ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
FAN Tingbin, LI Hao, XU Xingwang, et al. Research Status and Progress of Nonsulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2): 147-159.
Citation: FAN Tingbin, LI Hao, XU Xingwang, et al. Research Status and Progress of Nonsulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2): 147-159.

Research Status and Progress of Nonsulfide Zinc-Lead Deposit

More Information
  • Received Date: October 01, 2017
  • Revised Date: December 28, 2017
  • Available Online: July 28, 2022
  • Published Date: June 04, 2018
  • The nonsulfide zinc-lead deposits are composed of zinc and lead "oxides". Nonsulfide zinc-lead deposits are classified as supergene and hypogene deposits. The supergene deposits are primarily formed by the supergene oxidation, which are mainly composed of smithsonite, hemimorphite and cerussite. These supergene nonsulfide deposits consist of three subtypes, as as direct-replacement deposits, wall-rock replacement deposit, and residual and karst-fill deposit. The hypogene deposits are mainly formed by the hydrothermal solutions which consist dominantly of willemite, smithsonite and cerussite. These hypogene deposits are subdivided into structurally controlled deposit and stratiform deposit. The hypogene deposits show distinct carbon and oxygen compositions with the supergene deposits. In this paper, the characteristics and genesis of the nonsulfide deposits have been presented, and the research progress on the Huoshaoyun zinc-lead deposit has been introduced. The Huoshaoyun deposit is the largest zinc-lead deposit in China, with the zinc-ead metal reserve of more than 17 million tonnes. This deposit is primarily composed of smithsonite, cerussite, galena and sphalerite. The latest research show that this deposit was experienced two ore-forming stages:an early and primary zinc-lead carbonate ore-forming stage, and a late zinc-lead sulfide ore-forming stage. The geological characteristics and stable isotope features indicate that the Huoshaoyun deposit is a stratiform (exhalative) hypogene nonsulfide zinc-lead deposit.
  • 董连慧,冯京,刘德权, 等. 新疆成矿单元划分方案研究[J]. 新疆地质, 2010, 28(1):1-15.
    DONG LH, FENG J, LIU DQ, et al. Research for classification of metallogenic unit of Xinjiang[J]. Xinjiang Geology, 2010, 28(1):1-15.
    董连慧,徐兴旺,范廷宾, 等. 西昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J]. 新疆地质, 2015, 33(1):41-50.
    DONG LH, XU XW, FAN TB, et al. Discovery of the Huoshaoyun super-large exhalative-sedimentary carbonate Pb-Zn deposit in the Western Kunlun Area and its great significance for regional metallogeny[J]. Xinjiang Geology, 2015, 33(1):41-50.
    潘裕生.西昆仑构造特征与演化[J]. 地质科学, 1990, 25(2):224-232.
    PANY S. Tectonic features and evolution of the western Kunlun Mountain Region[J]. Scientia Geologica Sinica, 1990, 25(2):224-232.
    王炬川, 崔建堂, 罗乾周, 等. 喀喇昆仑南部侏罗系龙山组沉积环境分析及构造环境初探[J]. 陕西地质, 2004, 22(1):17-23.
    WANG JC, CUI JT, LUO QZ, et al. Analysis of the sedimentary environment and discussion of the structural setting of the Jurassic Longshan formation in the southern Kunlun of Gela[J]. Shaanxi Geology, 2004, 22(1):17-23.
    徐仕琪, 冯京, 田江涛, 等. 西昆仑落石沟一带铅锌矿成矿特征及区域预测[J].吉林大学学报(地球科学版), 2013, 43(4):1190-1199.
    XU SQ, FENG J, TIAN JT, et al. Metallogenic rules and regional prediction of lead-zinc deposits in Luoshigou of West Kunlun[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(4):1190-1199.
    徐仕琪, 冯京, 田江涛, 等.西昆仑落石沟一带铅锌矿成矿规律与找矿前景[J]. 新疆地质, 2014, 31(1):70-75.
    XU SQ, FENG J, TIAN JT, et al. Metallogenic rules and prospecting potential of lead-zinc deposits in Luoshigou of West Kunlun[J]. Xinjiang Geology, 2014, 31(1):70-75.
