ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
GE Rongfeng,ZHU Wenbin,ZHOU Teng,et al. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues[J]. Northwestern Geology,2024,57(6):1−24. doi: 10.12401/j.nwg.2024061
Citation: GE Rongfeng,ZHU Wenbin,ZHOU Teng,et al. Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues[J]. Northwestern Geology,2024,57(6):1−24. doi: 10.12401/j.nwg.2024061

Origin of Archean Continental Crust in the Tarim Craton: Progresses and Issues

More Information
  • Received Date: April 22, 2024
  • Revised Date: June 04, 2024
  • Accepted Date: June 28, 2024
  • Available Online: October 09, 2024
  • The Tarim Craton is one of the three ancient continental blocks in China, but the formation and evolution of its ancient basement have been poorly studied due to extensive sedimentary cover. However, in recent years, Archean rocks have been found in the Kuruktag, Dunhuang, North Altyn Tagh, Tiekelike areas on the periphery of the Tarim Basin, as well as in the drill core from its basement, indicating that there may be a widespread Archean basement. In this paper, the study history and recent progress of Archean rocks in the Tarim Craton are summarized, the formation time, mechanism and geodynamics of Archean continental crust are discussed, and the future research direction is pointed out. The results show that the formation of the Archean continental crust in the Tarim Craton appears to have regional differences. Neoarchean magmatism was widely developed in the Kuruktag, Dunhuang and North Altyn areas, with peaks of ~2.5 Ga and ~2.7 Ga. The discovery of ~3.7 Ga rocks in the North Altyn Tagh area provides reliable evidence for the existence of an Eoarchean continental nucleus in the Tarim Craton. The Tiekelike area and basin basement in the southwest Tarim are characterized by Mesoarchean (3.2~2.8 Ga) crustal growth and reworking, and no Neoarchean rocks have been found. Geochemistry, thermodynamic modelling and zircon oxybarometer-hygrometer indicate that the Archean continental crust might have been produced by water-induced melting of different source rocks at different depths (pressures) and formed in subduction-related tectonic settings, indicating that early plate tectonics have been in operation since the Eoarchean. The elucidation of the components of the Archean continental crust, the identification of metamorphism and deformation, and the determination of the physical and chemical conditions of magma formation are still the focus of future studies of the Archean geology in the Tarim Craton.

  • 邓兴梁, 舒良树, 朱文斌, 等. 新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄[J]. 岩石学报, 2008, 2412): 28002808.

    DENG Xingliang, SHU Liangshu, ZHU Wenbin, et al. Precambrian tectonism, deformation and geochronology of igneous rocks in the Xingdi fault zone, Xinjiang[J]. Acta Petrologica Sinica, 2008, 2412): 28002808.
    翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动——前沿热点介绍与展望[J]. 岩石学报, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01

    ZHAI Mingguo, ZHAO Lei, ZHU Xiyan, et al. Review and overview for the frontier hotspot: Early continents and start of plate tectonics[J]. Acta Petrologica Sinica, 2020, 368): 22492275. doi: 10.18654/1000-0569/2020.08.01
    董昕, 张泽明, 唐伟. 塔里木克拉通北缘的前寒武纪构造热事件——新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J]. 岩石学报, 2011, 271): 4758.

    DONG Xin, ZHANG Zeming, TANG Wei. Precambrian tectono-thermal events of the northern margin of the Tarim Craton: Constraints of zircon U-Pb chronology from high-grade metamorphic rocks of the Korla, Xinjiang[J]. Acta Petrologica Sinica, 2011, 271): 4758.
    高振家, 陈晋镳, 彭昌文, 等. 新疆北部前寒武系[M]. 北京: 地质出版社, 1993: 171.

    GAO Zhenjia, CHEN Jinbiao, PENG Changwen., et al. Precambrian Geology of the North Xinjing[M]. Beijing: Geological Press, 1993: 171.
    辜平阳, 计文化, 陈锐明, 等. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示[J]. 地球科学, 2020, 459): 32683281.

    GU Pingyang, JI Wenhua, CHEN Ruiming, et al. Petrogenesis of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution[J]. Earth Science, 2020, 459): 32683281.
    辜平阳, 徐学义, 何世平, 等. 塔里木东南缘安南坝地区约 2.5 Ga 花岗闪长质片麻岩的发现及岩石成因[J]. 地质通报, 2019, 385): 834844.

    GU Pingyang, XU Xueyi, HE Shiping, et al. Ca. 2.5 Ga granodioritic gneiss in Annanba area of southeastern Tarim and its petrogenesis[J]. Geological Bulletin of China, 2019, 385): 834844.
    郭新成, 郑玉壮, 高军, 等. 新疆西昆仑中太古界古陆核的确定及地质意义[J]. 地质论评, 2013, 593): 401412. doi: 10.3969/j.issn.0371-5736.2013.03.001

    GUO Xincheng, ZHENG Yuzhuang, GAO Jun, et al. Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains, Xinjiang, China[J]. Geological Review, 2013, 593): 401412. doi: 10.3969/j.issn.0371-5736.2013.03.001
    郭瑞清, 秦切, 邹明煜, 等. 新疆库鲁克塔格西段辉长岩脉年代学、岩石地球化学特征及构造意义[J]. 西北地质, 2018, 514): 7081.

