Study on Process Mineralogy of Quartz Ore in Anhui Province[J]. Bulletin Of The Chinese Ceramic Society, 2018, 37(8): 2543-2547.
|
焦丽香. 我国脉石英资源开发利用现状及供需分析[J]. 中国非金属矿工业导刊, 2019, (02): 11-14 doi: 10.3969/j.issn.1007-9386.2019.02.004
JIAO Lixiang. Current Situation and Supply Demand Analysis of the Development and Utiliza- tion of Vein Quartz Resources in China[J]. China Non-Metallic Minerals Industry, 2019, (02): 11-14. doi: 10.3969/j.issn.1007-9386.2019.02.004
|
刘国库, 张文军, 马正先, 等. 硅石选矿提纯工艺研究现状[J]. 有色矿冶, 2007, (06): 26-30 doi: 10.3969/j.issn.1007-967X.2007.06.008
LIU Guoku, ZHANG Wenjun, MA Zhengxian, et al. Present Situation of Researching on Purifying Silica by Mineral Processing[J]. Nonferrous Mining and metallurgy, 2007, (06): 26-30. doi: 10.3969/j.issn.1007-967X.2007.06.008
|
李金超, 栗亚芝, 孔会磊. 中国高纯石英产业链现状及发展建议[J]. 西北地质, 2023, 56(5): 214−222. doi: 10.12401/j.nwg.2023119
LI Jinchao, LI Yazhi, KONG Huilei. Current Situation and Development Suggestions of China’s High−Purity Quartz Industry Chain[J]. Northwestern Geology, 2023, 56(5): 214−222. doi: 10.12401/j.nwg.2023119
|
潘兆橹. 结晶学及矿物学[M]. 北京: 地质出版社, 1993
PAN Zhaolu. Crystallography and Mineralogy [M]. The Geological Publishing House, 1993.
|
申士富. 高纯石英砂研究与生产现状[J]. 中国非金属矿工业导刊, 2006, (05): 13-16 doi: 10.3969/j.issn.1007-9386.2006.05.004
SHEN Shifu. The Actuality of Study and Manufacture in Higher Purity Quartz[J]. China Non-Metallic Minerals Industry, 2006, (05): 13-16. doi: 10.3969/j.issn.1007-9386.2006.05.004
|
孙亚东, 严奉林. 不同成因类型石英与石英玻璃气泡缺陷间关系探讨[J]. 江苏地质, 2005, 29(4): 204-206
SUN Yadong, YAN Fenglin. Discussions on bubble defect relationship of quartz and quartz glass of different origins[J]. Journal of Geology, 2005, 29(4): 204-206.
|
唐宏, 张辉. 可可托海3号伟晶岩脉石英中微量元素组成特征与岩浆-热液演化[J]. 矿物学报, 2018, 0(1): 15-24
TANG Hong, ZHANG Hui. Characteristics of Trace Elements in Quartz from No. 3 Pegmatite, Koktokay area, Xinjiang Autonomous Region, China and implication for Magmatic-Hydrothermal Evolution[J]. Acta Mineralogica Sinica, 2018, 0(1): 15-24.
|
田冲, 寿立永, 崔拥军, 等, 南秦岭安康地区高纯石英用脉石英矿特征及质量影响因素[J]. 岩石矿物学杂志, 2022, 41(6): 1147~1158 doi: 10.3969/j.issn.1000-6524.2022.06.009
TIAN Chong, SHOU Liyong, CUI Yongjun, et al. Characteristics and quality influencing factors of vein quartz deposit for high- purity quartz in Ankang area, South Qinling Mountains[J]. Acta Petrologica et Mineralogica, 2022, 41(6): 1147~1158. doi: 10.3969/j.issn.1000-6524.2022.06.009
|
王勇. 西藏班公湖-怒江成矿带西段角西钨矿床成矿作用及找矿预测[D].北京: 中国地质大学(北京), 2020.
WANG Yong. Metallogenesis and Prospecting Prediction of Jiaoxi Tungsten Deposit in the Western Section of the Bangong Lake Nujiang Metallogenic Belt, Tibet [D]. Beijing: China University of Geosciences (Beijing), 2020.
|
吴蒙, 秦云虎, 王晓青, 等. 宁东地区晚古生代煤中硫的地化特征及其对有害元素富集的影响[J]. 煤炭学报, 2020: 1-14.
