ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LI Chengze, WANG Jinrong. Dynamics Mechanism of Deep-Earth Water Cycling and Its Research Progress[J]. Northwestern Geology, 2018, 51(2): 209-219.
Citation: LI Chengze, WANG Jinrong. Dynamics Mechanism of Deep-Earth Water Cycling and Its Research Progress[J]. Northwestern Geology, 2018, 51(2): 209-219.

Dynamics Mechanism of Deep-Earth Water Cycling and Its Research Progress

More Information
  • Received Date: September 10, 2017
  • Revised Date: December 19, 2017
  • Available Online: July 28, 2022
  • Published Date: June 04, 2018
  • Mantle transition zone (MTZ) is the transitional region between the upper and lower mantle, the geological processes occurred within its interior have a profound influence on the related geodynamic processes. The subduction zone is one of the strongest crust-mantle interaction regions, and the widespread continental flood basalt (CFB) on the Earth's surface is one of most important objects to study crust-mantle cyclic dynamics. Mantle transition zone has a large amount of water, which is stored within the nominal anhydrous minerals (NAMs). The fluids were caused by the dehydration of residual slab in the subdution process, and these fluids replaced the continental lithosphere, producing the intra-continental basalts with arc-like signature and leading to the misidentification between continental basalt and island-arc basalt. The traditional discrimination diagrams of basalts are not validity distinguishing two types of basalts (CFB and IAB), and it can be further divided by sensitive elements, thus the tectonic discrimination diagrams need to be used. Newly proposed water-filtering model of mantle transition zone links the deep-Earth fluid cycling, large-scale intra-continental basaltic magmatism, and supercontinent cycles into a system. This model reveals that the assemblage of supercontinent could potentially lead to the accumulation of water-bearing oceanic plates in the mantle transition zone and may also change the mode of mantle convection.
  • 金振民. 我国高温高压实验研究进展和展望[J]. 地球物理学报, 1997, 40(增刊Ⅰ):71-81.
    JIN Zhenmin. The progress and perspectives of high-T and high-p experimental study in China[J]. Chinese Journal of Geophysics, 1997, 40(SupplⅠ):71-81.
    赵子福,戴立群,郑永飞. 大陆俯冲带两类壳幔相互作用[J]. 中国科学(地球科学), 2015, 45:900-915.
    ZHAO Zifu, DAI Liqun, ZHENG Yongfei. Two types of the crust-mantle interaction incontinental subduction zones[J]. Science China:Earth Sciences, 2015, 45:900-915.
    王金荣,陈万峰,张旗,等. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J]. 岩石学报, 2017, 33(3):993-1005.
    WANG Jinrong, CHEN Wanfeng, ZHANG Qi, et al. Preliminary research on data mining of N-MORB and E-MORB:Disdussion on method of basalt discrimination diagrams and the character of MORB's mantle sourse[J]. Acta Petrologica Sinica,2017, 33(3):993-1005.
    夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志,2007,26(1):77-89.
    XIA Linqi,XIA Zuchun,XU Xueyi, et al. The discrimination between continental basalt and island arc basalt based on geochemical method[J]. Acta Petrologica et Mineralogica,2007,26(1):77-89.
    杨婧,王金荣,张旗,等. 弧后盆地玄武岩(BABB) 数据挖掘:与MORB 及IAB的对比[J]. 地球科学进展,2016,31(1):66-77.
    YANG Jing,WANG Jinrong,ZHANG Qi,et al. Back-arc basin basalt(BABB) data mining:Comparison with MORB and IAB[J]. Advances in Earth Science,2016,31(1):66-77.
    周春银,金振民,章军锋.地幔转换带:地球深部研究的重要方向[J]. 地学前缘,2010,17(3):90-113.
    ZHOU Chunyin,JIN Zhenmin,ZHANG Junfeng. Mantle transition zone:An important field in the studies of Earth's deep interior[J]. Earth Science Frontiers, 2010,17(3):90-113.
    杨翠平,金振民,吴耀.地幔转换带中的水及其地球动力学意义[J]. 地学前缘,2010,17(3):114-126.