    GUO Ruiqing, QIN Qie, ZOU Mingyu, et al. Geochronology, Petrogeochemical Characteristics and Tectonic Significance of Gabbro Dike from Western Quruqtagh in Xinjiang[J]. Northwestern Geology, 2018, 514): 7081.
    郭召杰, 张志诚, 刘树文, 等. 塔里木克拉通早前寒武纪基底层序与组合: 颗粒锆石U-Pb年龄新证据[J]. 岩石学报, 2003, 193): 537542. doi: 10.3969/j.issn.1000-0569.2003.03.020

    GUO Zhaojie, ZHANG Zhicheng, LIU Shuwen, et al. U-Pb geochronological evidence for the early Precambrian complex of the Tarim Craton, NW China[J]. Acta Petrologica Sinica, 2003, 193): 537542. doi: 10.3969/j.issn.1000-0569.2003.03.020
    胡霭琴, 罗杰斯. 新疆塔里木北缘首次发现33亿年的岩石[J]. 科学通报, 1992, (7): 627630.

    HU Aiqin, Rogers G. Discovery of 3.3 Ga Archean Rocks in North Tarim Block of Xinjiang, Western China[J]. Science Bulletin, 1992, (7): 627630.
    胡霭琴, 韦刚健. 塔里木盆地北缘新太古代辛格尔灰色片麻岩形成时代问题[J]. 地质学报, 2006, 801): 126134. doi: 10.3321/j.issn:0001-5717.2006.01.014

    HU Aiqin, WEI Gangjian. On the Age of the Neo-Archean Qingir Gray Gneisses from the Northern Tarim Basin, Xinjiang, China[J]. Acta Geologica Sinica, 2006, 801): 126134. doi: 10.3321/j.issn:0001-5717.2006.01.014
    黎敦朋, 李新林, 周小康, 等. 塔里木西南缘新太古代变质辉长岩脉的锆石SHRIMP U-Pb定年及其地质意义[J]. 中国地质, 2007, 342): 262269. doi: 10.3969/j.issn.1000-3657.2007.02.007

    LI Dunpeng, LI Xinlin, ZHOU Xiaokang, et al. SHRIMP U-Pb Zircon Dating of Neoarchean Metagabbro Dikes On the Southwestern Margin of the Tarim Plate and its Significance[J]. Geology in China, 2007, 342): 262269. doi: 10.3969/j.issn.1000-3657.2007.02.007
    李惠民, 陆松年, 郑健康, 等. 阿尔金山东端花岗片麻岩中3.6 Ga锆石的地质意义[J]. 矿物岩石地球化学通报, 2001, 204): 259262. doi: 10.3969/j.issn.1007-2802.2001.04.016

    LI Huimin, LU Songnian, ZHENG Jiangkang, et al. Dating of 3.6 Ga Zircons in Granite-Gneiss from the Eastern Altyn Mountains and Its Geological Significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 204): 259262. doi: 10.3969/j.issn.1007-2802.2001.04.016
    李晓剑, 王毅, 李慧莉, 等. 新元古代陆缘岩浆弧——塔里木盆地巴楚隆起的基底: 来自钻井岩芯的最新证据[J]. 岩石学报, 2018, 347): 21402164.

    LI Xiaojian, WANG Yi, LI Huili, et al. Bachu uplift in the central Tarim Basin based on Neoproterozoic continental arc: New lines of evidence from drilled andesite and dacite[J]. Acta Petrologica Sinica, 2018, 347): 21402164.
    陆松年. 新疆库鲁克塔格元古宙地质演化[A]. 中国地质科学院天津地质矿产研究所文集[C].1992, 26−27: 279292.

    LU Songnian. Geological evolution of Proterozoic in Kuruktage, Xinjiang[A]. Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences[C].1992, 26−27: 279292.
    陆松年, 袁桂邦. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据[J]. 地质学报, 2003, 771): 6168. doi: 10.3321/j.issn:0001-5717.2003.01.008

    LU Songnian, YUAN Guibang. Geochronology of early Precambrian magmatic activities in Aketashitage, east Altyn Tagh[J]. Acta Geologica Sinica, 2003, 771): 6168. doi: 10.3321/j.issn:0001-5717.2003.01.008
    梅华林, 于海峰, 李铨, 等. 甘肃北山地区首次发现榴辉岩和古元古花岗质岩石[J]. 科学通报, 1998, 2119): 21052111. doi: 10.3321/j.issn:0023-074X.1998.19.022

    MEI Hualin, YU Haifeng, LI Quan, et al. Archean tonalite in the Dunhuang, Gansu Provience: age from the U-Pb sigle zircon and Nd isotope[J]. Progress in Precambrian Research, 1998, 2119): 21052111. doi: 10.3321/j.issn:0023-074X.1998.19.022
    邬光辉, 张承泽, 汪海, 等. 塔里木盆地中部塔参1井花岗闪长岩的锆石SHRIMP U-Pb年龄[J]. 地质通报, 2009, 285): 568571.