WU Meng, QIN Yunhu, WANG Xiaoqing, et al. Geochemical characteristics of sulfur and its impact on accumulation of hazardous trace elements in late Paleozoic coal from Ningdong area[J]. Journal of China Coal Society, 2020, 45(S2): 932-942.
|
杨晓勇, 孙超, 曹荆亚, 等. 高纯石英的研究进展及发展趋势[J]. 地学前缘, 2022, 29(1): 231-244
YANG Xiaoyong, SUN Chao, CAO Jingya, et al. High purity quartz: Research progress and perspective review[J]. Earth Science Frontiers, 2022, 29(1): 231-244.
|
张海啟, 朱黎宽, 赵海波, 等. 河南卢氏龙泉坪伟晶岩型高纯石英矿床的首次发现及找矿意义[J]. 矿产保护与利用, 2022a, 42(4): 153-158
ZHANG Haiqi, ZHU Likuan, ZHAO Haibo, et al. First Discovery of the Longquanping Pegmatitic High-purity Quartz Deposit in the Area of Lushi, Henan: Implications for Exploration[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 153-158.
|
张海啟, 谭秀民, 马亚梦, 等. 新疆阿尔泰伟晶岩型高纯石英矿床地质特征及4N8级产品制备技术[J]. 矿产保护与利用, 2022b, 42(5): 1-7.
ZHANG Haiqi, TAN Xiumin, MA Yameng, et al. Geological characteristics of pegmatite type high-purity quartz in altai, xinjiang and preparation technology of 4N8 grade products[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 1−7.
|
张晔. 美国Spruce Pine和新疆阿尔泰伟晶岩地质—地球化学特征和高纯石英成矿前景[D]. 南京: 南京大学, 2010.
ZHANG Ye. Geological and geochemical characteristics of the Spruce Pine pegmatite in the United States and the prospect of high-purity quartz mineralization in Altay, Xinjiang[D]. Nanjing: Nanjing University, 2010.
|
张晔, 陈培荣. 美国Spruce Pine与新疆阿尔泰地区高纯石英伟晶岩的对比研究[J]. 高校地质学报, 2010, 16(4): 426-435 doi: 10.3969/j.issn.1006-7493.2010.04.002
ZHANG Ye, CHEN Peirong. Characteristics of Granitic Pegmatite with High-Purity Quartz in Spruce Pine Region, USA and Altay Region of Xinjiang, China[J]. Geological Journal of China Universities, 2010, 16(4): 426-435. doi: 10.3969/j.issn.1006-7493.2010.04.002
|
周永恒, 顾真安. 石英玻璃原料矿的流体包裹体特征[J]. 矿物学报, 2002, 22(2), 143–146 doi: 10.3321/j.issn:1000-4734.2002.02.008
ZHOU Yongheng, GU Zhenan. Characteristics of Fluid Inclusions in Raw Minerals for Quartz Glass[J]. Acta Mineralogica Sinica| Acta Mineral Sin, 2002, 22(2), 143–146. doi: 10.3321/j.issn:1000-4734.2002.02.008
|
Ackerson M R, Tailby N D, Watson E B. Trace elements in quartz shed light on sediment provenance[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1894-1904. doi: 10.1002/2015GC005896
|
Beurlen H, Muller A, Silva D, et al. Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil[J]. Mineralogical Magazine, 2011, 75(5): 2703-2719. doi: 10.1180/minmag.2011.075.5.2703
|
Breiter K, Ackerman L, Dǔrišová J, Svojtka M, Novák M. Trace element composition of quartz from different types of pegmatites: A case study from the Moldanubian Zone of the Bohemian Massif (Czech Republic)[J]. Mineralogical Magazine, 2014, 78(3): 703-722. doi: 10.1180/minmag.2014.078.3.17
|
Breiter K, Ackerman L, Svojtka M, Müller A. Behavior of trace elements in quartz from plutons of different geochemical signature: A case study from the Bohemian Massif, Czech Republic[J]. Lithos, 2013, 175-176: 54-67. doi: 10.1016/j.lithos.2013.04.023
|
Breiter K, Ďurišová J, Dosbaba M. Quartz chemistry – A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe[J]. Ore Geology Reviews, 2017, 90: 25-35. doi: 10.1016/j.oregeorev.2017.10.013
|
Breiter K, Müller A. Evolution of rare-metal granitic magmas documented by quartz chemistry[J]. European Journal of Mineralogy, 2009, 21(2): 335-346. doi: 10.1127/0935-1221/2009/0021-1907
|
Bruhn F, Bruckschen P, Meijer J, Stephan A, Richter D K, Veizer J. Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE; implications for diagenetic and provenance studies in sandstone[J]. The Canadian Mineralogist, 1996, 34(6): 1223-1232.
