ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
ZHANG Ze,XUE Shengchao,TANG Dongmei,et al. Research progress on copper isotope in high-temperature magmatic system and its implications for magmatic sulfide deposits[J]. Northwestern Geology,2025,58(4):1−18. doi: 10.12401/j.nwg.2025015
Citation: ZHANG Ze,XUE Shengchao,TANG Dongmei,et al. Research progress on copper isotope in high-temperature magmatic system and its implications for magmatic sulfide deposits[J]. Northwestern Geology,2025,58(4):1−18. doi: 10.12401/j.nwg.2025015

Research progress on copper isotope in high-temperature magmatic system and its implications for magmatic sulfide deposits

More Information
  • Received Date: November 26, 2024
  • Revised Date: February 08, 2025
  • Accepted Date: February 09, 2025
  • Available Online: March 20, 2025
  • Copper isotope exhibits significant variations during high-temperature geological processes such as mantle partial melting, magmatic differentiation, and mantle metasomatism. Notably, a ~4‰ variation in Cu isotope has been observed in magmatic Ni-Cu sulfide systems, challenging the conventional understanding that fractionation of metal stable isotopes is predominantly controlled by temperature. Beyond the Sudbury deposit, which formed via meteoritic impact, Ni-Cu deposits in intraplate and orogenic settings show a wide range of Cu isotope variations, highlighting their potential for studying complex magmatic and metallogenic processes. Current insights include: (1) Cu isotope in mantle is highly heterogeneous. Mid-ocean ridge basalts and komatiites better represent the Cu isotopic composition of the mantle source. (2) The coupled behavior of Cu concentrations and isotopes, as well as the fractionation coefficients between sulfides and silicates, are crucial for understanding Cu isotopic changes during magma formation and evolution. (3) Research on Cu isotope fractionation during metamorphic dehydration in subduction zones remains limited, resulting in significant uncertainty in using Cu isotope to trace Cu migration paths. Since most Cu is retained in the subducting slab, Cu isotopic deviations from mantle values in subduction-related rocks may be coincidental. (4) Cu isotope variations in Ni-Cu deposits are controlled by multiple geological processes and fractionation mechanisms, including: heterogeneity in mantle Cu isotope, crustal contamination, sulfide segregation and differentiation, and redox state changes in the magmatic system. The crucial role of Cu isotopes in revealing the processes of diagenesis and mineralization is increasingly prominent. In the future, efforts should be intensified to explore the synergistic effects of Cu isotopes with other isotope systems (such as Fe, Zn, Ni, etc.), combining experiments and simulations to refine the mineralization models of magmatic Cu-Ni sulfide deposits. This has significant implications for gaining a deeper understanding of crust-mantle material cycling and its resource effects.

  • 李津, 唐索寒, 马健雄, 等. 金属同位素质谱分析中样品处理的基本原则与方法[J]. 岩矿测试, 2021, 405): 627636.

    LI Jin, TANG Suohan, MA Jianxiong, et al. Principles and Treatment Methods for Metal Isotopes Analysis[J]. Rock and Mineral Analysis, 2021, 405): 627636.
    李世珍, 朱祥坤, 吴龙华, 等. 干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J]. 地球学报, 2011, 326): 754760.

    LI Shizhen, ZHU Xiangkun, WU Longhua, et al. A Comparative Study of Plant Sample Preparation by Dry Ashing and Wet Digestion for Isotopic Determination of Cu, Zn and Fe[J]. Acta Geoscientica Sinica, 2011, 326): 754760.
    吕楠, 包志安, 陈开运, 等. fs-LA-MC-ICP-MS非基体匹配精确测定富铜矿物的铜同位素[J]. 中国科学(地球科学), 52(11): 2239-2253. LV N, Bao Zhian, Chen Kaiyun, et al. Accurate analysis of Cu isotopes by fs-LA-MC-ICP-MS with non-matrix-matched calibration[J]. Science ChinaEarthSciences, 2022, 6510): 20052017.
    邱坦, 汤庆艳, 杨皓辰, 等. 铁同位素分馏机理以及在镁铁-超镁铁质岩浆作用和成矿作用中的应用[J]. 岩石矿物学杂志, 2024, 434): 10341051.

    QIU Tan, TANG Qinyan, YANG Haochen, et al. Fractionation mechanism of iron isotope and its application in mafic-ultramafic magmatism and metallogenesis[J]. Acta Petrologica et Mineralogica, 2024, 434): 10341051.
