Citation: | GE Rongfeng,ZHU Wenbin,ZHOU Teng,et al. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues[J]. Northwestern Geology,2024,57(6):1−24. doi: 10.12401/j.nwg.2024061 |
The Tarim Craton is one of the three ancient continental blocks in China, but the formation and evolution of its ancient basement have been poorly studied due to extensive sedimentary cover. However, in recent years, Archean rocks have been found in the Kuruktag, Dunhuang, North Altyn Tagh, Tiekelike areas on the periphery of the Tarim Basin, as well as in the drill core from its basement, indicating that there may be a widespread Archean basement. In this paper, the study history and recent progress of Archean rocks in the Tarim Craton are summarized, the formation time, mechanism and geodynamics of Archean continental crust are discussed, and the future research direction is pointed out. The results show that the formation of the Archean continental crust in the Tarim Craton appears to have regional differences. Neoarchean magmatism was widely developed in the Kuruktag, Dunhuang and North Altyn areas, with peaks of ~2.5 Ga and ~2.7 Ga. The discovery of ~3.7 Ga rocks in the North Altyn Tagh area provides reliable evidence for the existence of an Eoarchean continental nucleus in the Tarim Craton. The Tiekelike area and basin basement in the southwest Tarim are characterized by Mesoarchean (3.2~2.8 Ga) crustal growth and reworking, and no Neoarchean rocks have been found. Geochemistry, thermodynamic modelling and zircon oxybarometer-hygrometer indicate that the Archean continental crust might have been produced by water-induced melting of different source rocks at different depths (pressures) and formed in subduction-related tectonic settings, indicating that early plate tectonics have been in operation since the Eoarchean. The elucidation of the components of the Archean continental crust, the identification of metamorphism and deformation, and the determination of the physical and chemical conditions of magma formation are still the focus of future studies of the Archean geology in the Tarim Craton.
|
|
|
高振家, 陈晋镳, 彭昌文, 等. 新疆北部前寒武系[M]. 北京: 地质出版社, 1993: 171.
GAO Zhenjia, CHEN Jinbiao, PENG Changwen., et al. Precambrian Geology of the North Xinjing[M]. Beijing: Geological Press, 1993: 171.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993: 762.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cai Z, Jiao C, He B, et al. Archean–Paleoproterozoic tectonothermal events in the central Tarim Block: constraints from granitic gneisses revealed by deep drilling wells [J]. Precambrian Research, 2020: 105776.
|
|
Cawood P A, Chowdhury P, Mulder J A, et al. Secular evolution of continents and the Earth system [J]. Reviews of Geophysics, 2023: e2022RG000789.
|
|
|
Condie K C. How to make a continent: thirty-five years of TTG research. In Dilek Y, Furnes H (eds). Evolution of Archean Crust and Early Life[M]. Springer, 2014: 179−193.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Harrison T M. Hadean Earth[M]. Springer, 2020:1−291.
|
|
|
|
Hoffmann J E, Zhang C, Nagel T. The formation of Tonalites–Trondjhemite–Granodiorites in Early continental crust. In Earth's oldest rocks, Van Kranendonk M J, Bennett V, Hoffmann E, Eds.; Elsevier: 2019: 133−168.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Long X P, Yuan C, Sun M, et al. New geochemical and combined zircon U–Pb and Lu–Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang Block and crust formation in NW China [J]. Lithos, 2014, 200–201: 418 - 431.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Rudnick R L, Gao S. Composition of the continental crust[A]. In: Rudnick R L (ed). Treatise on geochemistry[M]. Elsevier, 2014, 4: 1−51.
|
|
|
Si Y, Ge R, Zhou T, et al. Decoupling of metamorphic zircon U-Pb ages and P-T paths in the Dunhuang metamorphic complex, northwestern China [J]. Precambrian Research, 2022, 379: 106783.
|
|
|
|
|
|
|
|
|
|
|
Taylor S R, McLennan S. Planetary crusts: their composition, origin and evolution[M]. Cambridge: Cambridge University Press, 2009, 378.
|
|
|
Van Kranendonk M J, Bennett V C, Hoffmann J E. Earth's oldest rocks[M]. Elsevier, 2019, 1078.
|
|
|
|
|
|
Xia X, Cui Z, Li W, et al. Zircon water content: Reference material development and simultaneous measurement with oxygen isotope by SIMS [J]. Journal of Analytical Atomic Spectrometry, 2019.
|
|
|
|
|
|
|
|
|
|
|
|
|
Zhu R, Zhao G, Xiao W, et al. Origin, Accretion and Reworking of Continents [J]. Reviews of Geophysics, 2021: e2019RG000689.
|
|