ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
YANG Xiaoyong,WANG Zong,SUN Qiang,et al. Analysis of Fly Ash Grouting Effect in Fractured Rock Mass Based on Wave Velocity Response[J]. Northwestern Geology,2025,58(3):1−9. doi: 10.12401/j.nwg.2025014
Citation: YANG Xiaoyong,WANG Zong,SUN Qiang,et al. Analysis of Fly Ash Grouting Effect in Fractured Rock Mass Based on Wave Velocity Response[J]. Northwestern Geology,2025,58(3):1−9. doi: 10.12401/j.nwg.2025014

Analysis of Fly Ash Grouting Effect in Fractured Rock Mass Based on Wave Velocity Response

More Information
  • Received Date: September 04, 2024
  • Revised Date: January 03, 2025
  • Accepted Date: February 06, 2025
  • Available Online: March 13, 2025
  • Fly ash generated during the development of coal resources seriously occupies land and pollutes the environment, and its recycling is of great significance to the protection of the ecological environment and the improvement of social and economic benefits. In order to study the influence of fly ash grouting material and alkali activator content on grouting effect of fractured rock mass, cement grout with different contents of fly ash (0%, 10%, 20%, 30%) and sodium silicate (0%, 1%, 2%, 3%) was prepared and injected into through cracks of rock mass with prefabricated cracks at different angles. The wave velocity of the junction entity is tested. The results show that when the content of sodium silicate is less than 1%, the wave velocity increases slightly with the increase of crack angle, but it is not significant, and there is no obvious change with the increase of fly ash, indicating that the content of sodium silicate is too small to completely react with fly ash. When the content of sodium silicate is 2%, the wave velocity decreases significantly with the increase of sodium silicate, indicating that fly ash and sodium silicate fully react to form geopolymers through the polycondensation process. These polymers fill the voids between particles, reduce the connectivity of pores, and result in fewer internal cracks, dense structure, and significantly reduced wave velocity. When sodium silicate content is 3%, excessive sodium silicate will form inorganic foam, hinder the reaction process, resulting in a decrease in the formation of geopolymer, an increase in the space between particles, an increase in porosity, and thus an increase in wave velocity. The research results provide a certain reference for the work of fly ash and sodium silicate in grouting.

  • 王双明, 孙强, 耿济世, 等. 西部矿区采动损害及减损开采的地质保障技术框架体系[J]. 煤田地质与勘探, 2024, 529): 113. doi: 10.12363/issn.1001-1986.24.04.0226

    WANG Shuangming, SUN Qiang, Geng Jishi, et al. Geological Support Technology Framework System for Mining Induced Disasters and Damage Reduction Mining of Geological Conditions in Western Mining Area[J]. Coal Geology and Exploration, 2024, 529): 113. doi: 10.12363/issn.1001-1986.24.04.0226
    刘金平, 汪理全, 刘保业, 等. 煤炭开采的系统思想[J]. 西北地质, 20012): 3436. doi: 10.3969/j.issn.1009-6248.2001.02.006

    Liu Jinping, WangLiquan, Liu Baoye, et al. System ideas of coal mining[J]. Northwestern Geology, 20012): 3436. doi: 10.3969/j.issn.1009-6248.2001.02.006
    陈守建, 王永, 伍跃中, 等. 西北地区煤炭资源及开发潜力[J]. 西北地质, 20064): 4056. doi: 10.3969/j.issn.1009-6248.2006.04.006

    Chen Shoujian, Wang Yong, Wu Yuezhong, et al. Coal Resources and Development Potential in Northwest China[J]. Northwestern Geology, 20064): 4056. doi: 10.3969/j.issn.1009-6248.2006.04.006
    武强, 涂坤, 曾一凡, 刘守强. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 446): 16251636.

    WU Qiang, TU Kun, ZENG Yifan, et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society, 2019, 446): 16251636.
    王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 451): 815.

    WANG Shuangming, SUN Qiang, QIAO Junwei, et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society, 2020, 451): 815.
    王双明, 耿济世, 李鹏飞, 等. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探, 2023, 511): 3343. doi: 10.12363/issn.1001-1986.23.01.0030

    WANG Shuangming, GENG Jishi, LI Pengfei, et al. Construction of geological guarantee system for green coal mining[J]. Coal Geology and Exporlation, 2023, 511): 3343. doi: 10.12363/issn.1001-1986.23.01.0030
    王双明, 孙强, 袁士豪, 等. 论煤–水–土多资源协调开发[J]. 西北地质, 2024, 575): 110. doi: 10.12401/j.nwg.2024069

    WANG Shuangming, SUN Qiang, Yuan Shihao, et al. On the Coordinated Development of Coal-Water-Soil Multiple Resources[J]. Northwestern Geology, 2024, 575): 110. doi: 10.12401/j.nwg.2024069
    靳辛. 粉煤灰处理采油废水研究及工程应用[D]. 中国海洋大学, 2009.