    WU Guanghui, ZHANG Chengze, WANG Hai, et al. Zircon SHRIMP U-Pb age of granodiorite of the Tacan 1 well in the cen-tral Tarim basin, China[J]. Geologcal Bulletin of China, 2009, 285): 568571.
    辛后田, 刘永顺, 罗照华, 等. 塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生: 米兰岩群和 TTG 片麻岩的地球化学及年代学约束[J]. 地学前缘, 2013, 201): 240259.

    XIN Houtian, LIU Yongshun, LUO Zhaohua, et al. The growth of Archean continental crust in Aqtashtagh Area of Southeast Tarim, China: Constraints from petrochemistry and chronology about Milan Group and TTG-gneiss[J]. Earth Science Frontiers, 2013, 201): 240259.
    辛后田, 罗照华, 刘永顺, 等. 塔里木东南缘阿克塔什塔格地区古元古代壳源碳酸岩的特征及其地质意义[J]. 地学前缘, 2012, 196): 167178.

    XIN Houtian, LUO Zhaohua, LIU Yongshun, et al. Geological features and significance of Paleoproterozoic carbonatite of crust origin in Aqtashtagh area of southeast Tarim Basin, China[J]. Earth Science Frontiers, 2012, 196): 167178.
    辛后田, 赵凤清, 罗照华, 等. 塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义[J]. 地质学报, 2011, 8512): 19771993.

    XIN Houtian, ZHAO Fengqing, LUO Zhaohua, et al. Determination of the Paleoproterozoic Geochronological Framework in Aqtashtagh Area in Southeastern Tarim, China, and Its Geological Significance[J]. Acta Geologica Sinica, 2011, 8512): 19771993.
    新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993: 762.
    叶现韬, 张传林. 阿尔金北缘新太古代 TTG 片麻岩的成因及其构造意义[J]. 岩石学报, 2020, 3611): 33973413. doi: 10.18654/1000-0569/2020.11.09

    YE Xiantao, ZHANG Chuanlin. Petrogenesis and tectonic implications of the Neoarchean TTG gneiss in the North Altyn Tagh area, southeastern Tarim Craton[J]. Acta Petrologica Sinica, 2020, 3611): 33973413. doi: 10.18654/1000-0569/2020.11.09
    张传林, 王中刚, 沈加林, 等. 西昆仑山阿卡孜岩体锆石SHRIMP定年及其地球化学特征[J]. 岩石学报, 2003, 193): 523529. doi: 10.3969/j.issn.1000-0569.2003.03.018

    ZHANG Chuanlin, WANG Zhonggang, SHEN Jialin, et al. Zircon SHRIMP dating and geochemistry characteristics of Akazi rock mass of Western Kunlun[J]. Acta Petrologica Sinica, 2003, 193): 523529. doi: 10.3969/j.issn.1000-0569.2003.03.018
    赵国春, 张国伟. 大陆的起源[J]. 地质学报, 2021, 951): 119. doi: 10.1111/1755-6724.14621

    ZHAO Guochun, ZHANG Guowei. Origin of continents[J]. Acta Geologica Sinica, 2021, 951): 119. doi: 10.1111/1755-6724.14621
    赵燕, 第五春荣, 敖文昊, 等. 敦煌地块发现~3.06 Ga花岗闪长质片麻岩[J]. 科学通报, 2015, 601): 7587.

    ZHAO Yan, DIWU Chunrong, AO Wenhao, et al. Ca. 3.06 Ga granodioritic gneiss in Dunhuang block[J]. 科学通报, 2015, 601): 7587.
    赵燕, 第五春荣, 孙勇, 等. 甘肃敦煌水峡口地区前寒武纪岩石的锆石 U-Pb 年龄, Hf 同位素组成及其地质意义[J]. 岩石学报, 2013, 295): 16981712.

    ZHAO Yan, DIWU Chunrong, SUN Yong, et al. Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area, Gansu Province[J]. Acta Petrologica Sinica, 2013, 295): 16981712.
    郑永飞. 太古宙地质与板块构造: 观察与解释[J]. 中国科学: 地球科学, 2024, 541): 130.