    许英奎, 李智, 冯娟, 等. 星子碰撞增生过程中的同位素分馏研究进展[J]. 东华理工大学学报(自然科学版), 2023, 466): 585596.

    XU Yingkui, LI Zhi, Feng Juan, et al. Advanees in isotopic fractionation in planetesimal collisional accrelion processes[J]. Joumal of East China University of Technology(Natural Science), 2023, 466): 585596.
    王倩, 侯清华, 张婷, 等. 铜同位素测定方法研究进展[J]. 矿物岩石地球化学通报, 35(3): 497-506.

    WANG Qian, HOU Qinghua, ZHANG Ting, et al. Progresses of Copper Isotope Analytical Methods[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 497-506.
    王跃, 朱祥坤. 铜同位素在矿床学中的应用: 认识与进展[J]. 吉林大学学报: 地球科学版, 2010, 404): 739751.

    Wang Yue, Zhu Xingkun. Applications of Cu Isotopes on Studies of Mineral Deposits: a Status Report[J]. Journal of Jilin University(Earth Science Edition), 2010, 404): 739751.
    王泽洲, 刘盛遨, 李丹丹, 等. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 225): 7283.

    WANG Zezhou, LIU Shengao, LI Dandan, et al. A review of progress in copper stable isotope geochemistry[J]. Earth Science Frontiers, 2015, 225): 7283.
    辛雨, 薛胜超, 王信水, 等. 汇聚环境岩浆氧化态来源的进展与展望[J]. 岩石学报, 2023, 399): 28172831. doi: 10.18654/1000-0569/2023.09.16

    XIN Yu, XUE Shengchao, WANG Xinshui, et al. Progress and prospect of the oxidation state of magmas in convergent tectonic settings[J]. Acta Petrologica Sinica, 2023, 399): 28172831. doi: 10.18654/1000-0569/2023.09.16
    薛胜超, 刘金宇, 周翊, 等. 交代地幔源区与造山带铜镍成矿作用[J]. 岩石学报, 2024, 401): 6078. doi: 10.18654/1000-0569/2024.01.03

    Xue Shengchao, LIU Jinyu, ZHOU Xu, et al. Genetic correlation of metasomatized mantle source with Ni-Cu mineralization in orogenic belt[J]. Acta Petrologica Sinica, 2024, 401): 6078. doi: 10.18654/1000-0569/2024.01.03
    朱祥坤, 王跃, 闫斌, 等. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 326): 651688.

    ZHU Xiangkun, WANG Yue, YAN Bin, et al. Developments of Non-Traditional Stable Isotope Geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 326): 651688.
    Asael D, Matthews A, Bar-Matthews M. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel)[J]. Chemical Geology, 2007, 2433-4): 238254. doi: 10.1016/j.chemgeo.2007.06.007
    Barrat J A, Zanda B, Moynier F, et al. Geochemistry of Cl chondrites: Major and trace elements, and Cu and Zn isotopes[J]. Geochimica et Cosmochimica Acta, 2012, 83: 7992.
    Ben Othman D, Luck J M, Bodinier J L, et al. Cu-Zn isotopic variations in the Earth’s mantle[J]. Geochimica et Cosmochimica Acta, 2006, 7018): A46.
    Bigalke M, Kersten M, Weyer S, et al. Isotopes trace biogeochemistry and sources of Cu and Zn in an intertidal soil[J]. Soil Science Society of America Journal, 2013, 772): 680691. doi: 10.2136/sssaj2012.0225
    Bigalke M, Weyer S, Wilcke W. Stable copper isotopes: A novel tool to trace copper behavior in hydromorphic soils[J]. Soil Science Society of America Journal. 2010, 74(1), 60-73.
    Bigalke M, Weyer S, Wilcke W. Stable Cu isotope fractionation in soils during oxic weathering and podzolization[J]. Geochimica et Cosmochimica Acta, 2011, 7511): 31193134. doi: 10.1016/j.gca.2011.03.005
    Bishop M C, Moynier F, Weinstein C, et al. The Cu isotopic composition of iron meteorites[J]. Meteoritics and Planetary Science, 2012, 472): 268276. doi: 10.1111/j.1945-5100.2011.01326.x
    Bohlien S R, Merzger K. Origin of granulite terrenes and the formation of the lowermost continental crust[J]. Science, 1989, 244: 326329. doi: 10.1126/science.244.4902.326
    Borrok D M, Wanty R B, Ridley W I, et al. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement[J]. Chemical Geology, 2007, 2423): 400414.
