ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
ZHANG Kai, WANG Juli, WANG Peipei, et al. Zircon U-Pb Geochronology and Petrogenesis of Taipinggou Copper (Gold)-related Granites, South Qinling[J]. Northwestern Geology, 2020, 53(4): 73-85. DOI: 10.19751/j.cnki.61-1149/p.2020.04.007
Citation: ZHANG Kai, WANG Juli, WANG Peipei, et al. Zircon U-Pb Geochronology and Petrogenesis of Taipinggou Copper (Gold)-related Granites, South Qinling[J]. Northwestern Geology, 2020, 53(4): 73-85. DOI: 10.19751/j.cnki.61-1149/p.2020.04.007

Zircon U-Pb Geochronology and Petrogenesis of Taipinggou Copper (Gold)-related Granites, South Qinling

More Information
  • Received Date: October 20, 2019
  • Revised Date: June 20, 2020
  • Available Online: July 28, 2022
  • Published Date: December 04, 2020
  • Taipinggou copper (gold) deposit is located in Qinling orogenic belt, at the junction of the Indosinian fold belt of south Qinling and the northeastern structural magmatic belt of the Laoniushan-Yanzhiba period. The altered rock mass relating to mineralization appears to be an ellipse, with a exposed surface area of 0.12 km2. The altered rock mass is mainly composed of quartz diorite and fine-grained granite, which were closely related to copper (gold) mineralization, with porphyry granite scattered. The LA-ICP-MS zircon U-Pb shows that the age of Taipinggou quartz diorite mineralization is 223.2±2.9ma, indicating that it was emplaced in late Triassic of the late Indosinian. The geochemical analysis shows that the quartz diorite is potassium-rich (Na2O/K2O=1.21-1.75) and alkali-rich (Na2O+K2O=7.31%-9.67%) and belongs to high-potassium calc-alkaline series of quasi aluminous rocks. The total amount of rare earth elements in the rocks is high, with obvious negative Eu anomaly, and the REE distribution pattern is obviously right dipping. The trace elements are characterized by the enrichment of big ion lithophile elements such as Ba, u, K, and the depletion of high field strength elements of Nb, P, Ti, belonging to type-I granite. Based on the comprehensive analysis, the authors hold that Taipinggou copper (gold) deposit is the magmatic activity of late Indosinian, suggesting some important magmatic mineralization events in late Indosinian in Ningshan-Zhen'an area of South Qinling.
  • 李雷,张成立,周莹,等.秦岭早中生代壳幔岩浆混合作用-来自东江口花岗岩体闪长质包体的地球化学证据[J].高校地质学报,2012,18(2):291-306.
    LI Lei, ZHANG Chengli, ZHOU Ying, et al. Early Mesozoic crust mantle magma mixing in Qinling Mountains:geochemical evidence from diorite inclusions of Dongjiangkou granite[J].Journal of University Geology, 2012,18 (2):291-306.
    刘春花,吴才来,郜源红,等.南秦岭东江口、柞水和梨园堂花岗岩类锆石LA-ICP-MS U-Pb年代学与锆石Lu-Hf同位素组成[J].岩石学报,2014,30(8):2402-2420.
    LIU Chunhua, WU Cailai, GAO Yuanhong, et al. LA-ICP-MS U-Pb geochronology and Lu Hf isotopic composition of zircons from Dongjiangkou, Zhashui and liyuantang granites in the South Qinling Mountains[J]. Acta Petrologica Sinica, 2014,30 (8):2402-2420.
    刘文建,张凯,王居里,等.南秦岭宁陕-镇安地区发现斑岩型铜(金)矿[J].矿产与地质,2020,34(3):401-404.
    LIU Wenjian, ZHANG Kai, WANG Juli, et al. Discovery of porphyry copper (gold) deposits in Ningshan Zhen'an area, southern Qinling[J]. Mineral and Geology, 2020,34 (3):401-404.
    卢欣祥,李明立,王卫,等.秦岭造山带的印支运动及印支期成矿作用[J].矿床地质,2008,27(6):762-769.
    LU Xinxiang, LI Mingli, WANG Wei, et al. Indosinian movement and Indosinian mineralization in Qinling orogenic belt[J]. Deposit Geology, 2008,27 (6):762-769.
    王靖华,张复新,于在平,等.秦岭金属矿床成矿系列与大陆造山带构造动力学背景[J].中国地质,2002,29(2):192-194.
    WANG Jinghua, ZHANG Fuxin, YU Zaiping, et al. Metallogenic series of Qinling metal deposits and tectonic dynamic background of continental orogenic belt[J]. Chinese Geology, 2002,29 (2):192-194.
