ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
LI Yanju, SHAO Chunjing, XU Hongwu, et al. Micropore Characteristics and Genesis of Shale Reservoirs in Coal Measures in Huainan Coalfield[J]. Northwestern Geology, 2020, 53(4): 163-175. DOI: 10.19751/j.cnki.61-1149/p.2020.04.015
Citation: LI Yanju, SHAO Chunjing, XU Hongwu, et al. Micropore Characteristics and Genesis of Shale Reservoirs in Coal Measures in Huainan Coalfield[J]. Northwestern Geology, 2020, 53(4): 163-175. DOI: 10.19751/j.cnki.61-1149/p.2020.04.015

Micropore Characteristics and Genesis of Shale Reservoirs in Coal Measures in Huainan Coalfield

More Information
  • Received Date: December 09, 2019
  • Revised Date: May 29, 2020
  • Available Online: July 28, 2022
  • Published Date: December 04, 2020
  • The micropores (pore width < 2 nm) developed in shale reservoirs in coal measures are of great significance to the adsorption and occurrence of mud shale gas. This paper studied the marine-continental Carboniferous-Permian mud shale reservoirs in coal measures in Huainan Coalfield by the experiments of Ro,max, TOC, XRD and CO2 adsorption. The micropore structure characteristics of reservoirs were revealed and the controlling factors and genesis were discussed. The results show that the maturity of organic matters in Taiyuan Formation, Shanxi Formation and Lower Shihezi Formation is between low mature and mature stage. Lower Shihezi Formation, deposited in the delta-plain, has the highest content of TOC and clay mineral, and the micropores are the most developed one in the three formations, followed by barrier dams-lagoon facies of Taiyuan Formation. Shanxi Formation, deposited in the delta front and pro-delta facies, has the lowest content of TOC, moderate content of clay mineral, and the least developed micropores. There are three peaks in micropore width distribution, namely peak 1 (0.366 5 nm), peak 2 (0.457 7-0.627 2 nm) and peak 3 (0.821 6 nm). Micropore volume has a positive correlation with the content of TOC and clay minerals, but a negative correlation with the content of brittle minerals. Therefore, it is concluded that the reservoirs mainly develop micropores of organic matters and clay minerals. The development of different types of micropores is controlled by different content of organic carbon and mineral composition under different types of sedimentary environment and diagenetic evolution. Micropores of peak 1 are attributed to the main pores of clay minerals and a small number of organic matter pores; peak 2 are dominated by both clay mineral pores and organic matter pores; peak 3 are mainly organic matter pores and a small amount of clay mineral pores. Organic matter micropores of peak 1 + peak 2 are supposed to be corresponding to aromatic ring interlayers pores, and peak 3 are columnar pore formed by the ordered stacking of aromatic ring or others. The micropores in clay minerals are in the internal layer of kaolinite and chlorite or the micropores formed in the late diagenesis transformation. All the above micropores may also developed in the complex of organic matters and clay minerals.
  • 董大忠,邹才能,戴金星,等. 中国页岩气发展战略对策建议[J]. 天然气地球科学,2016,27(3):397-406.
    DONG Dazhong, ZOU Caicheng, DAI Jinxing, et al. Suggestions on the development strategy of shale gas in China[J]. Natural Gas Geoscience, 2016, 27 (3):397-406.
    董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016,36(1):19-32.
    DONG Dazhong, WANG Yuman, LI Xinjing, et al. New breakthroughs and development prospects of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36 (1):19-32.
    曹代勇,王崇敬,李靖,等. 煤系页岩气的基本特点与聚集规律[J]. 煤田地质与勘探,2014,42(04):25-30.
    CAO Daiyong, WANG Chongjing, LI Jing, et al. Basic characteristics and accumulation rules of shale gas in coal measures[J]. Coal Geology and Exploration, 2014, 42 (04):25-30.
    张晓波,司庆红,左兆喜,等. 陆相煤系页岩气储层孔隙特征及其主控因素[J]. 地质学报,2016,90(10):2930-2938.
    ZHANG Xiaobo, SI Qinghong, ZUO Zhaoxi, et al. Characteristics and the main controlling factors of pore structure in the continental coal-shale gas reservoirs[J]. Acta Geologica Sinica, 2016, 90 (10):2930-2938.
    徐宏杰,胡宝林,刘会虎,等. 淮南煤田下二叠统山西组煤系页岩气储层特征及物性成因[J]. 天然气地球科学,2015,26(6):1201-1210.
    XU Hongjie, HU Baolin, LIU Huihu, et al. Reservoir characteristics and physical origin of shale gas in coal measures in the Lower Permian Shanxi Formation in HuainanCoalfield[J]. Natural Gas Geoscience, 2015, 26 (6):1201-1210.