|
Černý P, Ercit T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005
|
Demars C, Pagel M, Deloule E, Blanc P. Cathodoluminescence of quartz from sandstones; interpretation of the UV range by determination of trace element distributions and fluid-inclusion PTX properties in authigenic quartz[J]. AMERICAN MINERALOGIST, 1996, 81(7-8): 891-901. doi: 10.2138/am-1996-7-812
|
Dennen W. Trace elements in quartz as indicators of provenance[J]. Geological Society of America Bulletin, 1967, 78(1): 125−130.
|
Dennen W H. Impurities in quartz[J]. Geological Society of America Bulletin, 1964, 75(3): 241-246. doi: 10.1130/0016-7606(1964)75[241:IIQ]2.0.CO;2
|
Dennen W H. Stoichiometric substitution in natural quartz[J]. Geochimica Et Cosmochimica Acta, 1966, 30(12): 1235-1241. doi: 10.1016/0016-7037(66)90122-0
|
Douce A E P. Titanium substitution in biotite: an empirical model with applications to thermometry, O 2 and H 2 O barometries, and consequences for biotite stability[J]. Chemical Geology, 1993, 108(1–4): 133-162. doi: 10.1016/0009-2541(93)90321-9
|
Fanderlik I. Silica glass and its application [M]. Elsevier, 1991.
|
Flem B, Larsen R B, Grimstvedt A, Mansfeld J. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 182(2-4): 237-247. doi: 10.1016/S0009-2541(01)00292-3
|
Götte T. Trace element composition of authigenic quartz in sandstones and its correlation with fluid–rock interaction during diagenesis[J]. Geological Society, London, Special Publications, 2018, 435(1): 373-387. doi: 10.1144/SP435.2
|
Götte T, Ramseyer K. Trace element characteristics, luminescence properties and real structure of quartz [A]. Quartz: Deposits, Mineralogy and Analytics[M]. Springer, 2012, 265−285.
|
Götte T, Ramseyer K, Pettke T, Koch‐Müller M. Implications of trace element composition of syntaxial quartz cements for the geochemical conditions during quartz precipitation in sandstones[J]. Sedimentology, 2013, 60(5): 1111-1127. doi: 10.1111/sed.12024
|
Götze J. Chemistry, textures and physical properties of quartz–geological interpretation and technical application[J]. Mineralogical Magazine, 2009, 73(4): 645-671. doi: 10.1180/minmag.2009.073.4.645
|
Götze J, Lewis R. Distribution of REE and trace elements in size and mineral fractions of high-purity quartz sands[J]. Chemical Geology, 1994, 114(1-2): 43-57. doi: 10.1016/0009-2541(94)90040-X
|
Götze J, Pan Y, Müller A, Kotova E, Cerin D. Trace element compositions and defect structures of high-purity quartz from the southern Ural region, Russia[J]. Minerals, 2017, 7(10): 189. doi: 10.3390/min7100189
|
Götze J, Plöetze M. Investigation of trace-element distribution in detrital quartz by Electron Paramagnetic Resonance (EPR)[J]. European Journal Of Mineralogy: 1997, 529-538.
|
Götze J, Plötze M, Graupner T, Hallbauer D K, Bray C J. Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography[J]. Geochimica Et Cosmochimica Acta, 2004, 68(18): 3741-3759. doi: 10.1016/j.gca.2004.01.003
|
Götze J, Plötze M, Habermann D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz–a review[J]. Mineralogy And Petrology, 2001, 71(3-4): 225-250. doi: 10.1007/s007100170040
|
Götte T, Pettke T, Ramseyer K, Koch-Müller M, Mullis J. Cathodoluminescence properties and trace element signature of hydrothermal quartz: A fingerprint of growth dynamics[J]. American Mineralogist, 2011, 96(5-6): 802-813. doi: 10.2138/am.2011.3639
|
Hallbauer D. The use of selected trace elements in vein quartz and quartz pebbles in identifying processes of formation and source rocks[J]. Geologcal Society of South Africa, 1992, 24: 157-159.