    ZHENG Yongfei. Plate tectonics in the Archean: Observations versus interpretations[J]. Science China Earth Sciences, 2024, 541): 130.
    朱文斌, 林和丰, 葛荣峰, 等. 塔里木克拉通北缘库鲁克塔格地块太古宙基底组成与地壳演化[J]. 地质学报, 2022, 969): 30843101.

    ZHU Wenbin, LIN Hefeng, GE Rongfeng, et al. Archean basement composition and crustal evolution of the Kuluketage block in the northern margin of the Tarim Craton[J]. Acta Geologica Sinica, 2022, 969): 30843101.
    Aarons S M, Johnson A C, Rader S T. Forming Earth's Continental Crust: A Nontraditional Stable Isotope Perspective[J]. Elements, 2021, 176): 413418. doi: 10.2138/gselements.17.6.413
    Aarons S M, Reimink J R, Greber N D, et al. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex[J]. Science Advances, 2020, 650): eabc9959. doi: 10.1126/sciadv.abc9959
    Armstrong R L. A model for the evolution of strontium and lead isotopes in a dynamic earth[J]. Reviews of Geophysics, 1968, 62): 175199. doi: 10.1029/RG006i002p00175
    Armstrong R L. The Persistent Myth of Crustal Growth[J]. Australian Journal of Earth Sciences, 1991, 385): 613630. doi: 10.1080/08120099108727995
    Arndt N T. The Formation and Evolution of the Continental Crust[J]. Geochemical Perspectives, 2013, 32): 405533.
    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 3626416): 144146. doi: 10.1038/362144a0
    Aulbach S, Stagno V. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle[J]. Geology, 2016, 449): 751754. doi: 10.1130/G38070.1
    Barker F, Arth J G. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites[J]. Geology, 1976, 410): 596600. doi: 10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
    Bédard J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle[J]. Geochimica et Cosmochimica Acta, 2006, 705): 11881214. doi: 10.1016/j.gca.2005.11.008
    Bédard J H. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics[J]. Geoscience Frontiers, 2018, 91): 1949. doi: 10.1016/j.gsf.2017.01.005
    Belousova E A, Kostitsyn Y A, Griffin W L, et al. The growth of the continental crust: Constraints from zircon Hf-isotope data[J]. Lithos, 2010, 1193−4): 457466. doi: 10.1016/j.lithos.2010.07.024
    Cai Z, Jiao C, He B, et al. Archean–Paleoproterozoic tectonothermal events in the central Tarim Block: constraints from granitic gneisses revealed by deep drilling wells [J]. Precambrian Research, 2020: 105776.
    Cai Z, Xu Z, Yu S, et al. Neoarchean magmatism and implications for crustal growth and evolution of the Kuluketage region, northeastern Tarim Craton[J]. Precambrian Research, 2018, 304: 156170. doi: 10.1016/j.precamres.2017.11.016
    Cawood P A, Chowdhury P, Mulder J A, et al. Secular evolution of continents and the Earth system [J]. Reviews of Geophysics, 2023: e2022RG000789.
    Collins W J, Murphy J B, Johnson T E, et al. Critical role of water in the formation of continental crust[J]. Nature Geoscience, 2020, 13: 331338. doi: 10.1038/s41561-020-0573-6
    Condie K C. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?[J]. Earth and Planetary Science Letters, 1998, 1631−4): 97108. doi: 10.1016/S0012-821X(98)00178-2
    Condie K C. How to make a continent: thirty-five years of TTG research. In Dilek Y, Furnes H (eds). Evolution of Archean Crust and Early Life[M]. Springer, 2014: 179−193.
    Condie K C, Kröner A. The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean[J]. Gondwana Research, 2013, 232): 394402. doi: 10.1016/j.gr.2011.09.011
    Dhuime B, Hawkesworth C J, Cawood P A, et al. A change in the geodynamics of continental growth 3 billion years ago[J]. Science, 2012, 3356074): 13341336. doi: 10.1126/science.1216066
    Dong C, Ge R, Liu S, et al. Multiple episodes of early Precambrian magmatism and tectonism in the Tarim Craton: A North China connection[J]. Lithos, 2022, 430: 106883.
    Drummond M S, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting - Archean to modern comparisons[J]. Journal of Geophysical Research-Solid Earth and Planets, 1990, 95B13): 2150321521. doi: 10.1029/JB095iB13p21503
    Feng L, Lin S, Davis D W, et al. Dunhuang Tectonic Belt in northwestern China as a part of the Central Asian Orogenic Belt: Structural and U-Pb geochronological evidence[J]. Tectonophysics, 2018, 747−748: 281297. doi: 10.1016/j.tecto.2018.09.008
    Fischer R, Gerya T. Regimes of subduction and lithospheric dynamics in the Precambrian: 3D thermomechanical modelling[J]. Gondwana Research, 2016, 37: 5370. doi: 10.1016/j.gr.2016.06.002
