Citation: | GAO Yongbao,WU Huanhuan,LI Wenyuan,et al. Tourmaline Mineralogy, 40Ar-39Ar Dating and Implications for the 509 Daobanxi Lithium Deposit in Xinjiang Province[J]. Northwestern Geology,2025,58(4):1−16. doi: 10.12401/j.nwg.2025026 |
The Dahongliutan ore district in West Kunlun, one of the most important super-large pegmatite-type lithium mineralization zones in China, has attracted significant attention for the mechanisms of rare metal enrichment. Previous studies have conducted detailed research on the Li-rich spodumene-bearing pegmatites in the area. However, the genesis of the widely exposed, Li-poor tourmaline-bearing pegmatites and their relationship with lithium-rich pegmatites remains debated. This study focuses on the petrology and tourmaline mineralogy of the Li-poor pegmatites in the super-large 509 Daobanxi lithium deposit and successfully obtains a new tourmaline 40Ar-39Ar isotope age. The results show that: ① the Li-poor garnet-tourmaline-bearing pegmatite, mainly composed of plagioclase, quartz, alkali feldspar, muscovite, tourmaline, and minor garnet; ② the composition of the tourmaline is relatively homogeneous and characterized by high FeOT (11.19%–13.24%), low CaO (0.06%–0.29%), MgO (0.02%–0.10%), and Na2O (0.69%–1.12%) contents, belonging to the schorl subgroup. Comparable to the tourmaline characteristics of two-mica granite and spodumene pegmatite in the area, the studied tourmaline is of typical magmatic tourmaline. The tourmaline composition is mainly controlled by the (X□, Al) (Na, R2+)−1 substitution; ③ the 40Ar-39Ar plateau age of the tourmaline is (229.8±0.4) Ma (MSWD = 77.5), indicating that the Li-poor pegmatites, biotite granites, and Li-rich pegmatites are products of single magmatic-hydrothermal activity. Based on the characteristics of the pegmatite occurrence, it is proposed that the Li-poor pegmatites represent an early-stage melt poor in rare metals, while the Li-rich ones are more evolved magmatic-hydrothermal products enriched in rare metals. The crystallization of Li-poor minerals (garnet, tourmaline, feldspar, etc.) in the pegmatites near the intrusion facilitated further enrichment of rare metals in the residual melt/fluid, leading to the distribution of pegmatites with Li-poor zones near the intrusion and Li-rich zones further away.
洪涛, 胡明曦, 唐俊林, 等. 新疆西昆仑大红柳滩花岗伟晶岩型锂矿叠加改造成矿特征: 来自矿石构造、3D成像技术与年代学的约束[J]. 岩石学报, 2024, 40(2): 553−570.
HONG Tao, HU Mingxi, TANG Junlin, et al. Metallogenic characteristics of superimposed deformation and mineralization of Dahongliutan granite-pegmatite type lithium deposit belt in West Kunlun, Xinjiang: Constraints from ore structure, 3D imaging technology and chronology[J]. Acta Petrologica Sinica,2024,40(2):553−570.
|
霍海龙, 陈正乐, 张青, 等. 新疆西昆仑509道班西锂矿伟晶岩石英变形特征、温度及其对伟晶岩就位的约束[J]. 地质力学学报, 2024, 30(1): 72−87.
HUO Hailong,CHEN Zhenle,ZHANG Qing,et al. Quartz deformation characteristics,deformation temperature,and their constraints on pegmatites of the 509 Daobanxi lithium deposit in the West Kunlun area,Xinjiang[J]. Journal of Geomechanics,2024,30(1):72−87.
|
孔会磊, 任广利, 李文渊, 等. 西昆仑大红柳滩东含锂辉石花岗伟晶岩脉年代学和地球化学特征及其地质意义[J]. 西北地质, 2023, 56(2): 61−79.
KONG Huilei, REN Guangli, LI Wenyuan, et al. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China[J]. Northwestern Geology,2023,56(2):61−79.
|
李文渊, 高永宝, 张照伟, 等. 镁铁—超镁铁质岩与花岗岩-伟晶岩“小岩体成大矿”对比———以昆仑成矿带夏日哈木和大红柳滩超大型矿床为例[J]. 地球科学与环境学报, 2023, 45(5): 1036−1048.
LI Wenyuan, GAO Yongbao, ZHANG Zhaowei, et al. Comparisonof Mafic-ultramaficand Granite-pegmatite "SmallIntrusion Forming Large Deposit": Taking Xiarihamu and Dahongliutan Super-large Depositsin Kunlun Metallogenic Belt, China as Examples[J]. Journal of Earth Sciencesand Environment,2023,45(5):1036−1048.
|
梁婷, 滕家欣, 王登红, 等. 新疆大红柳滩锂铍稀有金属矿床[M]. 北京: 地质出版社, 2021.