|
Henry D J. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms : American Mineralogist[J]. American Mineralogist, 2005, 90(2-3): 316-328. doi: 10.2138/am.2005.1498
|
Herrera R, Heurtebise M. Neutron activation analysis of trace elements in quartz sands: Its possibilities in the assessment of provenance[J]. Chemical Geology, 1974, 14(1): 81-93.
|
Hervig R L, Peacock S M. Implications of trace element zoning in deformed quartz from the Santa Catalina mylonite zone[J]. The Journal of Geology, 1989, 97(3): 343-350. doi: 10.1086/629307
|
Huang R, Audétat A. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration[J]. Geochimica Et Cosmochimica Acta, 2012, 84: 75-89. doi: 10.1016/j.gca.2012.01.009
|
Jacamon F, Larsen R B. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation[J]. Lithos, 2009, 107(3-4): 281-291. doi: 10.1016/j.lithos.2008.10.016
|
Jourdan A-L, Vennemann T, Mullis J, Ramseyer K. Oxygen isotope sector zoning in natural hydrothermal quartz[J]. Mineralogical Magazine, 2009a, 73(4): 615-632. doi: 10.1180/minmag.2009.073.4.615
|
Jourdan A-L, Vennemann T W, Mullis J, Ramseyer K, Spiers C J. Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins[J]. European Journal Of Mineralogy, 2009b, 21(1): 219-231. doi: 10.1127/0935-1221/2009/0021-1881
|
Kraishan G, Rezaee M, Worden R, Morad S. Significance of trace element composition of quartz cement as a key to reveal the origin of silica in sandstones: an example from the Cretaceous of the Barrow sub-basin, Western Australia[J]. Special Publication-International Association Of Sedimentologists, 2000, 29: 317-332.
|
Landtwing M R, Pettke T. Relationships between SEM-cathodoluminescence response and trace-element composition of hydrothermal vein quartz[J]. American Mineralogist, 2005, 90(1): 122-131. doi: 10.2138/am.2005.1548
|
Larsen R B, Henderson I, Ihlen P M, Jacamon F. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway[J]. Contributions To Mineralogy And Petrology, 2004, 147(5): 615-628. doi: 10.1007/s00410-004-0580-4
|
Larsen R B, Polve M, Juve G. Granite pegmatite quartz from Evje-Iveland: trace element chemistry and implications for the formation of high-purity quartz[J]. Norges Geologiske Undersokelse, 2000, 436: 57-66.
|
Lehmann G, Bambauer H U. Quartz crystals and their colors[J]. Angewandte Chemie International Edition in English, 1973, 12(4): 283-291. doi: 10.1002/anie.197302831
|
Lehmann K, Berger A, Gotte T, Ramseyer K, Wiedenbeck M. Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS-, EPMA-, SEM-CL-and SEM-CC-imaging[J]. Mineralogical Magazine, 2009, 73(4): 633-643. doi: 10.1180/minmag.2009.073.4.633
|
Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin D J, Stenina N G, Kronz A. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits[J]. Mineralium Deposita, 2010, 45(7): 707-727. doi: 10.1007/s00126-010-0302-y
|
Müller A, Ihlen P M . Trace elements of pegmatitic quartz and their regional distribution in two pegmatite fields of southern Norway [C]. Springer, 2012, 445−451.
|
Müller A, Ihlen P M, Snook B, Larsen R B, Flem B, Bingen B, Williamson B J. The chemistry of quartz in granitic pegmatites of southern Norway: Petrogenetic and economic implications[J]. Economic Geology, 2015, 110(7): 1737-1757. doi: 10.2113/econgeo.110.7.1737
|
Müller A, Ihlen P M, Wanvik J E, Flem B. High-purity quartz mineralisation in kyanite quartzites, Norway[J]. Mineralium Deposita, 2007, 42(5): 523-535. doi: 10.1007/s00126-007-0124-8
|
Müller A, Kronz A, Breiter K. Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesí Granite System (Krušne Hory, Czech Republic)[J]. Bulletin of the Czech Geological Survey, 2002, 77(2): 77-76.