    杨永强,李丽.非硫化物型锌矿床的地质特征和成因机制[J]. 世界地质,2010,(01):56-59.
    YANGY Q, LI L. Geological characteristics and formation mechanism of nonsulfide zinc deposits[J]. Global Geology, 2010, (01):56-59.
    AL GANADI, LAGNY P, LESCUYER J L, et al. Jabali, a Zn-Pb-(Ag) carbonate-hosted deposit associated with Late Jurassic rifting in Yemen[J]. Mineralium Deposita, 1994, 29(1):44-56.
    BAGUETTE A. Les gisements calaminaires de Thasos[J]. Annales Géologiques des Pays Hélleniques, Série 1, Tom Ⅱ, 1947, 143-183.
    BALASSONE G, ROSSI M, BONI M, et al. Mineralogical and geochemical characterization of nonsulfide Zn-Pb mineralization at Silvermines and Galmoy (Irish Midlands)[J]. Ore Geology Reviews, 2008, 33(2):168-186.
    BEATY D W, LANDIS G P, THOMPSON T B, et al. Carbonate-hosted sulfide deposits of the Central Colorado mineral belt[M]. Littleton:Economic Geology Monograph, 1990, 7:424.
    BOLFAM J. Contribution a l'étude du gisement de Hammam N'Baïls (Province de Constantine, Algérie)[J]. Compte Rendu du Congrès des Sociétés Savantes,Section des Sciences, 1953:171-182.
    BONI M, BALASSONE G, ARSENEAU V, et al. The nonsulfide zinc deposit at Accha (Southern Peru):geological and mineralogical characterization[J]. Economic Geology, 2009, 104(2):267-289.
    BONI M, GILG H A, BALASSONE G, et al. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran[J]. Mineralium Deposita, 2007, 42(8):799-820.
    BONI M, GILG H A., AVERSA G, et al. The "Calamine" of SW Sardinia (Italy):geology, mineralogy and stable isotope geochemistry of a supergene Zn-mineralization[J]. Economic Geology, 2003, 98:731-748.
    BONI M, LARGE D. Nonsulfide zinc mineralization in Europe:An overview[J]. Economic Geology, 2003, 98(4):715-729.
    BONI M, MONDILLO N. The "calamines" and the "others":The great family of supergene nonsulfide zinc ores[J]. Ore Geology Reviews, 2015, 67:208-233.
    BONIM. A new ("old") type of Zn ore resource:The "calamine" of SW Sardinia (Italy)[A]//Geological Society of America Abstracts with Programs[C], 2001, 33:A-336.
    BORG G, KÄRNER K, BUXTON M, et al. Geology of the Skorpion supergene zinc deposit, southern Namibia[J]. Economic Geology, 2003, 98(4):749-771.
    BORG G. A Review of Supergene Nonsulphide Zinc (SNSZ) Deposits-the 2014 Update[A]. Archibald S M and Piercey S J, eds. In book:Current Perspectives on Zinc Deposits, Ireland[C]:Irish Association for Economic Geology. 2015:123-147.
    BRUGGER J, MCPHAIL D C, WALLACE M, et al. Formation of willemite in hydrothermal environments[J]. Economic Geology, 2003, 98(4):819-835.
    BUSH J B, COOK D R. The Chief Oxide-Burgin area discoveries, East Tintic District, Utah; a case history; Part Ⅱ, Bear Creek Mining Company studies and exploration[J]. Economic Geology, 1960, 55(7):1507-1540.
    CAIRNCROSS B. The Otavi Mountain Land Cu-Pb-Zn-V deposits[J]. Mineralogical Record, 1997, 28:109-130, 157.
    CERLING T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71(2):229-240.
    CHAPPLE K. The Mehdiabad zinc deposit-a Tethyan giant[J]. Mineral Exploration and Sustainable Development. Millpress, Rotterdam, 2003:1149-1152.
    COPPOLA V, BONI M, GILGH A, et al. The "calamine" nonsulfide Zn-Pb deposits of Belgium:petrographical, mineralogical and geochemical characterization[J]. Ore Geology Reviews, 2008, 33(2):187-210.
