Citation: | CHU Hongyi,YANG Bo,WEI Dongqi,et al. Research on InSAR Surface Deformation and Soil Hydrothermal Process in Permafrost[J]. Northwestern Geology,2024,57(6):244−254. doi: 10.12401/j.nwg.2024001 |
Surface deformation is an important feature reflecting the freeze-thaw process of active layer. To study the correlation between surface deformation and active layer hydrothermal processes, SBAS-InSAR technique was used to continuously monitor the surface deformation in the permafrost area of Yeniugou in Qilian Mountains in recent 5a, and the relationship between surface deformation and soil hydrothermal process was studied based on field observation data. The results indicate that the surface deformation caused by freeze-thaw process and hydraulic erosion is the most significant, and the surface deformation exhibits obvious seasonal characteristics. The cumulative surface deformation caused by freeze-thaw process is relatively small, and the interannual amplitude of frost heave and melt subsidence is about 10~20 mm; The cumulative surface deformation caused by hydraulic erosion is relatively large, with an interannual surface deformation exceeding 50 mm. Field observation data shows a slight downward trend in soil temperature in the active layer, with an increase in depth and duration of the negative temperature isotherm, and a gradual advance in the freezing front intersection date. The surface deformation has a good correlation with soil temperature and soil moisture, in areas where soil moisture enriched, the correlation is stronger, with correlation coefficients of −0.522 and −0.415 (P<0.001), respectively. The changes in soil moisture content in soil moisture rich areas also have a more significant impact on the amplitude of surface frost heave and thaw settlement, and there is a good linear relationship. This article quantitatively describes the relationship between surface deformation of active layers and soil hydrothermal processes, which has reference significance for monitoring and studying the freeze-thaw parameters of large-scale active layers.
陈玉兴, 江利明, 梁林林, 等. 基于Sentinel-1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7): 2441−2454.
CHEN Yuxing, JIANG Liming, LIANG Linlin, et al. Monitoring permafrost deformation in the upstream Heihe River, Qilian Mountain by using multi-temporal Sentinel-1 InSAR dataset[J]. Chinese Journal of Geophysics,2019,62(7):2441−2454.
|
杜冉, 彭小清, 金浩东, 等. 祁连山俄博岭地区热融洼地与冻胀草丘活动层融化深度差异性对比研究[J]. 冰川冻土, 2022, 44(1): 188−202.
DU Ran, PENG Xiaoqing, JIN Haodong, et al. Comparative study on active layer depth differences between hummocks and thermokarst depressions in the Eboling area of the Qilian Mountains[J]. Journal of Glaciology and Geocryology,2022,44(1):188−202.
|
范鹏, 王硕, 张正加, 等. 高分辨率时序InSAR技术在青藏输电杆塔精细形变监测中的应用[J]. 测绘通报, 2021(3): 118−122.
FAN Peng, WANG Shuo, ZHANG Zhengjia, et al. Deformation monitoring of Qinghai-Tibei transmission tower using high resolution time-series InSAR technology[J]. Bulletin of Surveying and Mapping,2021(3):118−122.
|
冯旻譞, 齐琦, 董英, 等. 利用Sentinel-1A数据监测大西安2019~2022年大西安地表形变[J]. 西北地质, 2023, 56(3): 178−185.
FENG Minxuan, QI Qi, DONG Ying, et al. Monitoring Surface Deformation in Xi’an City from 2019 to 2022 Based on Sentinel-1A Data[J]. Northwestern Geology,2023,56(3):178−185.
|
郭怀军.祁连山及邻区第四纪地质与地貌研究[D].西安: 西北大学, 2017.
GUO Huaijun.An investigation on Quaternary geology and geomorphology of Qilian Mountains and its adjacent areas[D].Xi’an:NorthWest University, 2017.
|
逯中香, 樊彦国, 李国胜. 利用时序InSAR技术监测青藏铁路沿线地表形变[J]. 测绘通报, 2022(3): 138−142+156.