    YANG Cuiping,JIN Zhenmin,WU Yao. Water in the mantle transition zone and its geodynamic implications[J]. Earth Science Frontiers,2010,17(3):114-126.
    张鸿翔,徐志方,马英军,等.大陆溢流玄武岩的地球化学特征及起源[J]. 地球科学,2001,26(3):261-268.
    ZHANG Hongxiang,XU Zhifang,MA Yingjun,et al. Geochemical features and origin of continental flood basalts[J]. Earth Science,2001,26(3):261-268.
    国坤,翟世奎,于增慧,等.板块俯冲对岩浆作用影响的同位素地球化学示踪研究[J].海洋科学,2016,40(6):126-132.
    GUO Kun,ZHAI Shihui,YU Zenghui,et al.Advances in isotopic geochemistry tracing for the influence of subduction over magmatism[J].Marine Sciences,2016,40(6):126-132.
    夏群科,刘佳,陈欢,等.大陆玄武岩原始水含量的测定及其对源区组分的制约[J].岩石矿物学杂志,2015,34(3):371-381.
    XIA Qunke,LIU Jia,CHEN Huan,et al.Estimation of water content of primary magma for continental basalts and itsconstraint on source components[J].Acta Petrologica et Mineralogica,2015,34(3):371-381.
    王金荣,陈万峰,张旗,等.MORB数据挖掘:玄武岩判别图反思[J].大地构造与成矿学,2017,41(2):420-431.
    WANG Jinrong,CHEN Wanfeng,ZHAN Qi,et al.MORB Data Mining:Reflection of Basalt Discrimination Diagram[J].Geotectonica et Metallogenia,2017,41(2):420-431.
    王金荣, 潘振杰, 张旗,等. 大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现[J]. 岩石学报, 2016, 32(7):1919-1933.
    WANG Jinrong,PAN Zhenjie,ZHANG Qi,et al.Intra-continental basalt data mining:The diversity of their constituents and the performance in basalt discrimination diagrams[J].Acta Petrologica Sinica,2016,32(7):1919-1933.
    BIRCH F. Elasticity and constitution of the Earth's interior[J]. Journal of Geophysical Research, 1952, 57(2):277-286.
    THORKELSON D J. Subduction of diverging plates and the principles of slab window formation[J]. Tectonophysics, 1996, 255:47-63.
    HELFFRICH G R, WOOD B J. The Earth's mantle[J]. Nature, 2001, 412:501-507.
    WANG, SIMON A W, XU B, et al. Origin of arc-like continental basalts:Implications for deep-Earth fluid cycling and tectonic discrimination[J]. Lithos,2015,http://dx.doi.org/10.1016/j.lithos.2015.12.014.
    MARTIN R F, DONNAY G. Hydroxyl in the mantle[J]. American Mineralogist, 1972, 57:554-570.
    ANDERSON D L. Theory of Earth[M]. Boston:Blackwell Scientific, 1989:34-44.
    RINGWOOD A E. A model for upper mantle[J]. Journal of Geophysical Research, 1962, 67(2):857-867.
    RINGWOOD A E. Mineralogy of the mantle[M]. Hurley P M. Advances in Earth Science. Cambridge:Massachusetts Institute of Technology Press, 1966:357-398.
    RINGWOOD A E. Compsition and Petrology of the Earth's Mantle[M]. New York:McGraw-Hill,1975.
    RINGWOOD A E. Origin of the Earth and Moon[M]. New York:Springer-Verlag, 1979.
    SUN S S. Chemical composition and origin of the Earth's primitive mantle[J]. Geochemical et Cosmochimica Acta, 1982, 46(2):179-192.
    ANDERSON D L, BASS J D. Mineralogy and composition of the upper mantle[J]. Geophysical Research Letters, 1984, 11(7):637-640.
    BASSJ D, ANDERSON D L. Composition of the upper mantle:Geophysical tests of two petrological models[J]. Geophysical Research Letters, 1984, 11(3):229-232.
    DUFFY T S, ANDERSON D L. Seismic velocities in mantle minerals and the mineralogy of the upper mantle[J]. Journal of Geophysical Research, 1989, 94(B2):1895-1912.
    RINGWOOD A E. Phase transformations and their bearing in the constitution and dynamics of the mantle[J]. Geochimica et Cosmochimca Acta, 1991, 55(8):31-51.
    SHEARER P M, FLANAGAN M P. Seismic velocity and density jumps across the 410-and 660-kilometer discontinuities[J]. Sciences,1999, 285:1545-1548.
    CAMMARANO F, GOES S, et al. Is a pyrolitic adiabatic mantle compatible with seismic data[J]. Earth and Planetary Science Letters, 2005, 232:227-243.
    OHTANI E, SAKAI T. Recent advances in the study of mantle phase transitions[J]. Physics of the Earth and Planetary Interiors,2008,170(3/4):240-247.