    Jin Xin. Research and Engineering Applications on the Treatment of the Production Waste Water Using Coal Ash[D]. Ocean University of China, 2009.
    卢国懿, 薛峰, 赵江涛. 对我国粉煤灰利用现状的思考[J]. 中国矿业, 2011, 20S1): 193195+200.

    Lu Guoyi, Xue Feng, Zhao Jiangtao. Some advice to the fly ash of China[J]. China Mining Magazine, 2011, 20S1): 193195+200.
    王玮健. 固化粉煤灰体力学特性试验研究[D]. 安徽理工大学, 2021.

    Wang Weijian. Experimental study on physical properties of solidified fly ash[J]. Anhui University of Sience and Technology, 2021.
    卢海峰, 李中洋, 张凯. 改性粉煤灰材料固沙特性试验研究[J]. 岩石力学与工程学报, 2024, 43S1): 33743384.

    Lu Haifeng, Li Zhongyang, Zhang Kai. Experimental study on sand fixation characteristics of modified fly ash materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43S1): 33743384.
    中国工业固废网, 中循新科环保科技(北京)有限公司, 中关村绿色矿山产业联盟矿山固废资源综合利用专委会. 2019 —2020 年度中国大宗工业固体废物综合利用产业发展报告[M]. 北京: 出版社不详, 2020.
    赵阳. 掺入粉煤灰的碱激发胶凝材料路用性能研究[J]. 山东交通科技, 20234): 4447. doi: 10.3969/j.issn.1673-8942.2023.04.012

    Zhao Yang. Research on road performance of alkali-activated cementitious materials mixed with fly ash[J]. Shandong Jiaotong Keji, 20234): 4447. doi: 10.3969/j.issn.1673-8942.2023.04.012
    王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 52): 8088.

    Wang Jiansheng, Jiang Zhibin, Li Lichao. Mechanical response characteristics of persistent joint planes in tunnel surrounding rock masses with grouting treatments[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 52): 8088.
    夏曾银, 潘军, 盛鲁腾, 等. 注浆和隔离墙对基坑引发隧道变形的联合控制作用研究[J]. 水利水电技术(中英文), 2022, 539): 175185.

    XIA Zengyin, PAN Jun, SHENG Luteng, et al. Study on joint control effect of grouting and separating wall on tunnel deformation induced by foundation pit[J]. Water Resources and Hydropower Engineering, 2022, 539): 175185.
    宋华, 牛荻涛, 李春辉. 矿物掺合料混凝土碳化性能试验研究[J]. 硅酸盐学报, 2009, 3712): 20662070. doi: 10.3321/j.issn:0454-5648.2009.12.019

    Song Hua, Niu Ditao, Li Chunhui. Carbonation Test of Concrete Containing Mineral Admixtures[J]. Journal of The Chinese Ceramic Society, 2009, 3712): 20662070. doi: 10.3321/j.issn:0454-5648.2009.12.019
    张俊儒, 闻毓民, 欧小强. 粉煤灰喷射混凝土孔隙结构的演变特征[J]. 西南交通大学学报, 2018, 532): 296302. doi: 10.3969/j.issn.0258-2724.2018.02.011

    Zhang Junru, Wen Yumin, Ou Xiaoqiang. Evolutionary Characteristics of Pore Structure of Fly Ash Shotcrete[J]. Journal of Southwest Jiaotong University, 2018, 532): 296302. doi: 10.3969/j.issn.0258-2724.2018.02.011
    蒋建华, 吴琦, 付用全, 等. 掺粉煤灰再生混凝土吸湿过程与预测模型研究[J]. 建筑材料学报, 2022, 253): 248255. doi: 10.3969/j.issn.1007-9629.2022.03.005

    Jiang Jianhua, Wu Qi, Fu Yongquan, et al. Moisture Absorption Process and Prediction Model of Recycled Concrete Mixed with Fly Ash[J]. Journal of Building Materials, 2022, 253): 248255. doi: 10.3969/j.issn.1007-9629.2022.03.005
    时雅倩, 关渝珊, 葛伟哲, 等. 粉煤灰建材化增值利用: 最新技术与未来展望[J]. 煤炭学报, 2024, 49(6): 2860-2875.

    Shi Yaqian, Guan Yushan, Ge Weizhe, et al. Value-added utilization of pulverized fuel ash as construction materials: State-of-the-art technologies and future prospects[J]. Journal of China Coal Society.
    童小东, 徐敏, 戴国亮, 等. 某添加剂在水泥土搅拌法中的应用[J]. 东南大学学报(自然科学版), 20072): 345349. doi: 10.3321/j.issn:1001-0505.2007.02.032

    Tong Xiaodong, Xu Min, Dai Guoliang, et al. Application of anadditive in cement deep mixing method[J]. Journal of Southeast University (Natural Science Edition), 20072): 345349. doi: 10.3321/j.issn:1001-0505.2007.02.032
    卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(S2): 1299-1303.