LU Zhongxiang, FAN Yanguo, LI Guosheng. Monitoring of surface deformation along the Qinghai-Tibet Railway with the time series InSAR technology[J]. Bulletin of surveying and mapping,2022(3):138−142+156.
|
马晶晶, 王佩, 邓钰婧, 等. 青海湖流域高寒草甸季节冻土土壤温湿变化特征[J]. 土壤, 2022, 54(3): 619−628.
MA Jingjing, WANG Pei, DENG Yujing, et al. Characteristics of Seasonal Frozen Soil Temperature and Moisture Changes in Alpine Meadow in Qinghai Lake Watershed[J]. Soils,2022,54(3):619−628.
|
马素辉, 牟翠翠, 郭红, 等. 祁连山黑河上游多年冻土区不同植被类型土壤有机碳密度分布特征[J]. 冰川冻土, 2018, 40(3): 426−433.
MA Suhui, MU Cuicui, GUO Hong, et al. Distribution features of permafrost organic carbon density on different vegetation types in the upper reaches of Heihe River, Qilian Mountains[J]. Journal of Glaciology and Geocryology,2018,40(3):426−433.
|
王庆锋, 金会军, 张廷军, 等. 祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素[J]. 科学通报, 2016, 61(24): 2742−2756. doi: 10.1360/N972015-01237
WANG Qingfeng, JIN Huijun, ZHANG Tingjun, et al. Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains[J]. Chinese Science Bulletin,2016,61(24):2742−2756. doi: 10.1360/N972015-01237
|
王燕燕, 于海洋. 九寨沟M_S7.0级地震三维同震形变场提取[J]. 测绘科学, 2019, 44(5): 8−13.
WANG Yanyan, YU Haiyang. Extraction of 3D coseismic deformation field of Jiuzhaigou MS7.0 earthquake[J]. Science of Surveying and Mapping,2019,44(5):8−13.
|
王志伟, 岳广阳, 吴晓东. 青藏高原多年冻土区不同高寒草地类型地表形变特征[J]. 生态学报, 2021, 41(6): 2398−2407.
WANG Zhiwei, YUE Guangyang, WU Xiaodong. Ground surface deformation characteristics of different alpine-grassland types in the permafrost zones of Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica,2021,41(6):2398−2407.
|
吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(Ⅰ): 多年冻土分布[J]. 冰川冻土, 2007, 29(3): 418−425.
WU Jichun, SHENG Yu, YU Hui, et al. Permafrost in the Middle-East Section of Qilian Mountains(Ⅰ): Distribution of permafrost[J]. Journal of Glaciology and Geocryology,2007,29(3):418−425.
|
吴青柏, 张中琼, 刘戈. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报, 2021, 29(2): 342−352.
WU Qingbai, ZHANG Zhongqiong, LIU Ge. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet plateau[J]. Journal of Engineering Geology,2021,29(2):342−352.
|
张林梵. 基于时序InSAR的黄土滑坡隐患早期识别以白鹿塬西南区为例[J]. 西北地质, 2023, 56(3): 250−257. doi: 10.12401/j.nwg.2023086
ZHANG Linfan. Early Identification of Hidden Dangers of Loess Landslide Based on Time Series InSAR:A Case Study of Southwest Bailuyuan[J]. Northwestern Geology,2023,56(3):250−257. doi: 10.12401/j.nwg.2023086
|
张廷军. 全球多年冻土与气候变化研究进展[J]. 第四纪研究, 2012, 32(1): 27−38. doi: 10.3969/j.issn.1001-7410.2012.01.03
ZHANG Tingjun. Progress in global permafrost and climate change studies[J]. Quaternary Sciences,2012,32(1):27−38. doi: 10.3969/j.issn.1001-7410.2012.01.03
|
Cao B, Gruber S, Zhang T, et al. Spatial variability of active layer thickness detected by ground-penetrating radar in the Qilian Mountains, Western China[J]. Journal of Geophysical Research: Earth Surface,2017,122(3):574−591. doi: 10.1002/2016JF004018
|
Cao B, Zhang T J, Peng X Q, et al. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China[J]. Journal of Geophysical Research: Atmospheres,2018,123(15):7935−7949. doi: 10.1029/2018JD028442
|
Che T, Li X, Liu S, et al. Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China[J]. Earth System Science Data,2019,11:1483−1499. doi: 10.5194/essd-11-1483-2019
|
Chen J, Wu Y, O’Connor M, et al. Active layer freeze-thaw and water storage dynamics in permafrost environments inferred from InSAR[J]. Remote Sensing of Environment,2020,248:112007. doi: 10.1016/j.rse.2020.112007
|
Chen J, Wu T, Liu L, et al. Increased water content in the active layer revealed by regional-scale InSAR and independent component analysis on the central Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2022a, 49(15).