    DALIRAN F, PRIDE K, WALTHER J, et al. The Angouran Zn (Pb) deposit, NW Iran:evidence for a two stage, hypogene zinc sulfide-zinc carbonate mineralization[J]. Ore Geology Reviews, 2013, 53:373-402.
    EL SAMANI Y, TOURAY J C, POUITG, et al. La minéralisation en Zn-Cu-Mn-Ba d'Abu Samar et les indices de la plaine d'Allalka-leib (Soudan)[J].des accumulations métallifères métamorphisées d'origine exhalative-sédimentaire:Chronique de la Recherche Minière, 1986, 483:3-18.
    FEDIUK F, KUSNÍR I. Groupe de gétes polymétalliques de Cho Dien en Républic Démocratique du Vietnam[J]. Acta Universitas Carolinae-Geologica, 1967, 1:29-58.
    GILG H A, ALLEN C, BALASSONE G, et al. The 3-stage evolution of the Angouran Zn "oxide"-sulfide deposit, Iran[J]. Mineral Exploration and Sustainable Development. Millpress, Rotterdam, 2003a:77-80.
    GILG H A, BONI M, HOCHLEITNERR, et al. Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn-Pb deposits[J]. Ore Geology Reviews, 2008, 33(2):117-133.
    GILG H A, BONI M. Stable isotope studies on Zn and Pb carbonates:their role in mineral exploration of non-sulphide deposits[A]//Proceedings[C], SEG Conference, Perth WA. 2004:361-365.
    GILG H A, HOCHLEITNER R, KELLER P, et al. A fluid inclusion and stable isotope study of secondary oxidation minerals from the Tsumeb Cu-Pb-Zn deposit, Namibia[J]. Proceedings ECROFI XI, Budapest, Hungary, 2003b, 2:78-79.
    GNOINSKI J. Skorpion Zinc:optimization and innovation[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2007, 107(10):657-662.
    GOODFELLOW W D, LYDON J W. Sedimentary-exhalative (SEDEX) deposits[J]. Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5:163-183.
    GRIFFITH S V. The mineral resources of Burma[M]. London:Mining Magazine, 1956, 95:9-18.
    GROVES I, GREGORY I, CARMAN C. Reliance-a new high-grade zinc silicate-oxide discovery in the Flinders Ranges[J]. Mines and Energy South Australia Journal, 2002, 25:6-10.
    HEYLA V. Oxidized zinc deposits of the United States, Part 2. Utah[J]. U.S. Geologicial Survey Bulletin, 1963, 1135-B:104.
    HEYL A V. Oxidized zinc deposits of the United States, Part 3. Colorado[J]. U.S. Geological Survey Bulletin, 1964, 1135-C:98.
    HEYL A V, BOZION C N. Oxidized zinc deposits of the United States, Part 1[J]. General Geology:U.S. Geological Survey Bulletin, 1962, 1135-A:52.
    HITZMAN M W, BEATY D W. The Irish Zn-Pb-(Ba) orefield[A]. In Sangster D F, ed. Carbonate-hosted lead-zinc deposits:Society of Economic Geologists Special Publication[C], 1996, 4:112-143.
    HITZMAN M W, REYNOLDS N A, SANGSTER D F, et al. Classification, genesis, and exploration guides for nonsulfide zinc deposits[J]. Economic Geology, 2003, 98(4):685-714.
    HITZMAN M W, THORMAN C H, ROMAGNA G, et al. The Morro Agudo Zn-Pb deposit, Minas Gerais, Brazil:a Proterozoic Irish-type carbonate hosted sedex replacement deposit[A]//Abstracts with Programs-Geological Society of America[C]. 1995, 27:A408.
    HITZMAN M W. Zinc oxide and zinc silicate deposits-a new look[A]//GSA Annual Meeting, Abstracts with Programs[C], 2001, 33:A-336.
    JOHNSON C A, SKINNER B J. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the new Jersey Highlands[J]. Economic Geology, 2003, 98(4):837-854.
    JOHNSONC A. Geochemical constraints on the origin of the Sterling Hill and Franklin zinc deposits, and the Furnace magnetite bed, northwestern New Jersey[M]. Littleton:Society of Economic Geologists Guidebook Series, 2001, 35:89-97.