    Boyle E A, John S, Abouchami W, et al. GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration[J]. Limnology and Oceanography: methods, 2012, 109): 653665. doi: 10.4319/lom.2012.10.653
    Brzozowski M J, Good D J, Wu C, et al. Cu isotope systematics of conduit-type Cu-PGE mineralization in the Eastern Gabbro, Coldwell Complex, Canada[J]. Mineralium Deposita, 2021b, 564): 707724. doi: 10.1007/s00126-020-00992-8
    Brzozowski M J, Good D J, Wu C, et al. Iron isotope fractionation during sulfide liquid evolution in Cu–PGE mineralization of the Eastern Gabbro, Coldwell Complex, Canada[J]. Chemical Geology, 2021a, 576: 120282. doi: 10.1016/j.chemgeo.2021.120282
    Busigny V, Chen J B, Philippot P, et al. Insight into hydrothermal and subduction processes from copper and nitrogen isotopes in oceanic metagabbros[J]. Earth and Planetary Science Letters, 2018, 498: 5464. doi: 10.1016/j.jpgl.2018.06.030
    Chen C F, Foley S F, Shcheka S S, et al. Copper isotopes track the Neoproterozoic oxidation of cratonic mantle roots[J]. Nature Communications, 2024, 151): 4311. doi: 10.1038/s41467-024-48304-2
    Chen L M, Lightfoot P C, Zhu J M, et al. Nickel isotope ratios trace the process of sulfide-silicate liquid immiscibility during magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 2023, 353: 112. doi: 10.1016/j.gca.2023.05.013
    Chen Z X, Chen J B, Tamehe L S. Heavy Copper Isotopes in Arc-Related Lavas From Cold Subduction Zones Uncover a Sub-Arc Mantle Metasomatized by Serpentinite-Derived Sulfate-Rich Fluids[J]. Journal of Geophysical Research: Solid Earth, 2022, 12710): e2022JB024910. doi: 10.1029/2022JB024910
    Day J M D, Sossi P A, Shearer C K, et al. Volatile distributions in and on the Moon revealed by Cu and Fe isotopes in the ‘Rust-y Rock’66095[J]. Geochimica et Cosmochimica Acta, 2019, 266: 131143. doi: 10.1016/j.gca.2019.02.036
    Debret B, Beunon H, Mattielli N, et al. Ore component mobility, transport and mineralization at mid-oceanic ridges: A stable isotopes (Zn, Cu and Fe) study of the Rainbow massif (Mid-Atlantic Ridge 36 14′ N)[J]. Earth and Planetary Science Letters, 2018, 503: 170180. doi: 10.1016/j.jpgl.2018.09.009
    Dhaliwal J K, Day JM D, Creech J B, et al. Volatile depletion and evolution of Vesta from coupled Cu-Zn isotope systematics[C]//European Geosciences Union (EGU) General Assembly Conference Ab-stracts, 2021: EGU21-12820.
    Ding S, Dasgupta R. The fate of sulfide during decompression melting of peridotite-implications for sulfur inventory of the MORB-source depleted upper mantle[J]. Earth and Planetary Science Letters, 2017, 4591): 183195.
    Ding X, Ripley E M, Wang W Z, et al. Iron isotope fractionation during sulfide liquid segregation and crystallization at the Lengshuiqing Ni-Cu magmatic sulfide deposit, SW China[J]. Geochimica et Cosmochimica Acta, 2019, 261: 327341. doi: 10.1016/j.gca.2019.07.015
    Ehrlich S, Butler I, Halicz L, et al. Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS[J]. Chemical Geology, 2004, 2093): 259269.
    Fang S B, Huang J, Ackerman L, et al. Copper migration and enrichment in the mantle wedge: Insights from orogenic peridotites and pyroxenites. Geochimica et Cosmochimica Acta, 2024, 380: 83-95.
    Fellows S A, Canil D. Experimental study of the partitioning of Cu during partial melting of Earth's mantle[J]. Earth and Planetary Science Letters, 2012, 337: 133143.
    Feng Y T, Zhang W, Hu Z C, et al. New Potential Sulfide Reference Materials for Microbeam S-Fe-Cu Isotope Measurements[J]. Geostandards and Geoanalytical Research, 2023, 481): 227244.