|
Müller A, René M, Behr H-J, Kronz A. Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovský Les Mts. , Czech Republic)[J]. Mineralogy And Petrology, 2003a, 79(3-4): 167-191. doi: 10.1007/s00710-003-0238-3
|
Müller A, Wiedenbeck M, KERKHOF A M V D, Kronz A, Simon K. Trace elements in quartz-a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study[J]. European Journal Of Mineralogy, 2003b, 15(4): 747-763. doi: 10.1127/0935-1221/2003/0015-0747
|
Mao W, Rusk B, Yang F, Zhang M. Physical and chemical evolution of the dabaoshan porphyry mo deposit, South China: Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz[J]. Economic Geology, 2017, 112(4): 889-918. doi: 10.2113/econgeo.112.4.889
|
Mao W, Zhong H, Zhu W-G, Lin X-G, Zhao X-Y. Magmatic-hydrothermal evolution of the Yuanzhuding porphyry Cu-Mo deposit, South China: Insights from mica and quartz geochemistry[J]. Ore Geology Reviews, 2018, 101: 765-784. doi: 10.1016/j.oregeorev.2018.08.016
|
McCarthy T, Hasty R. Trace element distribution patterns and their relationship to the crystallization of granitic melts[J]. Geochimica Et Cosmochimica Acta, 1976, 40(11): 1351-1358. doi: 10.1016/0016-7037(76)90125-3
|
Miyoshi N, Yamaguchi Y, Makino K. Successive zoning of Al and H in hydrothermal vein quartz[J]. American Mineralogist, 2005, 90(2-3): 310-315. doi: 10.2138/am.2005.1355
|
Monecke T, Kempe U, Götze J. Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study[J]. Earth And Planetary Science Letters, 2002, 202(3-4): 709-724. doi: 10.1016/S0012-821X(02)00795-1
|
Monnier L, Lach P, Salvi S, Melleton J, Bailly L, Beziat D, Monnier Y, Gouy S. Quartz trace-element composition by LA-ICP-MS as proxy for granite differentiation, hydrothermal episodes, and related mineralization: The Beauvoir Granite (Echassières district), France[J]. Lithos, 2018, 320: 355-377.
|
Muller A, Knies J. Trace elements and cathodoluminescence of detrital quartz in Arctic marine sediments-a new ice-rafted debris provenance proxy[J]. Climate of the Past, 2013, 9(6): 2615-2630. doi: 10.5194/cp-9-2615-2013
|
Perny B, Eberhardt P, Ramseyer K, Mullis J, Pankrath R. Microdistribution of Al, Li, and Na in α quartz: Possible causes and correlation with short-lived cathodoluminescence[J]. American Mineralogist, 1992, 77(5-6): 534-544.
|
Peterková T, Dolejš D. Magmatic-hydrothermal transition of Mo-W-mineralized granite-pegmatite-greisen system recorded by trace elements in quartz: Krupka district, Eastern Krušné hory/Erzgebirge[J]. Chemical Geology, 2019, 523: 179-202. doi: 10.1016/j.chemgeo.2019.04.009
|
Platias S, Vatalis K I, Charalabidis G. Innovative Processing Techniques for the Production of a Critical Raw Material the High Purity Quartz[J]. Procedia Economics and Finance, 2013, 5: 597-604. doi: 10.1016/S2212-5671(13)00070-1
|
Presnall D C. Phase diagrams of Earth-forming minerals[J]. Mineral physics and crystallography: A handbook of physical constants, 1995, 2: 248-268.
|
Roedder, E. Fluid inclusion analysis-Prologue and epilogue[J]. Geochimica et Cosmochimica Acta, 1990, 54(3), 495–507. doi: 10.1016/0016-7037(90)90347-N
|
Rossman G R, Weis D, Wasserburg G. Rb, Sr, Nd and Sm concentrations in quartz[J]. Geochimica Et Cosmochimica Acta, 1987, 51(9): 2325-2329. doi: 10.1016/0016-7037(87)90286-9
|
Ruffini R, Borghi A, Cossio R, Olmi F, Vaggelli G. Volcanic quartz growth zoning identified by cathodoluminescence and EPMA studies[J]. Microchimica Acta, 2002, 139(1-4): 151-158. doi: 10.1007/s006040200054
|
Rusk B. Cathodoluminescent textures and trace elements in hydrothermal quartz [A]. Quartz: Deposits, Mineralogy and Analytics[M]. Springer, 2012, 307−329.