    Ganne J, Feng X. Primary magmas and mantle temperatures through time[J]. Geochemistry, Geophysics, Geosystems, 2017, 183): 872888. doi: 10.1002/2016GC006787
    Gao L, Liu S, Cawood P A, et al. Oxidation of Archean upper mantle caused by crustal recycling[J]. Nature Communications, 2022, 131): 3283. doi: 10.1038/s41467-022-30886-4
    Ge R F, Zhu W B, Wilde S A, et al. Archean magmatism and crustal evolution in the northern Tarim Craton: Insights from zircon U–Pb–Hf–O isotopes and geochemistry of ~2.7 Ga orthogneiss and amphibolite in the Korla Complex[J]. Precambrian Research, 2014a, 252: 145165. doi: 10.1016/j.precamres.2014.07.019
    Ge R F, Zhu W B, Wilde S A, et al. Zircon U–Pb–Lu–Hf–O isotopic evidence for ≥3.5 Ga crustal growth, reworking and differentiation in the northern Tarim Craton[J]. Precambrian Research, 2014b, 249: 115128. doi: 10.1016/j.precamres.2014.05.004
    Ge R F, Zhu W B, Wilde S A, et al. Synchronous crustal growth and reworking recorded in late Paleoproterozoic granitoids in the northern Tarim craton: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints and tectonic implications[J]. Geological Society of America Bulletin, 2015, 1275−6): 781803. doi: 10.1130/B31050.1
    Ge R F, Zhu W B, Wu H L, et al. Timing and mechanisms of multiple episodes of migmatization in the Korla Complex, northern Tarim Craton, NW China: Constraints from zircon U–Pb–Lu–Hf isotopes and implications for crustal growth[J]. Precambrian Research, 2013, 231: 136156. doi: 10.1016/j.precamres.2013.03.005
    Ge R, Wilde S A, Kemp A I S, et al. Generation of Eoarchean continental crust from altered mafic rocks derived from a chondritic mantle: The ∼3.72 Ga Aktash gneisses, Tarim Craton (NW China)[J]. Earth and Planetary Science Letters, 2020, 538: 116225. doi: 10.1016/j.jpgl.2020.116225
    Ge R, Wilde S A, Zhu W, et al. Formation and evolution of Archean continental crust: A thermodynamic–geochemical perspective of granitoids from the Tarim Craton, NW China[J]. Earth-Science Reviews, 2022, 234: 104219. doi: 10.1016/j.earscirev.2022.104219
    Ge R, Wilde S A, Zhu W, et al. Earth’s early continental crust formed from wet and oxidizing arc magmas[J]. Nature, 2023, 623: 334339. doi: 10.1038/s41586-023-06552-0
    Ge R, Zhu W, Wilde S A, et al. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 2018, 42): aao3159. doi: 10.1126/sciadv.aao3159
    Gehrels G E, Yin A, Wang X. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research, 2003, 108B9): 2423.
    Green E, White R W, Diener J, et al. Activity‐composition relations for the calculation of partial melting equilibria in metabasic rocks[J]. Journal of Metamorphic Geology, 2016, 349): 845869. doi: 10.1111/jmg.12211
    Guo Z J, Yin A, Robinson A, et al. Geochronology and Geochemistry of Deep-Drill-Core Samples From the Basement of the Central Tarim Basin[J]. Journal of Asian Earth Sciences, 2005, 251): 4556. doi: 10.1016/j.jseaes.2004.01.016
    Harrison T M. Hadean Earth[M]. Springer, 2020:1−291.
    Hastie A R, Fitton J G, Bromiley G D, et al. The origin of Earth's first continents and the onset of plate tectonics[J]. Geology, 2016, 4410): 855858. doi: 10.1130/G38226.1
    Hawkesworth C J, Kemp A I S. Evolution of the continental crust[J]. Nature, 2006, 4437113): 811817. doi: 10.1038/nature05191
    Herzberg C, Condie K, Korenaga J. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 2010, 2921): 7988.
    Hoffmann J E, Zhang C, Nagel T. The formation of Tonalites–Trondjhemite–Granodiorites in Early continental crust. In Earth's oldest rocks, Van Kranendonk M J, Bennett V, Hoffmann E, Eds.; Elsevier: 2019: 133−168.
    Holland T J B, Powell R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids[J]. Journal of Metamorphic Geology, 2011, 293): 333383. doi: 10.1111/j.1525-1314.2010.00923.x
    Holland T J, Green E C, Powell R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr[J]. Journal of Petrology, 2018, 595): 881900. doi: 10.1093/petrology/egy048
    Jagoutz O, Schmidt M W, Enggist A, et al. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust[J]. Contributions to Mineralogy and Petrology, 2013, 1664): 10991118. doi: 10.1007/s00410-013-0911-4
    Jahn B, Glikson A Y, Peucat J J, et al. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution[J]. Geochimica et Cosmochimica Acta, 1981, 459): 16331652. doi: 10.1016/S0016-7037(81)80002-6