    Fernandez A, Borrok D M. Fractionation of Cu, Fe and Zn isotopes during the oxidative weathering of sulfide-rich rocks[J]. Chemical Geology, 2009, 2641-4): 112. doi: 10.1016/j.chemgeo.2009.01.024
    Guo H H, Xia Y, Bai R X, et al. Experiments on Cu-isotope fractionation between chlorine-bearing fluid and silicate magma: implications for fluid exsolution and porphyry Cu deposits[J]. National Science Review, 2020, 78): 13191330. doi: 10.1093/nsr/nwz221
    Herzog G F, Moynier F, Albarède F, et al. Isotopic and elemental abundances of copper and zinc in lunar samples, ZagamiPele’s hairs, and a terrestrial basalt[J]. Geochimica et Cosmochimica Acta, 2009, 7319): 58845904. doi: 10.1016/j.gca.2009.05.067
    Hou Q H, Zhou L, Gao S, et al. Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2016, 311): 280287. doi: 10.1039/C4JA00488D
    Huang J, Fang S B, Guo S. Fluid-mediated Cu and Zn isotope fractionation in subduction zones and implications for arc volcanism: Constraints from high pressure veins within eclogites in the Dabie Orogen[J]. Chemical Geology, 2024, 663: 122258. doi: 10.1016/j.chemgeo.2024.122258
    Huang J, Huang F, Wang Z C, et al. Copper isotope fractionation during partial melting and melt percolation in the upper mantle: Evidence from massif peridotites in Ivrea-Verbano Zone, Italian Alps[J]. Geochimica et Cosmochimica Acta, 2017, 211: 4863. doi: 10.1016/j.gca.2017.05.007
    Huang J, Liu S A, Gao Y J, et al. Copper and zinc isotope systematics of altered oceanic crust at IODP Site 1256 in the eastern equatorial Pacific[J]. Journal of Geophysical Research: Solid Earth, 2016b, 12110): 70867100. doi: 10.1002/2016JB013095
    Huang J, Liu S A, Wörner G, et al. Copper isotope behavior during extreme magma differentiation and degassing: a case study on Laacher See phonolite tephra (East Eifel, Germany)[J]. Contributions to Mineralogy and Petrology, 2016a, 171: 116. doi: 10.1007/s00410-015-1217-5
    Ikehata K, Hirata T. Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan[J]. Economic Geology, 2012, 1077): 14891497. doi: 10.2113/econgeo.107.7.1489
    Ikehata K, HirataT. Evaluation of UV-fs-LA-MC-ICP-MS for precise in situ copper isotopic microanalysis of cubanite[J]. Analytical Sciences, 2013, 2912): 12131217. doi: 10.2116/analsci.29.1213
    Ikehata K, Notsu K, Hirata T. In situ determination of Cu isotope ratios in copper-rich materials by NIR femtosecond LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2008, 237): 10031008. doi: 10.1039/b801044g
    Irrgeher J, Prohaska T, Sturgeon RE, et al. Determination of strontium isotope amount ratios in biological tissues using MC-ICPMS[J]. Analytical Methods, 2013, 57): 16871694. doi: 10.1039/c3ay00028a
    Kempton P D, Mathur R, Harmon R S, et al. Cu-isotope evidence for subduction modification of lithospheric mantle[J]. Geochemistry, Geophysics, Geosystems, 2022, 238): e2022GC010436. doi: 10.1029/2022GC010436
    Lambart S, Koornneef J M, Millet M A, et al. Highly heterogeneous depleted mantle recorded in the lower oceanic crust[J]. Nature Geoscience, 2019, 126): 482486. doi: 10.1038/s41561-019-0368-9
    Larner F, Rehkämper M, Coles B J, et al. A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 268): 16271632. doi: 10.1039/c1ja10067j
    Larson P B, Maher K, Ramos F C, et al. Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J]. Chemical Geology, 2003, 2013-4): 337350. doi: 10.1016/j.chemgeo.2003.08.006
    Lauwens S, Costas-Rodriguez M, Vanhaecke F. Ultra-trace Cu isotope ratio measurements via multi-collector ICP-mass spectrometry using Ga as internal standard: an approach applicable to micro-samples[J]. Analytica Chimica Acta, 2018, 1025: 6979. doi: 10.1016/j.aca.2018.05.025
    Le Roux V, Dasgupta R, Lee C T A. Recommended mineral-melt partition coefficients for FRTEs (Cu), Ga, and Ge during mantle melting[J]. American Mineralogist, 2015, 10011-12): 5332544.