    KAMONA F. The carbonate hosted Kabwe Pb-Zn deposit, central Zambia[D]. Aachen:Rheinisch-Westfalischen Technischen Hoschschule, 1993.
    KÄRNER K. The Metallogenesis of the Skorpion Non-sulphide Zinc Deposit, Namibia[D]. Unpublished Ph.D. Thesis (Dr. rer. nat.) Wittenberg, Germany, Mathemattisch Naturwissenschaftlich-Technischen Fakultat der Martin-Luther-Universitat Halle, 2006, 133 pp.
    KELLY W C. Topical study of lead-zinc gossans[J]. State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Metallurgy Bulletin, 1958, 46:42-47.
    LARGE D. The geology of nonsulphide zinc deposits-An overview[J]. Erzmetall, 2001, 54(5):264-274.
    LEACH D L, SANGSTER D F, KELLEY K D, et al. Sediment-hosted lead-zink deposit:A global perspective[J]. Economic Geology 100th Anniversary Volume, 2005:561-607.
    LEAVENS P B, PATTON J D. The Desert View mine, San Bernardino Mountains, California:A possible intermediate between Lángban, Sweden and Franklin, New Jersey[J]. San Bernardino County Museum Association Quarterly, 2000, 47:17-21.
    LI N, KYLE J K. Geologic controls of sandstone-hosted Zn-Pb-(Sr) mineralization, Jinding deposit, Yunnan Province, China-a new environment for sediment-hosted Zn-Pb deposits[A]//Energy and Mineral Resources for the 21st Century[C]:Geology of Mineral Deposits:Mineral Economics:Proceedings of the 30th International Geological Congress, Beijing:4-14 August 1996. VSP, 1998, 9:67-82.
    LIAGHAT S, MOORE F, JAMI M. The Kuh-e-Surmeh mineralization, a carbonate-hosted Zn-Pb deposit in the simply folded belt of the Zagros Mountains, SW Iran[J]. Mineralium Deposita, 2000, 35(1):72-78.
    LIAKOPOULOS A., Hydrothermalisme et mineralisations métallifères de l'île de Milos (Cyclades, Grece)[D]. Paris:Memoires des Sciences de la Terre, Academie de Paris, Université Pierre et Marie Curie, 1987.
    LINDGREN W, LOUGHLIN G F, HEIKES V C. Geology and ore deposits of the Tintic mining district, Utah[M]. Reston:U.S. Geological Survey Professional Paper. 1919, 107:282 p.
    LYDON J W. Sedimentary exhalative sulphides (Sedex)[A]. In:Eckstrand O R, Sinclair W D, and Thorpe R I, eds., Geology of Canadian Mineral Deposit Types[C], Geological Survey of Canada, 1995, 8:130-152.
    MARINOS G. The ores of lead and zinc in Greece[J]. In:Dunham K C, ed., The Geology, Paragenesis, and Reserves of Lead and Zinc:International Geological Congress, 18th, Proceedings Part VⅡ, 1950:308-313.
    MEGAW P K M, RUIZ J, TITLEY S R. High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of northern Mexico[J]. Economic Geology, 1988, 83(8):1856-1885.
    MELCHIORRE E B, ENDERS M S. Stable isotope geochemistry of copper carbonates at the Northwest Extension deposit, Morenci district, Arizona:implications for conditions of supergene oxidation and related mineralization[J]. Economic Geology, 2003, 98:607-621.
    MELCHIORRE E B, WILLIAMS P A, BEVINS R E. A low temperature oxygen isotope thermometer for cerussite, with application at Broken Hill, New South Wales, Australia[J]. Geochimica et Cosmochimica Acta, 2001, 65:2527-2533.
    MONDILLO N, BONI M, BALASSONE G, et al. The Jabali nonsulfide Zn-Pb-Ag deposit, western Yemen[J]. Ore Geology Reviews, 2014, 61:248-267.
    MONTEIRO L V S, BETTENCOURT J S, JULIANIC, et al. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais, Brazil[J]. Ore Geology Reviews, 2006, 28(2):201-234.