    Johnson T E, Brown M, Gardiner N J, et al. Earth's first stable continents did not form by subduction[J]. Nature, 2017, 543: 239242. doi: 10.1038/nature21383
    Johnson T E, Kirkland C L, Lu Y, et al. Giant impacts and the origin and evolution of continents[J]. Nature, 2022, 6087922): 330335. doi: 10.1038/s41586-022-04956-y
    Kamber B S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic[J]. Precambrian Research, 2015, 258: 4882. doi: 10.1016/j.precamres.2014.12.007
    Kemp A I S, Hawkesworth C J, Paterson B A, et al. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature, 2006, 4397076): 580583. doi: 10.1038/nature04505
    Kendrick J, Duguet M, Yakymchuk C. Diversification of Archean tonalite - trondhjemite - granodiorite suites in a mushy middle crust[J]. Geology, 2022, 501): 7680. doi: 10.1130/G49287.1
    Kleinhanns I C, Kramers J D, Kamber B S. Importance of water for Archaean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa[J]. Contributions to Mineralogy and Petrology, 2003, 1453): 377389. doi: 10.1007/s00410-003-0459-9
    Korenaga J. Hadean geodynamics and the nature of early continental crust[J]. Precambrian Research, 2021, 359: 106178. doi: 10.1016/j.precamres.2021.106178
    Laurent O, Björnsen J, Wotzlaw J, et al. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 2020, 132): 163169. doi: 10.1038/s41561-019-0520-6
    Lee C A, Luffi P, Chin E J. Building and Destroying Continental Mantle[J]. Annual Review of Earth and Planetary Sciences, 2011, 391): 5990. doi: 10.1146/annurev-earth-040610-133505
    Li W, Costa F. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets[J]. Geochimica et Cosmochimica Acta, 2020, 269: 203222. doi: 10.1016/j.gca.2019.10.035
    Liou P, Guo J. Generation of Archaean TTG Gneisses Through Amphibole-Dominated Fractionation[J]. Journal of Geophysical Research: Solid Earth, 2019, 1244): 36053619. doi: 10.1029/2018JB017024
    Long X P, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim Craton, NW China: zircon U-Pb and Hf isotopic constraints[J]. Precambrian Research, 2010, 1803−4): 272284. doi: 10.1016/j.precamres.2010.05.001
    Long X P, Yuan C, Sun M, et al. The discovery of the oldest rocks in the Kuluketage area and its geological implications[J]. Science in China Series D: Earth Sciences, 2011, 543): 342348. doi: 10.1007/s11430-010-4156-z
    Long X P, Yuan C, Sun M, et al. New geochemical and combined zircon U–Pb and Lu–Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang Block and crust formation in NW China [J]. Lithos, 2014, 200–201: 418 - 431.
    Long X, Wilde S A, Yuan C, et al. Provenance and depositional age of Paleoproterozoic metasedimentary rocks in the Kuluketage Block, northern Tarim Craton: Implications for tectonic setting and crustal growth[J]. Precambrian Research, 2015, 260: 7690. doi: 10.1016/j.precamres.2015.01.008
    Loucks R R, Fiorentini M L, Henríquez G J. New magmatic oxybarometer using trace elements in zircon[J]. Journal of Petrology, 2020, 613): egaa34.
    Lu S N, Li H K, Zhang C L, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research, 2008, 1601−2): 94107. doi: 10.1016/j.precamres.2007.04.025
    Martin H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas[J]. Geology, 1986, 149): 753756. doi: 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2
    Martin H, Moyen J, Guitreau M, et al. Why Archaean TTG cannot be generated by MORB melting in subduction zones[J]. Lithos, 2014, 198−199: 113.
    Moore W B, Webb A A G. Heat-pipe earth[J]. Nature, 2013, 5017468): 501505. doi: 10.1038/nature12473
    Moyen J F, Stevens G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[J]. Geophysical Monograph-American Geophysical Union, 2006, 164: 149175.
    Moyen J. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 2011, 1231−4): 2136. doi: 10.1016/j.lithos.2010.09.015
    Moyen J. Archean granitoids: classification, petrology, geochemistry and origin[J]. Geological Society, London, Special Publications, 2020, 4891): 1549. doi: 10.1144/SP489-2018-34
    Moyen J, Martin H. Forty years of TTG research[J]. Lithos, 2012, 148: 312336. doi: 10.1016/j.lithos.2012.06.010
    Palin R M, White R W, Green E C R. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling[J]. Precambrian Research, 2016, 287: 7390. doi: 10.1016/j.precamres.2016.11.001