    Lee C T A, Luffi P, Chin E J, et al. Copper systematics in arc magmas and implications for crust-mantle differentiation[J]. Science, 2012, 3366077): 6468. doi: 10.1126/science.1217313
    Li J, Tang S H, ZhuX K, et al. Basaltic and Solution Reference Materials for Iron, Copper and Zinc Isotope Measurements[J]. Geostandards and Geoanalytical Research, 20181): 163175.
    Li W Q, Jackson S E, Pearson N J, et al. The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia[J]. Chemical Geology, 2009, 2581-2): 3849. doi: 10.1016/j.chemgeo.2008.06.047
    Li Y, Audétat A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions[J]. Earth and Planetary Science Letters, 2012, 355: 327340.
    Little S H, Vance D, Mcmanus J, et al. Copper isotope signatures in modern marine sediments[J]. Geochimica et Cosmochimica Acta, 2017, 212: 253273. doi: 10.1016/j.gca.2017.06.019
    Liu S A, Huang J, Liu J G, et al. Copper isotopic composition of the silicate Earth[J]. Earth and Planetary Science Letters, 2015, 427: 95103. doi: 10.1016/j.jpgl.2015.06.061
    Liu S A, Li D D, Li S G, et al. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014a, 291): 122133. doi: 10.1039/C3JA50232E
    Liu S A, Liu P P, Lv Y W, et al. Cu and Zn isotope fractionation during oceanic alteration: Implications for Oceanic Cu and Zn cycles[J]. Geochimica et Cosmochimica Acta, 2019, 257: 191205. doi: 10.1016/j.gca.2019.04.026
    Liu S A, Rudnick R L, Liu W R, et al. Copper isotope evidence for sulfide fractionation and lower crustal foundering in making continental crust[J]. Science Advances, 2023, 936): eadg6995. doi: 10.1126/sciadv.adg6995
    Liu S Q, Li Y B, Liu J, et al. Equilibrium Cu isotope fractionation in copper minerals: a first-principles study[J]. Chemical Geology, 2021, 564: 120060. doi: 10.1016/j.chemgeo.2021.120060
    Liu X C, Xiong X L, Audétat A, et al. Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions[J]. Geochimica et Cosmochimica Acta, 2014b, 125: 122. doi: 10.1016/j.gca.2013.09.039
    Luck J M, Othman D B, Albarède F. Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes[J]. Geochimica et Cosmochimica Acta, 2005, 6922): 53515363. doi: 10.1016/j.gca.2005.06.018
    Luck J M, Othman D B, Barrat J A, et al. 2003. Coupled 63Cu and16O excesses in chondrites[J]. Geochimica et Cosmochimica Acta, 2003, 671): 143151. doi: 10.1016/S0016-7037(02)01038-4
    Luo C H, Wang R, Zhao Y, et al. Mobilization of Cu in the continental lower crust: A perspective from Cu isotopes[J]. Geoscience Frontiers, 2023, 145): 101590. doi: 10.1016/j.gsf.2023.101590
    Malitch K N, Latypov R M, Badanina I Y, et al. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk Province (Russia): Evidence from copper and sulfur isotopes[J]. Lithos, 2014, 204: 172187. doi: 10.1016/j.lithos.2014.05.014
    Maréchal C N, Télouk P, Albarède F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 1561): 251273.
    Markl G, Lahaye Y, Schwinn G. Copper isotopes as monitors of redox processes in hydrothermal mineralization[J]. Geochimica et Cosmochimica Acta, 2006, 7016): 42154228. doi: 10.1016/j.gca.2006.06.1369
    Mason T F D, Weiss D J, Horstwood M, et al. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2004, 192): 209217. doi: 10.1039/b306958c
    Mathur R, Dendas M, Titley S, et al. Patterns in the Copper Isotope Composition of Minerals in Porphyry Copper Deposits in Southwestern United States[J]. Ecomomic Geology, 2010, 1058): 14571467. doi: 10.2113/econgeo.105.8.1457
    Mathur R, Ruiz J, Titley S, et al. Cu isotopic fractionation in the supergene environment with and without bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 6922): 52335246. doi: 10.1016/j.gca.2005.06.022
    Mathur R, Titley S, Barra F, et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits[J]. Journal of Geochemical exploration, 2009, 1021): 16. doi: 10.1016/j.gexplo.2008.09.004
    Meija J, Yang L, Sturgeon R E, et al. Certification of natural isotopic abundance inorganic mercury reference material NIMS-1 for absolute isotopic composition and atomic weight[J]. Journal of Analytical Atomic Spectrometry, 2010, 253): 384389. doi: 10.1039/b926288a
    Moynier F, Albarède F, Herzog G F. 2006. Isotopic composition of zinc, copper, and iron in lunar samples[J]. Geochimica et Cosmochimica Acta, 70(24): 6103-6117.