LIANG Ting, TENG Jiaxin, WANG Denghong, et al. Lithium beryllium rare metal deposit in Dahongliutan, Xinjiang [M]. Beijing: Geological Publishing House, 2021.
|
李侃, 高永宝, 滕家欣, 等. 新疆和田县大红柳滩一带花岗伟晶岩型稀有金属矿成矿地质特征、成矿时代及找矿方向[J]. 西北地质, 2019, 52(4): 206−221.
LI Kan, GAO Yongbao, TENG Jiaxin, et al. Metallogenic Geological Characteristics, Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area, Hetian County, Xinjiang[J]. Northwestern Geology,2019,52(4):206−221.
|
李荣社, 计文化, 何世平, 等. 中国西部古亚洲与特提斯两大构造域划分问题讨论[J]. 新疆地质, 2011, 29(3): 247−250.
LI Rongshe, JI Wenhua, HE Shiping, et al. The Two Tectonic Domain Divesion Discussion between the Ancient Asian and Tethys in Western China[J]. Xinjiang Geology,2011,29(3):247−250.
|
李永, 王威, 杜晓飞, 等. 西昆仑509道班西锂铍稀有金属矿白云母40Ar/39Ar定年及对区域成矿的限定[J]. 中国地质, 2022, 49(6): 2031−2033.
LI Yong, WANG Wei, DU Xiaofei, et al. 40Ar/39Ar dating of muscovite of the west 509 Daoban Li-Be rare metal deposit in the West Kunlun orogenic belt and its limitation to regional mineralization[J]. Geology in China,2022,49(6):2031−2033.
|
彭海练, 贺宁强, 王满仓, 等. 新疆和田县大红柳滩地区509道班西稀有多金属矿地质特征与成矿规律探讨[J]. 西北地质, 2018, 51(3): 146−154.
PENG Hailian, HE Ningqiang, WANG Mancang, et al. Geological Characteristics and Metallogenic regularity of West Track 509 Rare Polymetallic Deposit in Dahongliutan Region, Hetian, Xinjiang[J]. Northwestern Geology,2018,51(3):146−154.
|
乔耿彪, 伍跃中, 刘拓. 西昆仑大红柳滩伟晶岩型稀有金属矿的形成时代: 来自白云母40Ar/39Ar同位素年龄的证据[J]. 中国地质, 2020, 47(5): 1591−1593.
QIAO Gengbiao, WU Yuezhong, LIU Tuo. Formation age of the Dahongliutan pegmatite type rare metal deposit in Western Kunlun Mountains: Evidence from muscovite 40Ar/39Ar isotopic dating[J]. Geology in China,2020,47(5):1591−1593.
|
乔耿彪, 张汉德, 伍跃中, 等. 西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约[J]. 地质学报, 2015, 89(7): 1180−1194.
QIAO Gengbiao, ZHANG Hande, WU Yuezhong, et al. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Evidence from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics[J]. Acta Geologica Sinica,2015,89(7):1180−1194.
|
谭克彬, 郭岐明, 郭勇明. 新疆和田509道班西锂铍多金属矿床花岗岩U-Pb年龄及其构造意义[J]. 新疆有色金属, 2021, 44(2): 6−10.
TAN Kebin, GUO Qiming, GUO Yongming. U-Pb Ages and Tectonic Significance of Granite from the 509 Daobanxi Lithium Beryllium Polymetallic Deposit in Hotan, Xinjiang[J]. Xinjiang Nonferrous Metals,2021,44(2):6−10.
|
唐俊林, 柯强, 徐兴旺, 等. 西昆仑大红柳滩地区龙门山锂铍伟晶岩区岩浆演化与成矿作用[J]. 岩石学报, 2022, 38(3): 655−675. doi: 10.18654/1000-0569/2022.03.05
TANG Junlin, KE Qiang, XU Xingwang, et al. Magma evolution and mineralization of Longmenshan lithium-beryllium pegmatite in Dahongliutan area, West Kunlun[J]. Acta Petrologica Sinica,2022,38(3):655−675. doi: 10.18654/1000-0569/2022.03.05
|
庹明洁, 夏永旗, 李诺, 等. 西昆仑大红柳滩地区花岗岩类侵位时代与成因[J]. 矿床地质, 2024, 43(2): 265−288.