    SMYTH J R, FROST D J. The effect of water on the 410 km discontinuity:An experimental study[J]. Geophysical Research Letters, 2002,29. Doi:101029/2001G L014418.
    INOUE T, WEIDNER D J, et al. Elastic properties of hydrous ringwoodite in Mg2SiO4[J]. Earth and Planetary Sciences Letters,1998, 160(1/2):107-113.
    BELL D R, ROSSMAN G R. Water in Earth's mantle:The role of nominally anhydrous minerals[J]. Sciences,1992,255:1391-1397.
    INOUE T, YURIMOTO H, et al. Hydrous modified spinel, Mg1.75SiH0.5O4:A new water reservoir in the mantle transition region[J]. Geophysical Research Letters, 1995,22(2):117-120.
    ANDERSON D L. New Theory of the Earth[M]. Cambridge:Cambridge University Press, 2007.
    GREEN H W, CHEN W, et al. Water is not Recycled into the Deep Mantle in Subducting Lithosphere[A]. American Geophysical Union[C], Fall Meeting, 2008:T13C1966G.
    OHTANI E. Water in the mantle[J]. Elements,2005,1(1):25-30.
    KOHLSTEDT D L, KEPPLER H, et al. Solubility of water in the α,β and γ phases of (Mg,Fe)2SiO4[J]. Contributions to Mineralogy and Petrology, 1996, 123(4):345-357.
    HIRSCHMANN M M. Water,melting and the deep Earth H2O cycle[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1):629-653.
    OHTANI E, TOMA M, et al. Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle[J]. Physics of the Earth and Planetary Interiors, 2001, 124(1/2):105-117.
    LITASOV K D, OHTANI E, et al. Wet subduction versus cold subduction[J]. Geophysical Research Letters, 2005, 32:L13312,doi: 10.1029/2005GL022921.
    HUANG X, XU Y, et al. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite[J]. Natures,2005, 434:746-749.
    LI CS, TANG QY, et al. Trace element in discrimination diagrams. Lithos, 2015,232:76-83.
    WANG XC, SIMON A W, et al. Continental flood basalts derived from the hydrous mantle transition zone[J]. Nat.Commun.6:7700 doi: 10.1038/ncomms8700(2015).
    ARNDT N T, CZAMANSKE G K, et al. Mantle and crustal contributions to continental flood vocanism[J]. Tectonphysics,1993, 223:39-52.
    DUNCAN A R. The Karoo igneous province-a problem area for inferring tectonic setting from basalt geochemistry[J]. Journal of Volcanology and Geothermal Research, 1987, 32:13-34.
    XIA LQ. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth-Science Reviews, 2014, 139:195-212.
    IVANOV A V, LITASOV K D. The deep water cycle and blood basalt volcanism[J]. International Geology Review,2013,56:1-14.
    MEREL R, MARZOLI A, et al. Sr, Nd, Pb and Os isotope systematic of CAMP tholeiites from Eastern North America(ENA):evidence of a subduction-enriched,mantle source[J]. Journal of Petrology,2014,55:133-180.
    GALLAGHER K, HAWKESWORTH C. Dehydration melting and the generation of continental flood basalts[J]. Natures, 1992, 358:57-59.
    FUKAO Y, OBAYASHI M, et al.Stagnant slabs:a review[J]. Annual Review of Earth and Planetary Sciences, 2009, 37:19-46.
    IVANOV A, DEMONTEROVA E, et al. Low-Ti melts from the southeastern Siberian Traps Large Igneous Province:evidence for a water-rich mantle source[J]. Journal of Earth System Science,2008, 117:1-21.
    PEARSON D G, BRENKER F E, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 2014,507:221-224.
    MUNKER C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand:source constrains and application of refined ICPMS techniques[J]. Chem Geol, 1998, 144(1-2):23-45.
    THY P, LESHER C E, et al. Experimental constrains on the skaergaard liquid line of descent[J]. Lithos, 2006, 92:154-180.
    HAURI E H, GAETANI G A, et al. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions[J]. Earth and Planetary Science Letters.,2006, 248:715-734.