    Moynier F, Blichert-Toft J, Telouk P, et al. 2007. Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites[Jl. Geochimica et Cosmochimica Acta, 7l(17): 4365-4379.
    Moynier F, Koeberl C, Beck P, et al. Isotopic fractionation of Cu intektities[J]. Geochimica et Cosmochimica Acta, 2010, 742): 799807. doi: 10.1016/j.gca.2009.10.012
    Moynier F, Vance D, Fujii T, et al. The isotope geochemistry of zinc and copper[J]. Reviews in mineralogy and geochemistry, 2017, 821): 543600. doi: 10.2138/rmg.2017.82.13
    Naldrett A J, Fedorenko V A, Asif M, et al. Controls on the composition of Ni-Cu sulfide deposits as illustrated by those at Noril’sk, Siberia[J]. Economic Geology, 1996, 914): 751773. doi: 10.2113/gsecongeo.91.4.751
    Naldrett A J, Singh J, Krstic S, et al. The mineralogy of the Voisey’s Bay Ni-Cu-Co deposit, northern Labrador, Canada: Influence of oxidation state on textures and mineral compositions[J]. Economic Geology, 2000, 954): 889900.
    Neuman M, Gargano A, Shearer C K, et al. Volatile element evolution in the Martian crust: communications with the Martian surface and atmosphere[C]//Lunar and Planetary Institute, NASA Johnson Space Center, 53rd Lunar and Planetary Science Conference, Texas: Woodlands, 2022: 1385.
    Paquet M, Moynier F, Yokoyama T, et al. Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotop ic analysis[J]. Nature Astronomy, 2023, 7: 182189.
    Qu Y R, Liu S A. Copper isotope constraints on the origins of basaltic and andesitic magmas in the Tengchong volcanic field, SE Tibet[J]. Geoscience Frontiers, 2024, 154): 101818. doi: 10.1016/j.gsf.2024.101818
    Ripley E M, Dong S F, Li C, et al. Cu isotope variations between conduit and sheet-style Ni-Cu-PGE sulfide mineralization in the Midcontinent Rift System, North America[J]. Chemical Geology, 2015, 414: 5968. doi: 10.1016/j.chemgeo.2015.09.007
    Ripley E M, Li C. Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis[J]?Economic Geology, 2013, 108(1): 45-58.
    Ripley E M, Li C. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits[J]. Economic Geology, 2003, 983): 635641. doi: 10.2113/gsecongeo.98.3.635
    Rouxel O, Fouquet Y, Ludden J N. Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev sea-floor hydrothermal fields on the Mid-Atlantic Ridge[J]. Economic Geology, 2004, 993): 585600. doi: 10.2113/gsecongeo.99.3.585
    Savage P S, Moynier F, Chen H, et al. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation[J]. Geochemical Perspectives Letters, 2015, 11): 5364.
    Schauble E A. Applying stable isotope fractionation theory to new systems[J]. Reviews in mineralogy and geochemistry, 2004, 551): 65111. doi: 10.2138/gsrmg.55.1.65
    Sherman D M. Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory[J]. Geochimica et Cosmochimica Acta, 2013, 118: 8597. doi: 10.1016/j.gca.2013.04.030
    Shields W R, Goldich S S, Garner E L, et al. Natural variations in the abundance ratio and the atomic weight of copper[J]. Journal of Geophysical Research, 1965, 702): 479491. doi: 10.1029/JZ070i002p00479
    Smith J M, Ripley E M, Li C, et al. Cu and Ni Isotope Variations of Country Rock-Hosted Massive Sulfides Located Near Midcontinent Rift Intrusions[J]. Economic Geology, 2022, 1171): 195211. doi: 10.5382/econgeo.4872
    Sullivan K, Layton-Matthews D, Leybourne M, et al. Copper Isotopic Analysis in Geological an Biological Reference Materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2020, 442): 349362. doi: 10.1111/ggr.12315
    Sun P, Niu Y L, Chen S, et al. Copper isotope fractionation during magma differentiation: evidence from lavas on the East Pacific Rise at 10◦30′N[J]. Geochimica et Cosmochimica Acta, 2023, 356: 93104. doi: 10.1016/j.gca.2023.07.016
    Takano S, Tanimizu M, Hirata T, et al. Isotopic constraints on biogeochemical cycling of copper in the ocean[J]. Nature communications, 2014, 51): 17.