TUO Mingjie,XIA Yongqi,LI Nuo,et al. Age and petrogenesis of granitoids in Dahongliutan area,West Kunlun[J]. Mineral Deposits,2024,43(2):265−288.
|
王核, 黄亮, 马华东, 等. 西昆仑大红柳滩-白龙山矿集区锂矿成矿特征与成矿规律初探[J]. 岩石学报, 2023, 39(7): 1931−1949.
WANG He, HUANG Liang, MA Huadong, et al. Geological characteristics and metallogenic regularity of lithium deposits in Dahongliutan-Bailongshan area, West Kunlun, China[J]. Acta Petrologica Sinica,2023,39(7):1931−1949.
|
王核, 李沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6): 1053−1062.
WANG He, LI Pei, MA Huadong, et al. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and its Prospecting Implication[J]. Geotectonica et Metallogenia,2017,41(6):1053−1062.
|
王威, 杜晓飞, 刘伟, 等. 西昆仑509道班西锂铍稀有金属矿地质特征与成矿时代探讨[J]. 岩石学报, 2022, 38(7): 1967−1980.
WANG Wei, DU Xiaofei, LIU Wei, et al. Geological characteristic and discussion on metallogenic age of the West 509-Daoban Li-Be rare metal deposit in the West Kunlun Orogenic Belt[J]. Acta Petrologica Sinica,2022,38(7):1967−1980.
|
魏小鹏, 王核, 胡军, 等. 西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义[J]. 地球化学, 2017, 46(1): 66−80.
WEI Xiaopeng, WANG He, HU Jun, et al. Geochemistry and geochronology of the Dahongliutan two-mica granite pluton in western Kunlun orogen: Geotectonic implications[J]. Geochimica,2017,46(1):66−80.
|
吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1−36.
WU Fuyuan, LIU Zhichao, LIU Xiaochi, et al. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica,2015,31(1):1−36.
|
夏永旗, 庹明洁, 李诺, 等. 云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示[J]. 地球科学, 2024, 49(3): 922−938.
XIA Yongqi, TUO Mingjie, LI Nuo, et al. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun[J]. Earth Science,2024,49(3):922−938.
|
闫庆贺, 王核, 丘增旺等. 西昆仑大红柳滩稀有金属伟晶岩矿床锡石及铌钽铁矿年代学及其地质意义[J]. 矿物岩石地球化学通报, 2017, 36: 802−803.
YAN Qinghe, WANG He, QIU Zengwang, et al. Chronology and Geological Significance of Cassiterite and Niobium Tantalum Iron Deposits in the Rare Metal Pegmatite Deposit of Dahongliutan, West Kunlun Mountains[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2017,36:802−803.
|
杨岳衡, 吴石头, 车旭东, 等. 稀有金属矿物微区同位素定年与示踪[J]. 岩石学报, 2024, 40(4): 1023−1043. doi: 10.18654/1000-0569/2024.04.01
YANG Yueheng, WU ShiTou, CHE Xudong, et al. In-situ isotopic dating and tracing of the rare-metal minerals in ore deposit[J]. Acta Petrologica Sinica,2024,40(4):1023−1043. doi: 10.18654/1000-0569/2024.04.01
|
邹天人. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006.
ZOU Tianren. Rare and Rare Earth Metal Deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006.
|
Andriessen P A M, Hebeda E H, Simon O J, et al. Tourmaline K Ar ages compared to other radiometric dating systems in Alpine anatectic leucosomes and metamorphic rocks (Cyclades and southern Spain)[J]. Chemical Geology,1991,91(1):33−48. doi: 10.1016/0009-2541(91)90014-I
|
Barredo F B, Pérez A P, Montero P G, et al. Tourmaline 40Ar/39Ar chronology of tourmaline-rich rocks from Central Iberia dates the main Variscan deformation phases[J]. Geologica Acta, 2009: 399−412.
|
Cao R, Gao Y., Chen B. et al. Pegmatite magmatic evolution and rare metal mineralization of the Dahongliutan pegmatite field, Western Kunlun Orogen: Constraints from the B isotopic composition and mineral chemistry[J]. International Geology Review,2023,65(7):1224−1242. doi: 10.1080/00206814.2021.1899062
|
Chen B, Huang C, Zhao H. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization[J]. Chemical Geology,2020,551:119769. doi: 10.1016/j.chemgeo.2020.119769
|
Chiaradia M, Schaltegger U, Spikings R, et al. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?: an invited paper[J]. Economic Geology,2013,108(4):565−584. doi: 10.2113/econgeo.108.4.565
|
Deveaud S, Millot R, Villaros A. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas[J]. Chemical Geology,2015,411:97−111. doi: 10.1016/j.chemgeo.2015.06.029
|
Fan J J, Tang G J, Wei G J, et al. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos,2020,352:105236.