    DIXON J E, LEIST L, et al. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt[J]. Nature,2002, 420:385-389.
    RUSCITTO D M, WALLACE P J, et al. Global variations in H2O/Ce:2 relationships to arc magma geochemistry and volatile fluxes[J]. Geochemistry, Geophysics, Geosystems,2012, 13, Q03025.
    PLANK T, KELLEY K A, et al. Why do mafic arc magmas contain~4wt% water on average[J]. Earth and Planetary Science Letters, 2013,364:168-179.
    CIVIERO C, HAMMOND J O S, et al. Multiple mantle upwellings in the transition zone beneath the northern EastAfrican Rift system from relative P-wave travel-time tomography[J].Geochemistry,Geophysics,Geosystems,2015,16:2949-2968.
    FROMMT, PLANERT L, et al. South Atlantic opening:a plume-induced breakup[J]. Geology,http//dx.doi.org/10.1130/g36936.1.
    LI Z X, ZHONG S. Supercontinent-superplume coupling, true polar wander and plume mobility:Plate dominance in whole-mantle tectonics[J]. Phys, Earth Planet, Inter, 2009, 176:143-156.
    LI Z X et al. Assembly, configuration, and break-up history of Rodinia:a synthesis[J]. Precambrian Research, 2008, 160:179-210.
    NAKAKUKI T, TAGAWA M, et al. Dynamical mechanisms controlling formation and avalanche of a stagnant slab[J]. Earth Planet, 2010, 183:309-320.
    WINDLEY B F, MARUYAMA S, et al. Delamination/thinning of sub-continental lithospheric mantle under Eastern China:the role of water and multiple subduction[J]. American Journal of Science,2010, 310:1250-1293.
    SAKAKMAKI T et al. Ponded melt at the boundary between the lithosphere and asthenosphere[J]. Nature Geoscience, 2013, 6:1041-1044.
    ERNST R E, BUCHAN K L, et al. Frontiers in large igneous province research[J]. Lithos, 2005,79:271-297.
    HAWKESWORTH C, TURNER S, et al. Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range[J]. Geophysical Research, 1995, 100(10):271-286.
    SAUNDERS A D, STOREY M, et al. Consequences of plume-lithossphere interaction[A]. London, 1992,68:41-60.
    WEAVER B L. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints[J]. Earth Planet Letters, 1991, 104:381-397.
    JORDAN F, BERTRAND H, et al. Major and Trace element and Sr,Nd,Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe:lithosphere vs mantle plume contuibution[J]. Journal of Petrology, 2007, 48:1043-1077.
    PUFFER J H. Contrasting high field strength elements contents of continental flood basalts from plume versus reactivated-arc sources[J]. Geology, 2001, 29:675-678.
    PANG C J, WANG X C, et al. Late Carboniferous N-MORB-type basalts in central Inner Mongolia, China:Products of hydrous melting in an intraplate setting[J]. Lithos, 2016,http://dx.doi.org/10.1016/j.lithos.2016.05.005.
    TURNER S, FODEN J, et al. Rates and peocesses of potassic magma evolution beneath Sangeang Apivolcano, east Sunda arc, Indonesia[J]. Petrol, 2003, 44(3):491-515.
    KEPPLER H. Constraints from partitioning experiments on the composition of subduction-zone fluids[J]. Nature, 1996, 380:237-240.
    PEARCE J, NORRY M. Petrogenetic implications of Ti,Zr,Y,and Nb variations in volcanic rocks[J]. Mineralogy and Petrology, 1979, 69:33-47.
    WOOD B J. The effect of H2O on the 410-kilometer seismic discontinuity[J]. Science,1995,268:74-76.
    KUBO T, OHTANI E, et al. Effects of water on the α-β transformation kinetics in San Carlos olivine[J]. Science,1998,281:85-87.
  • Related Articles

  • Cited by

    Periodical cited type(2)

    1. 刘宇,宋进喜,邢璐通,黄钰琳,高隽清,李晓鑫,曹成珺,史阿莹. 黄土高原植被变化对土壤侵蚀的影响. 西北大学学报(自然科学版). 2024(03): 398-412 .
    2. 李彦娥,王化齐,刘江,马红娜. 西北地区生态系统碳汇时空分布特征及相关驱动因子分析. 西北地质. 2023(04): 185-195 . 本站查看

    Other cited types(2)

Catalog

    Article views (2200) PDF downloads (2054) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return