    MORRIS H T, LOVERING T S. General geology and mines of the East Tintic mining district, Utah and Juab counties, Utah[M]. Reston:U.S. Geological Survey Professional Paper, 1979, 1024:203.
    MORRISH T. The Main Tintic mining district, Utah[J]. In:Ridge J D, ed., Ore deposits of the United States, 1933-1967 (Graton-Sales volume):American Institute of Mining, Metallurgy, and Petroleum Engineers, 1968:1043-1073.
    NUSPL A. Genesis of nonsulfide zinc deposits and their future utilization[J]. TU Bergakademie Freiberg, 2009:1-9.
    OHMOTO H, RYE R O. Isotopes of sulfur and carbon[A]//Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits[M], 2nd edition. New York:Wiley, 1979:509-567.
    PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.
    PRIDE K, SALEHI H. Angouran zinc deposit, Iran[J]. Prospectors and Developers Association of Canads, Abstracts, 2003, 24.
    REICHERT J, BORGG. Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits[J]. Ore Geology Reviews, 2008, 33(2):134-151.
    RELVAS J M R S, BARRIGA F J A S, LONGSTAFFE F J. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. Ⅱ. Oxygen, hydrogen, and carbon isotopes[J]. Economic Geology, 2006, 101(4):791-804.
    REYNOLDS N A, CHISNALL T W, KAEWSANG K, et al. The padaeng supergene nonsulfide zinc deposit, Mae Sod, Thailand[J]. Economic Geology, 2003, 98(4):773-785.
    ROBINSON B W. The origin of mineralization at the Tui mine, Te Aroha, New Zealand, in the light of stable isotope studies[J]. Economic Geology, 1974, 69:910-925.
    ROSE A W, HAWKES H E, WEBBJ S. Geochemistry in mineral exploration[M]. London:Academic Press, 1979, 657 p.
    SANGAMESHWAR S R, BARNES HL. Supergene processes in zinc-lead-silver sulfide ores in carbonates[J]. Economic Geology, 1983, 78(7):1379-1397.
    SANTORO L, BONI M, HERRINGTONR, et al. The Hakkari nonsulfide Zn-Pb deposit in the context of other nonsulfide Zn-Pb deposits in the Tethyan Metallogenic Belt of Turkey[J]. Ore Geology Reviews, 2013, 53:244-260.
    SCHNEIDER J, BONI M, LAUKAMPC, et al. Willemite (Zn2SiO4) as a possible Rb-Sr geochronometer for dating nonsulfide Zn-Pb mineralization:examples from the Otavi Mountainland (Namibia)[J]. Ore Geology Reviews, 2008, 33(2):152-167.
    SHEPARD W M, MORRIS H T, COOK DR. Geology and ore deposits of the Tintic mining district, Utah[A]. In:Ridge J D, ed., Ore deposits of the United States, 1933-1967 (Graton-Sales volume):American Institute of Mining, Metallurgy, and Petroleum Engineers[C], 1968:956-959.
    TAKAHASHI T. Supergene alteration of zinc and lead deposits in limestone[J]. Economic Geology, 1960, 55(6):1083-1115.
    THOMPSON T B, AREHARTG B. Geology and the origin of ore deposits in the Leadville district, Colorado-Part I. Geologic studies of orebodies and wall rocks[J]. Carbonate-hosted sulfide deposits of the central Colorado mineral belt:Economic Geology Monograph, 1990, 7:130-155.
    THORNBER M R, TAYLOR G F. The mechanisms of sulphide oxidation and gossan formation[J]. Regolith exploration geochemistry in tropical and subtropical terrains:Elsevier Handbook of Exploration Geochemistry, 1992, 4:119-138.
    THORNBER M R. The chemical mobility and transport of elements in the weathering environment[A]. In:Butt C R M, and Zeegers H, eds. Regolith Exploration Geochemistry in Tropical and Subtropical Terrains[C]. In:Govett, G J S, ed. Handbook of Exploration Geochemistry, 1992, 4:79-96.
    VIVALLO W, BROMANC. Genesis of the earthy ores at Garpenberg, south central Sweden[J]. Geologiska Föreningens i Stockholm förhandlingar. 1993, 115:209-214.

Catalog

    Article views (2349) PDF downloads (2211) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return