    Pearson D G, Scott J M, Liu J, et al. Deep continental roots and cratons[J]. Nature, 2021, 5967871): 199210. doi: 10.1038/s41586-021-03600-5
    Pourteau A, Doucet L S, Blereau E R, et al. TTG generation by fluid-fluxed crustal melting: Direct evidence from the Proterozoic Georgetown Inlier, NE Australia[J]. Earth and Planetary Science Letters, 2020, 550: 116548. doi: 10.1016/j.jpgl.2020.116548
    Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite[J]. Nature, 2003, 4256958): 605609. doi: 10.1038/nature02031
    Rollinson H. Do all Archaean TTG rock compositions represent former melts?[J]. Precambrian Research, 2021, 367: 106448. doi: 10.1016/j.precamres.2021.106448
    Roman A, Arndt N. Differentiated Archean oceanic crust: Its thermal structure, mechanical stability and a test of the sagduction hypothesis[J]. Geochimica et Cosmochimica Acta, 2020, 278: 6577. doi: 10.1016/j.gca.2019.07.009
    Rozel A B, Golabek G J, Jain C, et al. Continental crust formation on early Earth controlled by intrusive magmatism[J]. Nature, 2017, 5457654): 332335. doi: 10.1038/nature22042
    Rudnick R L. Making continental crust[J]. Nature, 1995, 3786557): 571578. doi: 10.1038/378571a0
    Rudnick R L, Gao S. Composition of the continental crust[A]. In: Rudnick R L (ed). Treatise on geochemistry[M]. Elsevier, 2014, 4: 1−51.
    Shi M, Hou Q, Wu C, et al. Paleozoic Sanweishan arc in the northern Dunhuang region, NW China: The Dunhuang block is a Phanerozoic orogen, not a Precambrian block[J]. Journal of Asian Earth Sciences, 2020, 194: 103954. doi: 10.1016/j.jseaes.2019.103954
    Shu L S, Deng X L, Zhu W B, et al. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences, 2011, 425): 774790. doi: 10.1016/j.jseaes.2010.08.018
    Si Y, Ge R, Zhou T, et al. Decoupling of metamorphic zircon U-Pb ages and P-T paths in the Dunhuang metamorphic complex, northwestern China [J]. Precambrian Research, 2022, 379: 106783.
    Sizova E, Gerya T, Brown M, et al. Subduction styles in the Precambrian: Insight from numerical experiments[J]. Lithos, 2010, 1163−4): 209229. doi: 10.1016/j.lithos.2009.05.028
    Sizova E, Gerya T, Stüwe K, et al. Generation of felsic crust in the Archean: A geodynamic modeling perspective[J]. Precambrian Research, 2015, 271: 198224. doi: 10.1016/j.precamres.2015.10.005
    Smithies R H, Lu Y, Johnson T E, et al. No evidence for high-pressure melting of Earth's crust in the Archean[J]. Nature Communications, 2019, 101): 112. doi: 10.1038/s41467-018-07882-8
    Smithies R H, Lu Y, Kirkland C L, et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust[J]. Nature, 2021, 5927852): 7075. doi: 10.1038/s41586-021-03337-1
    Smythe D J, Brenan J M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium[J]. Earth and Planetary Science Letters, 2016, 453: 260266. doi: 10.1016/j.jpgl.2016.08.013
    Sobolev A V, Asafov E V, Gurenko A A, et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir[J]. Nature, 2016, 5317596): 628632. doi: 10.1038/nature17152
    Sobolev A V, Asafov E V, Gurenko A A, et al. Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago[J]. Nature, 2019, 5717766): 555559. doi: 10.1038/s41586-019-1399-5
    Sun X, Li X, Lei R, et al. Paleoproterozoic crustal evolution of the Tarim Craton, NW China: Constraints from geochronology and geochemistry of orthogneisses and granitic veins in the Xingdi region of the Quruqtagh Block[J]. Precambrian Research, 2023, 399: 107247. doi: 10.1016/j.precamres.2023.107247
    Tang M, Wang X, Shu X, et al. Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal anatexis[J]. Earth and Planetary Science Letters, 2014, 389: 188199. doi: 10.1016/j.jpgl.2013.12.036
    Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 332): 241265. doi: 10.1029/95RG00262
    Taylor S R, McLennan S. Planetary crusts: their composition, origin and evolution[M]. Cambridge: Cambridge University Press, 2009, 378.
    Van Hunen J, Moyen J. Archean Subduction: Fact or Fiction?[J]. Annual Review of Earth and Planetary Sciences, 2012, 401): 195219. doi: 10.1146/annurev-earth-042711-105255
    Van Hunen J, van den Berg A P. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere[J]. Lithos, 2008, 1031−2): 217235. doi: 10.1016/j.lithos.2007.09.016
    Van Kranendonk M J, Bennett V C, Hoffmann J E. Earth's oldest rocks[M]. Elsevier, 2019, 1078.