|
Rusk B, Koenig A, Lowers H. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry[J]. American Mineralogist, 2011, 96(5-6): 703-708. doi: 10.2138/am.2011.3701
|
Rusk B G, Lowers H A, Reed M H. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation[J]. Geology, 2008, 36(7): 547-550. doi: 10.1130/G24580A.1
|
Rusk B G, Reed M H, Dilles J H, Kent A J. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana[J]. American Mineralogist, 2006, 91(8-9): 1300-1312. doi: 10.2138/am.2006.1984
|
Seyedolali A, Krinsley D H, Boggs Jr S, O'Hara P F, Dypvik H, Goles G G. Provenance interpretation of quartz by scanning electron microscope–cathodoluminescence fabric analysis[J]. Geology, 1997, 25(9): 787-790. doi: 10.1130/0091-7613(1997)025<0787:PIOQBS>2.3.CO;2
|
Stevens-Kalceff M A. Cathodoluminescence microcharacterization of point defects in α-quartz[J]. Mineralogical Magazine, 2009, 73(4): 585-605. doi: 10.1180/minmag.2009.073.4.585
|
Suttner L J, Leininger R K. Comparison of the trace element content of plutonic, volcanic, and metamorphic quartz from southwestern Montana[J]. Geological Society Of America Bulletin, 1972, 83(6): 1855-1862. doi: 10.1130/0016-7606(1972)83[1855:COTTEC]2.0.CO;2
|
Swamy V, Saxena S K, Sundman B, Zhang J. A thermodynamic assessment of silica phase diagram[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11787-11794. doi: 10.1029/93JB02968
|
Takahashi R, Müller A, Matsueda H, et al. Cathodoluminescence and trace elements in quartz: clues to metal precipitation mechanisms at the Asachinskoe gold deposit in Kamchatka [C]. 21st Century COE for Neo-Science of Natural History, Hokkaido University, 2008, 175−184.
|
Tanner D, Henley R W, Mavrogenes J A, Holden P. Combining in situ isotopic, trace element and textural analyses of quartz from four magmatic-hydrothermal ore deposits[J]. Contributions To Mineralogy And Petrology, 2013, 166(4): 1119-1142. doi: 10.1007/s00410-013-0912-3
|
Thomas J B, Watson E B, Spear F S, Shemella P T, Nayak S K, Lanzirotti A. TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz[J]. Contributions To Mineralogy And Petrology, 2010, 160(5): 743-759. doi: 10.1007/s00410-010-0505-3
|
Thomas J B, Watson E B, Spear F S, Wark D. TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations[J]. Contributions To Mineralogy And Petrology, 2015, 169(3): 27. doi: 10.1007/s00410-015-1120-0
|
van den Kerkhof A M, Kronz A, Simon K, Scherer T. Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescence and trace element analysis (Bamble sector, Norway)[J]. Contributions To Mineralogy And Petrology, 2004, 146(5): 637-652. doi: 10.1007/s00410-003-0523-5
|
Van den Kerkhof, A. M. , Hein, F. U. Fluid inclusion petrography[J]. Lithos, 2001, 55, 27–47. doi: 10.1016/S0024-4937(00)00037-2
|
Wark D A, Watson E B. TitaniQ: a titanium-in-quartz geothermometer[J]. Contributions To Mineralogy And Petrology, 2006, 152(6): 743-754. doi: 10.1007/s00410-006-0132-1
|
Watt G R, Wright P, Galloway S, McLean C. Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts[J]. Geochimica Et Cosmochimica Acta, 1997, 61(20): 4337-4348. doi: 10.1016/S0016-7037(97)00248-2
|
Weil J. EPR of iron centres in silicon dioxide[J]. Applied Magnetic Resonance, 1994, 6(1-2): 1-16. doi: 10.1007/BF03162478
|
Weil J A. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz[J]. Physics And Chemistry Of Minerals, 1984, 10(4): 149-165. doi: 10.1007/BF00311472
|
Wu C M, Chen H X. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites[J]. Science Bulletin, 2015, 60(1): 116-121. doi: 10.1007/s11434-014-0674-y
|
Zhang Y, Cheng J, Tian J, Pan J, Sun S, Zhang L, Zhang S, Chu G, Zhao Y, Lai C. Texture and trace element geochemistry of quartz in skarn system: Perspective from Jiguanzui Cu–Au skarn deposit, Eastern China[J]. Ore Geology Reviews, 2019, 109: 535-544. doi: 10.1016/j.oregeorev.2019.05.007
|
Zhang Y, Zhao H B, Liu L, Pan J Y, Zhu L K, Liu G Q, Zhang X T. Timing of granite pegmatite-type high-purity quartz deposit in the Eastern Qinling, China: constraints from in-situ LA-ICP-MS trace analyses of quartz and monazite U–Pb dating[J]. Acta Geochimica, 2022, 41(2): 197-207. doi: 10.1007/s11631-021-00505-y
|