|
Gammel E M, Nabelek P. Fluid inclusion examination of the transition from magmatic to hydrothermal conditions in pegmatites from San Diego County, California[J]. American Mineralogist,2016,101(8):1906−1915. doi: 10.2138/am-2016-5559
|
Gao Y B, Bagas L, Li K, et al. Newly discovered Triassic lithium deposits in the Dahongliutan area, Northwest China: A case study for the detection of lithium-bearing pegmatite deposits in rugged terrains using remote-sensing data and images[J]. Frontiers in Earth Science,2020,8:591966. doi: 10.3389/feart.2020.591966
|
Henry D J, Dutrow B L, Grew E S, et al. Metamorphic tourmaline and its petrologic applications[J]. Reviews in Mineralogy,1996,33:503−558.
|
Henry D J, Guidotti C V. Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine[J]. American Mineralogist,1985,70(1−2):1−15.
|
Henry D J, Novák M, Hawthorne F C, et al. Nomenclature of the tourmaline-supergroup minerals[J]. American Mineralogist,2011,96(5−6):895−913. doi: 10.2138/am.2011.3636
|
Koppers A A P. ArArCALC—software for 40Ar/39Ar age calculations[J]. Computers Geosciences,2002,28(5):605−619. doi: 10.1016/S0098-3004(01)00095-4
|
Lee J Y, Marti K, Severinghaus J P, et al. A redetermination of the isotopic abundances of atmospheric Ar[J]. Geochimica et Cosmochimica Acta,2006,70(17):4507−4512. doi: 10.1016/j.gca.2006.06.1563
|
Li J K, Zou T R, Liu X F, et al. The metallogenetic regularities of lithium deposits in China[J]. Acta Geologica Sinica‐English Edition,2015,89(2):652−670. doi: 10.1111/1755-6724.12453
|
Li J, Huang X L, Wei G J, et al. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites[J]. Geochimica et Cosmochimica Acta,2018,240:64−79. doi: 10.1016/j.gca.2018.08.021
|
Linnen R, Trueman D L, Burt R. Tantalum and niobium[J]. Critical Metals Handbook, 2014: 361–384.
|
Liu T, Jiang S Y. Multiple generations of tourmaline from Yushishanxi leucogranite in South Qilian of western China record a complex formation history from B-rich melt to hydrothermal fluid[J]. American Mineralogist,2021,106(6):994−1008. doi: 10.2138/am-2021-7473
|
Liu X Q, Zhang C L, Zou H B, et al. Triassic-Jurassic granitoids and pegmatites from western Kunlun-Pamir Syntax: Implications for the Paleo-Tethys evolution at the northern margin of the Tibetan Plateau[J]. Lithosphere,2020,2020(1):7282037. doi: 10.2113/2020/7282037
|
London D, Morgan G B, Paul K A, et al. Internal evolution of miarolitic granitic pegmatites at the Little Three mine, Ramona, California, USA[J]. The Canadian Mineralogist,2012,50(4):1025−1054. doi: 10.3749/canmin.50.4.1025
|
Lv Z H, Zhang H, Tang Y. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai[J]. Lithos,2021,380:105865.
|
Martínez-Martínez J, Torres-Ruiz J, Pesquera A, et al. Geological relationships and U-Pb zircon and 40Ar/39Ar tourmaline geochronology of gneisses and tourmalinites from the Nevado–Filabride complex (western Sierra Nevada, Spain): tectonic implications[J]. Lithos,2010,119(3−4):238−250. doi: 10.1016/j.lithos.2010.07.002
|
McDougall I, Harrison T M. Geochronology and Thermochronology by the 40Ar/39Ar Method[M]. Oxford University Press, USA, 1999.