    Vervoort J D, Kemp A I S. Clarifying the zircon Hf isotope record of crust–mantle evolution[J]. Chemical Geology, 2016, 425: 6575. doi: 10.1016/j.chemgeo.2016.01.023
    Wang C, Liu L, Wang Y, et al. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2015, 257: 6582. doi: 10.1016/j.precamres.2014.11.022
    Wang C, Wang Y, Liu L, et al. The Paleoproterozoic magmatic–metamorphic events and cover sediments of the Tiekelik Belt and their tectonic implications for the southern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2014, 254: 210225. doi: 10.1016/j.precamres.2014.08.018
    Wang H Y, Chen H, Zhang Q W, et al. Tectonic mélange records the Silurian–Devonian subduction-metamorphic process of the southern Dunhuang terrane, southernmost Central Asian Orogenic Belt[J]. Geology, 2017, 455): 427430. doi: 10.1130/G38834.1
    Wu Z, Song J, Zhao G, et al. Water-Induced Mantle Overturns Leading to the Origins of Archean Continents and Subcontinental Lithospheric Mantle[J]. Geophysical Research Letters, 2023, 5022): e2023GL105178. doi: 10.1029/2023GL105178
    Xia X, Cui Z, Li W, et al. Zircon water content: Reference material development and simultaneous measurement with oxygen isotope by SIMS [J]. Journal of Analytical Atomic Spectrometry, 2019.
    Xiang H, Connolly J A D. GeoPS: an interactive visual computing tool for thermodynamic modeling of phase equilibria[J]. Journal of Metamorphic Geology, 2022, 40: 243255. doi: 10.1111/jmg.12626
    Xu Z Q, He B Z, Zhang C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150162. doi: 10.1016/j.precamres.2013.06.001
    Yang H, Wu G, Kusky T M, et al. Paleoproterozoic assembly of the North and South Tarim terranes: New insights from deep seismic profiles and Precambrian granite cores[J]. Precambrian Research, 2018, 305: 151165. doi: 10.1016/j.precamres.2017.11.015
    Ye X, Zhang C, Santosh M, et al. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: New evidence from the ca. 1.4 Ga A-type granites and Paleoproterozoic intrusive complex[J]. Precambrian Research, 2016, 275: 1834. doi: 10.1016/j.precamres.2015.12.017
    Zhang C L, Li H K, Santosh M, et al. Precambrian evolution and cratonization of the Tarim Block, NW China: Petrology, geochemistry, Nd-isotopes and U–Pb zircon geochronology from Archaean gabbro-TTG–potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences, 2012, 47: 520. doi: 10.1016/j.jseaes.2011.05.018
    Zhang C L, Li Z X, Li X H, et al. An early Paleoproterozoic high-K intrusive complex in southwestern Tarim block, NW China: Age, geochemistry, and tectonic implications[J]. Gondwana Research, 2007, 121−2): 101112. doi: 10.1016/j.gr.2006.10.006
    Zhang C, Ye X, Zou H, et al. Neoproterozoic sedimentary basin evolution in southwestern Tarim, NW China: New evidence from field observations, detrital zircon U–Pb ages and Hf isotope compositions[J]. Precambrian Research, 2016, 280: 3145. doi: 10.1016/j.precamres.2016.04.011
    Zhang C, Zou H, Santosh M, et al. Is the Precambrian basement of the Tarim Craton in NW China composed of discrete terranes?[J]. Precambrian Research, 2014, 254: 226244. doi: 10.1016/j.precamres.2014.08.006
    Zhang J X, Yu S Y, Gong J H, et al. The latest Neoarchean–Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: Evidence from zircon U–Pb dating and Hf isotopic analyses[J]. Precambrian Research, 2013, 226: 2142. doi: 10.1016/j.precamres.2012.11.014
    Zhang Q, Zhao L, Zhou D, et al. No evidence of supracrustal recycling in Si-O isotopes of Earth’s oldest rocks 4 Ga ago[J]. Science Advances, 2023, 926): eadf693.
    Zhao Y, Sun Y, Diwu C, et al. The Dunhuang block is a Paleozoic orogenic belt and part of the Central Asian Orogenic Belt (CAOB), NW China[J]. Gondwana Research, 2016, 30: 207223. doi: 10.1016/j.gr.2015.08.012
    Zhao Y, Sun Y, Yan J, et al. The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China: Constraints from zircon U–Pb geochronology and in situ Hf isotopes[J]. Precambrian Research, 2015, 271: 8397. doi: 10.1016/j.precamres.2015.10.002
    Zhu R, Zhao G, Xiao W, et al. Origin, Accretion and Reworking of Continents [J]. Reviews of Geophysics, 2021: e2019RG000689.
    Zong K Q, Liu Y S, Zhang Z M, et al. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China[J]. Precambrian Research, 2013, 235: 251263. doi: 10.1016/j.precamres.2013.07.002
  • Related Articles

Catalog

    Article views (329) PDF downloads (138) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return