    Bian Livo, Dong Shen, Tao Zhi. Basic Properties of Alkali Activated Slag/Fly Ash Pervious Concrete[J]. Materials Reports, 2020, 34(S2): 1299-1303.
    王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38S1): 31973205.

    Wang Dongxing, Wang Hongwei, Zhou Weilie, et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38S1): 31973205.
    卫春安, 苏安双, 贾青, 等. 胶结土无侧限抗压强度试验研究[J]. 水利科学与寒区工程, 2020, 35): 2327. doi: 10.3969/j.issn.1002-3305.2020.05.006

    Wei Chunan, Su Anshuang, Jia Qing, et al. Experimental study on unconfined compressive strength of cemented soil[J]. Hydro Science and Cold Zone Engineering, 2020, 35): 2327. doi: 10.3969/j.issn.1002-3305.2020.05.006
    庞文台, 申向东. 复合水泥土抗渗性能的实验研究[J]. 硅酸盐通报, 2012, 316): 16171625.

    Pang Wentai, Shen Xiangdong. Study on Impervious Performance of Cement-soil[J]. Bulletin of The Chinese Ceramic Society, 2012, 316): 16171625.
    肖东旭, 马芹永. 粉煤灰水泥土力学特性试验研究[J]. 安徽理工大学学报(自然科学版), 2022, 423): 2328.

    Xiao Dongxu, Ma Jinyong. Experimental Study on Mechanical Properties of Fly Ash Cement Soil[J]. Journal of Anhui University of Science and Technology (Natural Science), 2022, 423): 2328.
    田海彦. 粉煤灰掺量对硫氧镁泡沫水泥性能的影响[J]. 辽宁化工, 2023, 528): 11391141. doi: 10.3969/j.issn.1004-0935.2023.08.015

    Tian Haiyan. Effect of Fly Ash Content on Properties of Magnesium Oxysulfate Foam Cement[J]. Liaoning Chemical Industry, 2023, 528): 11391141. doi: 10.3969/j.issn.1004-0935.2023.08.015
    卢春阳. 混合碱激发粉煤灰地质聚合物注浆材料的研究[D]. 安徽理工大学, 2023.

    Lu Chunyang. Study of mixed alkali-activated fly ash geopolymer grouting materials[D]. Anhui University of Sience and Technology, 2023.
    满吉芳. 碱激发粉煤灰地质聚合物对黄土力学性能的改性研究[J]. 水利水电技术(中英文), 2023, 541): 207215.

    Man Jifang. Study on improvement of mechanical properties of loess based on alkali activated fly ash geopolymer[J]. Water Resources and Hydropower Engineering, 2023, 541): 207215.
    刘扬, 陈湘, 王柏文, 等. 碱激发粉煤灰-矿渣-电石渣基地聚物的制备及强度机理[J]. 硅酸盐通报, 2023, 424): 13531362.

    Liu Yang, Chen Xiang, Wang Bowen, et al. Preparation and Strength Mechanism of Alkali-Activated Fly Ash-Slag-Carbide Slag Based Geopolymer[J]. Bulletin of The Chinese Ceramic Society, 2023, 424): 13531362.
    白应华, 章启航, 余胜等. 偏硅酸钠激发矿渣-粉煤灰胶凝材料水化机理研究[J]. 信阳师范学院学报(自然科学版), 2020, 331): 162166.

    Bai Yinghua, Zhang Qihang, Yu Sheng, et al. Study on Hydration Mechanism of Slag-Fly Ash Cementitious Material Excited by Sodium Metasilicate[J]. Journal of Xinyang Normal University, 2020, 331): 162166.
    方明伟, 王丹, 周枫桃, 等. 碱激发剂对粉煤灰地聚物混凝土的性能影响[J]. 功能材料, 2023, 5411): 1117011176. doi: 10.3969/j.issn.1001-9731.2023.11.022

    Fang Mingwei, Wang Dan, Zhou Fengtao, et al. Effect of alkali activator on the performance of fly ash geopolymer concrete[J]. Journal of Functional Materials, 2023, 5411): 1117011176. doi: 10.3969/j.issn.1001-9731.2023.11.022
    王亚超. 碱激发粉煤灰基地质聚合物强化增韧及耐久性能研究[D]. 西安建筑科技大学, 2015.

    Wang Yachao. Investigations on reinforcing, toughening and durability of alkali-activated fly ash-based geopolymer[D]. Xian University of Architecture and Technology, 2015.
    刘进琪, 王世玉, 彭晖, 等. 碱激发剂对粉煤灰基地聚物性能影响研究[J]. 交通科学与工程, 2020, 363): 813. doi: 10.3969/j.issn.1674-599X.2020.03.002

    Liu Jinqi, Wang Shiyu, Peng Hui, et al. Study on the effect of alkali activator on the properties of fly ash-based geopolymer[J]. Journal of Transport Science and Engineering, 2020, 363): 813. doi: 10.3969/j.issn.1674-599X.2020.03.002
  • Related Articles

Catalog

    Article views (12) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return