|
Pirajno F, Smithies R H. The FeO/(FeO+ MgO) ratio of tourmaline: a useful indicator of spatial variations in granite-related hydrothermal mineral deposits[J]. Journal of Geochemical Exploration,1992,42(2−3):371−381. doi: 10.1016/0375-6742(92)90033-5
|
Renne P R, Deino A L, Hilgen F J, et al. Time scales of critical events around the Cretaceous-Paleogene boundary[J]. Science,2013,339(6120):684−687. doi: 10.1126/science.1230492
|
Renne P R, Mundil R, Balco G, et al. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology[J]. Geochimica et Cosmochimica Acta,2010,74(18):5349−5367. doi: 10.1016/j.gca.2010.06.017
|
Renne P R, Swisher C C, Deino A L, et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating[J]. Chemical Geology,1998,145(1−2):117−152. doi: 10.1016/S0009-2541(97)00159-9
|
Rozendaal A, Bruwer L. Tourmaline nodules: indicators of hydrothermal alteration and Sn Zn (W) mineralization in the Cape Granite Suite, South Africa[J]. Journal of African Earth Sciences,1995,21(1):141−155. doi: 10.1016/0899-5362(95)00088-B
|
Simmons W B, Pezzotta F, Shigley J E, et al. Granitic pegmatites as sources of colored gemstones[J]. Elements,2012,8(4):281−287. doi: 10.2113/gselements.8.4.281
|
Slack J F. Tourmaline associations with hydrothermal ore deposits[J]. Reviews in Mineralogy,1996,33:559−644.
|
Teng F Z, McDonough W F, Rudnick R L, et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite[J]. Earth Planetary Science Letters,2006,243(3−4):701−710. doi: 10.1016/j.jpgl.2006.01.036
|
Thern E R, Blereau E, Jourdan F, et al. Tourmaline 40Ar/39Ar geochronology and thermochronology: example from Hadean-zircon-bearing siliciclastic metasedimentary rocks from the Yilgarn Craton[J]. Geochimica et Cosmochimica Acta,2020,277:285−299. doi: 10.1016/j.gca.2020.03.008
|
Thomas R, Davidson P. Hambergite-rich melt inclusions in morganite crystals from the Muiane pegmatite, Mozambique and some remarks on the paragenesis of hambergite[J]. Mineralogy Petrology,2010,100:227−239. doi: 10.1007/s00710-010-0132-8
|
Trumbull R B, Krienitz M S, Gottesmann B, et al. Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia[J]. Contributions to Mineralogy Petrology,2008,155:1−18.
|
Wang H, Gao H, Zhang X Y, et al. Geology and geochronology of the super-large Bailongshan Li–Rb–(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China[J]. Lithos,2020,360:105449.
|
Wu H H, Huang H, Zhang Z C, et al. Magmatic-hydrothermal evolution and rare metal enrichment of the Huoshibulake B-rich rare metal granite in the Southern Tianshan: Insights from texture, geochemistry, and Hf-O isotopes of zircon[J]. Lithos,2024a,482:107705.
|
Wu H H, Huang H, Zhang Z C, et al. Tourmaline chemical and boron isotopic constraints on the magmatic-hydrothermal transition and rare-metal mineralization in alkali granitic systems[J]. American Mineralogist,2024b,109(8):1461−1477. doi: 10.2138/am-2023-9131
|
Yan Q H, Qiu Z W, Wang H, et al. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA–ICP–MS U–Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews,2018,100:561−573. doi: 10.1016/j.oregeorev.2016.11.010
|
Yan Q H, Wang H, Chi G X, et al. Recognition of a 600-km-long Late Triassic rare metal (Li-Rb-Be-Nb-Ta) pegmatite belt in the western Kunlun orogenic belt, Western China[J]. Economic Geology,2022,117(1):213−236. doi: 10.5382/econgeo.4858
|
Yang S Y, Jiang S Y, Zhao K D, et al. Tourmaline as a recorder of magmatic–hydrothermal evolution: an in situ major and trace element analysis of tourmaline from the Qitianling batholith, South China[J]. Contributions to Mineralogy Petrology,2015,170:1−21. doi: 10.1007/s00410-015-1154-3
|
Zhao H D, Zhao K D, Palmer M R, et al. Magmatic-hydrothermal mineralization processes at the Yidong Tin Deposit, South China: Insights from in situ chemical and boron isotope changes of tourmaline[J]. Economic Geology,2021,116(7):1625−1647. doi: 10.5382/econgeo.4868
|
Zhao H, Chen B, Zheng B Q, et al. Petrogenesis of Mesozoic pegmatites in the Dahongliutan Li-mineralized belt (Western Kunlun, NW China)[J]. Journal of Asian Earth Sciences,2024,264:106076. doi: 10.1016/j.jseaes.2024.106076
|
Zhou J S, Wang Q, Xu Y G, et al. Geochronology, petrology, and lithium isotope geochemistry of the Bailongshan granite-pegmatite system, northern Tibet: Implications for the ore-forming potential of pegmatites[J]. Chemical Geology,2021,584:120484. doi: 10.1016/j.chemgeo.2021.120484
|