|
Chen J, Wu T, Zou D, et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau[J]. Remote Sensing of Environment,2022b,268:112778. doi: 10.1016/j.rse.2021.112778
|
Cheng G, Li X, Zhao W, et al. Integrated study of the water–ecosystem–economy in the Heihe River Basin[J]. National Science Review,2014,1(3):413−428. doi: 10.1093/nsr/nwu017
|
Daout S, Doin M P, Peltzer G, et al. Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophtsical Research Letters,2017,44(2):901−909. doi: 10.1002/2016GL070781
|
Gao X, Lin K, Liu M, et al. Dynamic changes in permafrost distribution over China and their potential influencing factors under climate warming[J]. Science of The Total Environment,2023,874:162624. doi: 10.1016/j.scitotenv.2023.162624
|
Han P, Huang C, Liang S, et al. Variation characteristics and quantitative study of permafrost degradation in the upper reaches of Heihe River, China[J]. Journal of Hydrology,2022,610:127942. doi: 10.1016/j.jhydrol.2022.127942
|
Liu Lin, Schaefer K, Zhang Tingjun, et al. Estimating 1992-2000 average active layer thickness on the Alaskan North Slope from remotely sensed surface subsidence[J]. Journal of Geophysical Research: Earth Surface,2012,117(F1):F01005.
|
Liu S, Li X, Xu Z, et al. The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal,2018,17:180072.
|
Liu S, Che T, Xu Z, et al. Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Dashalong station, 2020)[DB/OL]. National Tibetan Plateau Data Center,2021.
|
Li Z, Zhao R, Hu J, et al. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils[J]. Scientific Reports,2015,5:15542. doi: 10.1038/srep15542
|
Peng X, Zhang T, Frauenfeld, et al. Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere[J]. Journal of Climate, 2018, 31(1):251-266.
|
Sun W, Zhang T, Gary, et al. Observed permafrost thawing and disappearance near the altitudinal limit of permafrost in the Qilian Mountains[J]. Advances in Climate Change Research,2022,13:642−650.
|
Wang Chao, Zhang Zhengjia, Zhang Hong, et al. Active Layer Thickness Retrieval of Qinghai-Tibet Permafrost Using the TerraSAR-X InSAR Technique[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(11):4403−4413. doi: 10.1109/JSTARS.2018.2873219
|
Wang Q, Zhang T, Jin H, et al. Observational study on the active layer freeze–thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau[J]. Quaternary International,2017,440:13−22. doi: 10.1016/j.quaint.2016.08.027
|
Wang L, Philip Marzahn, Monique Bernier, et al. Sentinel-1 InSAR measurements of deformation over discontinuous permafrost terrain, Northern Quebec, Canada[J]. Remote Sensing of Environment,2020,248:111965. doi: 10.1016/j.rse.2020.111965
|
You Q, Cai Z, Pepin N, et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences[J]. Earth-Science Reviews,2021,217:103625. doi: 10.1016/j.earscirev.2021.103625
|
Zhao L, Zou D, Hu G, et al. Changing climate and the permafrost environment on the Qinghai-Tibet(Xizang) Plateau[J]. Permafrost Periglac Process,2020,31:396−405. doi: 10.1002/ppp.2056
|
Zhang Xuefei, Zhang Hong, Wang Chao, et al. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai-Tibetan Plateau using Sentinel-1 data[J]. Remote Sensing,2019,11:1000. doi: 10.3390/rs11091000
|
1. |
曾祥辉,孟德磊,曾闰灵,蒋起保,欧阳永棚. 北武夷上水桥萤石矿区黑云母石英二长岩成因:来自年代学及地球化学的制约. 高校地质学报. 2024(05): 559-576 .
![]() |