    Tang D M, Qin K Z, Evans N J, et al. Sulfide copper-iron isotopic fractionation during formation of the Kalatongke magmatic Cu-Ni sulfide deposit in the Central Asian Orogenic Belt[J]. Geochemistry, Geophysics, Geosystems, 2024b, 256): e2023GC011406. doi: 10.1029/2023GC011406
    Tang D M, Qin K Z, Su B X, et al. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposits[J]. Geochimica et Cosmochimica Acta, 2020, 275: 209228. doi: 10.1016/j.gca.2020.02.015
    Tang Q Y, Bao J, Zhang Y, et al. Copper isotope fractionation during magmatic evolution in a convergent tectonic setting: Constraints from sulfide Cu-S isotopes and whole-rock PGE of the Xiarihamu Ni-Cu sulfide deposit[J]. Chemical Geology, 2024a, 668: 122348. doi: 10.1016/j.chemgeo.2024.122348
    Taylor S R, MeLennan S M, MeCulloch M T. Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta, 1983, 4711): 18971905. doi: 10.1016/0016-7037(83)90206-5
    Thompson C M, Ellwood M J. Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry, 2014, 165: 19. doi: 10.1016/j.marchem.2014.06.009
    Tollan P, Hermann J. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene[J]. Nature Geoscience, 2019, 128): 667671. doi: 10.1038/s41561-019-0411-x
    Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (London), 1947: 562-581.
    Vance D, Archer C, Bermin J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 2741): 204213.
    Wang Q, Zhou L, Feng L, et al. Use of a Cu-selective resin for Cu preconcentration from seawater prior to its isotopic analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 3511): 27322739. doi: 10.1039/D0JA00096E
    Wang Z C, Becker H, Gawronski T. Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: A case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps)[J]. Geochimica et Cosmochimica Acta, 2013, 108: 2144. doi: 10.1016/j.gca.2013.01.021
    Wang Z C, Becker H. Abundances of Ag and Cu in mantle peridotites and the implications for the behavior of chalcophile elements in the mantle[J]. Geochimica et Cosmochimica Acta, 2015, 160: 209226. doi: 10.1016/j.gca.2015.04.006
    Wang Z C, Park J W, Wang X, et al. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi volcano, Tonga rear arc[J]. Geochimica et Cosmochimica Acta, 2019, 250: 1833. doi: 10.1016/j.gca.2019.01.040
    Wang Z C, Zhang P Y, Li Y B. Copper recycling and redox evolution through progressive stages of oceanic subduction: Insights from the Izu-Bonin-Mariana forearc[J]. Earth and Planetary Science Letters, 2021, 574: 117178. doi: 10.1016/j.jpgl.2021.117178
    Williams H M, Archer C. Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallisation processes on iron meteorite parent bodies[J]. Geochimica et Cosmochimica Acta, 2011, 7511): 31663178. doi: 10.1016/j.gca.2011.03.010
    Wohlgemuth-Ueberwasser C C, Fonseca R O C, Ballhaus C, et al. Sulfide oxidation as a process for the formation of copper-rich magmatic sulfides[J]. Mineralium Deposita, 2013, 48: 115127. doi: 10.1007/s00126-012-0420-9
    Xia Y, Kiseeva E S, Wade J, et al. The effect of core segregation on the Cu and Zn isotope composition of the silicate Moon[J]. Geochemical Perspectives Letters, 2019, 12: 1217.