    王清晨,孙枢,李继亮,等.秦岭的大地构造演化[J].地质科学,1989,(2):129-141.
    WANG Qingchen,SUN Shu,LI Jiliang,et al.TheTectonic evolution of Qinling Mountains[J]. Scientia Geologica Sinica,1989,(2):129-141.
    杨志华,姜常义,赵太平,等.论秦岭造山带的成矿作用[J].西安工程学院学报,1999,21(4):36-38.
    YANG Zhihua, JING Changyi, Zhao Taiping, et al. On mineralization of Qinling orogenic belt[J]. Journal of Xi'an Institute of Engineering, 1999,21 (4):36-38.
    张成立,王涛,王晓霞.秦岭造山带早中生代花岗岩成因及其构造环境[J].高校地质学报,2008,14(3):304-316.
    ZHANG Chengli,WANG Tao,WANG Xiaoxia. Genesis and tectonic environment of early Mesozoic granites in Qinling orogenic belt[J]. Journal of University Geology, 2008,14 (3):304-316.
    张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝合带的再认识-兼论中国大陆主体的拼合[J].地质通报,2004,23(9-10):846-853.
    ZHANG Guowei, CHENG Shunyou, GUO Anlin,et al. Re recognition of Mian Lue ancient suture zone in the southern margin of Qinling Mountains Dabie central orogeny. Also on the Chinese mainland's main[J]. Geological Bulletin, 2004,23 (9-10):846-853.
    张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化[J].陕西地质,1997,15(2):2-12.
    ZHANG Guowei,DONG Yunpeng,YAO Anping.Basic composition, structure and tectonic evolution of Qinling orogenic belt[J]. Geology of Shaanxi, 1997,15 (2):2-12.
    张国伟,郭安林,董云鹏,等.大陆地质与大陆构造和大陆动力学.地学前缘[J],2011,18(3):1-12.
    ZHANG Guowei,GUO Anlin,DONG Yunpeng, et al. Continental geology and continental tectonics and continental dynamics[J]. Geoscience fronters, 2011,18 (3):1-12.
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M]. 北京:科学出版社,2001.
    ZHANG Guowei,ZHANG Benren,YUAN Xuecheng, et al. Qinling orogenic belt and continental dynamics[M]. Beijing:Science Press, 2001.
    张凯,刘文建,陈亚伟,等.南秦岭观花坪铜银矿床地质特征及找矿标志[J].地质找矿论丛,2019,34(01):15-20.
    ZHANG Kai, LIU Wenjian, CHEN Yawei, et al. Geological characteristics and prospecting criteria of guanhuaping copper silver deposit in South Qinling[J]. Geological Prospecting Cluster, 2019,34 (01):15-20.
    张凯,刘文建,陈亚伟,等.陕西省镇安县银洞湾-张子坪一带铅锌多金属矿预查总结报告[R].陕西:西安地质矿产勘查开发院有限公司,2018.
    赵东宏,杨忠堂,李宗会,等.秦岭成矿带成矿地质背景及优势矿产成矿规律[M].北京:科学出版社,2019.
    ZHAO Donghong,YANG Zhongtang,lI Zonghui, et al. Metallogenic geological background and metallogenic law of dominant minerals in Qinling metallogenic belt[M].Beijing:Science Press, 2019.
    BATCHELOR R A and BOWDEN P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology,1985,(48):43-55.
    DE LA ROCHE H,LETERRIER J,GRANDCLAUDEP,et al.A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses-Its relationships with current nomenclature[J]. Chemical Geology,1980,29:183-210.
    HOSKIN P W O, BLACK L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. J Metamorphic Geol,2000,18:423-439.
    MANIAR P D,PICCOLI P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.
    MIDDLEMOST E A K.Magmas and Magmatic Rocks[M].London:Longman,1985,1-266.
    PEARCE J A,HARRIS N B W and TINDLE A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984,25:956-983.
    PECCERILLO R,TAYLOR S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J].Contrib.Mineral Petrol,1976,58:63-81.
    SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts:implication for the mantle composition and processes[J].In:Magmatism in theOcean Basins, Saunders,A.D., Norry,M.J.(eds.). Geological Society of London Special Publication:London.1989,42(1):313-345.
    TAYLOR S R, MCLENNAN S M. The geochemical evolution of the continental crust[J].Review in Geophysics,1995,33:241-265.
    TAYLOR S R, MCLENNAN S M. The Continental Crust:It's Composition and Evolution[M].Oxford:Blackwell Scientific Publishers,1985:1-132.
    WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites:geochemical characteristics, discriminatuon and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95:407-419.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return