    Xue S C, Deng J, Wang Q F, et al. The redox conditions and C isotopes of magmatic Ni-Cu sulfide deposits in convergent tectonic settings: The role of reduction process in ore genesis[J]. Geochimica et Cosmochimica Acta, 2021, 306: 210225. doi: 10.1016/j.gca.2021.05.039
    Xue S C, Wang Q F, Deng J, et al. Mechanism of organic matter assimilation and its role in sulfide saturation of oxidized magmatic ore-forming system: insights from C-S-Sr-Nd isotopes of the Tulaergen deposit in NW China[J]. Mineralium Deposita, 2022, 577): 11231141. doi: 10.1007/s00126-021-01087-8
    Yang L, Peter C, Panne U, et al. Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2008, 239): 12691274. doi: 10.1039/b803143f
    Yang X M, Wang S J, Zhang Y W, et al. Nickel isotope fractionation during magmatic differentiation[J]. Geochemistry, Geophysics, Geosystems, 2023, 246): e2023GC010926. doi: 10.1029/2023GC010926
    Zhang G L, Liu Y S, Moynier F, et al. Copper mobilization in the lower continental crust beneath cratonic margins, a Cu isotope perspective[J]. Geochimica et Cosmochimica Acta, 2022, 322: 4357. doi: 10.1016/j.gca.2022.01.031
    Zhang R Y, Liou J G, Zheng J P, et al. Petrogenesis of eclogites enclosed in mantle-derived peridotites from the Sulu UHP terrane constraints from trace elements in minerals and Hf isotopes in zircon[J]. Lithos, 2009, 1093-4): 176192. doi: 10.1016/j.lithos.2008.08.002
    Zhang W Q, Liu C Z, Lissenberg C J, et al. Post-cumulus control on copper isotopic fractionation during oceanic intra-crustal magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 2024, 369: 3550. doi: 10.1016/j.gca.2024.01.030
    Zhang Y, Bao Z, Lv N, et al. Copper Isotope Ratio Measurements of Cu-Dominated Minerals Without Column Chromatography Using MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 609. doi: 10.3389/fchem.2020.00609
    Zhao Y, Liu S A, Xue C J, et al. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit[J]. American Mineralogist, 2022a, 1074): 673683. doi: 10.2138/am-2021-7911
    Zhao Y, Liu S A, Xue C J, et al. Copper isotope fractionation in magmatic Ni-Cu mineralization systems associated with the variation of oxygen fugacity in silicate magmas[J]. Geochimica et Cosmochimica Acta, 2022b, 338: 250263. doi: 10.1016/j.gca.2022.09.040
    Zhao Y, Liu S A, Xue C J, et al. Metasomatized mantle facilitates the genesis of magmatic nickel-copper sulfide deposits in orogenic belts: A copper isotope perspective[J]. Geochimica et Cosmochimica Acta, 2024a, 366: 128140. doi: 10.1016/j.gca.2023.11.028
    Zhao Y, Wang S J, Xue C J, et al. Hidden deep sulfide cumulates beneath the Jinchuan Ni-Cu-platinum-group element deposit (China) inferred from Ni-Cu isotopes[J]. Geology. 2024b.
    Zhao Y, Xue C J, Liu S A, et al. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China[J]. Lithos, 2017, 286-287: 206215. doi: 10.1016/j.lithos.2017.06.007
    Zhao Y, Xue C J, Liu S A, et al. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni-Cu mineralization system[J]. Geochimica et Cosmochimica Acta, 2019, 249: 4258. doi: 10.1016/j.gca.2018.12.039
    Zheng Y C, Liu S A, Wu C D, et al. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting[J]. Geology, 2019, 472): 135138. doi: 10.1130/G45362.1
    Zhu X K, Guo Y, Williams R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 2001-2): 4762. doi: 10.1016/S0012-821X(02)00615-5
    Zhu X K, O’nions R K, Guo Y, et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers[J]. Chemical Geology, 2000, 1631-4): 139149. doi: 10.1016/S0009-2541(99)00076-5
    Zhu Y T, Li M, Wang Z C, et al. High-precision Copper and Zinc Isotopic Measurements in Igneous Rock Standards Using Large-geometry MC-ICP-MS[J]. Atomic Spectroscopy, 2019, 406): 206214. doi: 10.46770/AS.2019.06.002
    Zou Z Q, Wang Z C, Li M, et al. Copper isotope variations during magmatic migration in the mantle: Insights from mantle pyroxenites in Balmuccia peridotite massif[J]. Journal of Geophysical Research: Solid Earth, 2019, 12411): 1113011149. doi: 10.1029/2019JB017990
    Zou Z Q, Wang Z C, Xu Y G, et al. Deep mantle cycle of chalcophile metals and sulfur in subducted oceanic crust[J]. Geochimica et Cosmochimica Acta, 2024b, 370: 1528. doi: 10.1016/j.gca.2024.02.007
    Zou Z Q, Wang Z Q, Xu Y G, et al. Contrasting Cu isotopes in mid-ocean ridge basalts and lower oceanic crust: Insights into the oceanic crustal magma plumbing systems[J]. Earth and Planetary Science Letters, 2024a, 627: 118563. doi: 10.1016/j.jpgl.2023.118563
  • Related Articles

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return