    傅雪海,张苗,张庆辉,等. 山西省域石炭二叠纪煤系泥页岩气储层评价指标体系[J]. 煤炭学报,2018,43(6):1654-1660.
    FU Xuehai, ZHANG Miao, ZHANG Qinghui, et al. Evaluation index system for the Permo-Carboniferous mud shale reservoirs of coal measures in ShanxiProvince[J]. Journal of China Coal Society, 2018, 43(6):1654-1660.
    张琴,刘畅,梅啸寒,等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质,2015,36(4):666-674.
    ZHANG Qin, LIU Chang, MEI Xiaohan, et al. Status and prospect of research on microscopic shale gas reservoirspace[J]. Petroleum and Natural Gas Geology, 2015, 36 (4):666-674.
    田华,张水昌,柳少波,等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报,2012,33(3):419-427.
    TIAN Hua, ZHANG Shuichang, LIU Shaobo, et al. Study on porosity characteristics of organic shale by mercury intrusion and gasadsorption[J]. Acta Petrolei Sinica, 2012, 33 (3):419-427.
    李腾飞,田辉,陈吉,等. 低压气体吸附法在页岩孔径表征中的应用-以渝东南地区页岩样品为例[J]. 天然气地球科学,2015,26(9):1719-1728.
    LI Tengfei, TIAN Hui, CHEN Ji, et al. The application of low pressure gas adsorption to the characterization of pore size distribution for shales:An example from southeastern Chongqing Area[J]. Natural Gas Geoscience, 2015, 26 (9):1719-1728.
    姜振学,唐相路,李卓,等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘,2016,23(2):126-134.
    JIANG Zhenxue, TANG Xianglu, LI Zhuo,et al. Full pore size characterization of shale pore structure and its control of gas content in Longmaxi Formation in southeastern Sichuan[J]. Geoscience Frontiers, 2016, 23 (2):126-134.
    陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438-444.
    CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37 (3):438-444.
    朱炎铭,王阳,陈尚斌,等. 页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例[J]. 地学前缘,2016,23(1):154-163.
    ZHU Yanming, WANG Yang,CHEN Shangbin, et al. Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs:A case study of Longmaxi Formation in the Upper Yangtze area[J]. Geoscience Frontiers, 2016, 23 (1):154-163.
    屈争辉,姜波,汪吉林,等. 构造煤微孔特征及成因探讨[J]. 煤炭学报,2015,40(5):1093-1102.
    QU Zhenghui, JIANG Bo, WANG Jilin, et al. Characteristics and genesis of tectonic coalmicrobes[J]. Journal of China Coal Society, 2015, 40 (5):1093-1102.
    彭苏萍. 淮南煤田二叠系第四含煤段花斑状泥岩的特征及成因[J]. 地质论评,1990,36(4):326-332.
    PENG Suping. Characteristics and genesis of the magmatic mudstone in the fourth coal-bearing section of the Permian in Huainan Coalfield[J]. Geological Review, 1990, 36 (4):326-332.
    谢长仑,胡宝林,徐宏杰,等. 淮南煤田石炭-二叠系泥页岩层系分布与沉积环境分析[J]. 中国煤炭地质,2015,32(5):7-11.
    XIE Changlun, HUBaolin, XU Hongjie, et al. Permo-Carboniferous argillutite measures distribution and sedimentary environment analysis in Huainan Coalfield[J]. China Coal Geology, 2015, 32 (5):7-11.
    余坤,杨开珍,靖建凯,等. 淮南煤田含煤岩系沉积相类型特征与演化——以新集井田1001钻孔为例[J]. 煤田地质与勘探,2018,(1):20-27.
    YU Kun, YANG Kaizhen, JING Jiankai, et al. Sedimentary facies characteristics and evolution of coal-bearing rocks in Huainan coalfield-A case study of 1001 borehole in Xinji Coalfield[J]. Coal Geology and Exploration, 2018,(1):20-27.
    邵春景,屈争辉,尹宏伟,等. 过渡相煤系泥页岩纳米级孔隙结构非均质性表征及主控因素——以淮南煤田二叠系为例[J]. 地球科学与环境学报,2018,40(4):449-461.
    SHAO Chunjing, QU Zhenghui, YIN Hongwei, et al. Heterogeneity characterization and main control factors of nanoscale pore structure of the Transitional coal measures shale-A case study of Permian in Huainan coalfield[J]. Journal of Earth Sciences and Environment, 2018, 40(4):449-461.
    余坤,屈争辉,余可龙,等. 淮南矿区新集矿1001井煤系泥岩脆性矿物及其沉积控制[J]. 煤田地质与勘探,2017,45(6):14-21.
    YU Kun,QU Zhenghui,YU Kelong,et al. Brittle minerals and depositional control of mudstone in coal measures form in well 1001 in Huainan mining area[J]. Coal Geology & Exploration,2017,45(6):14-21.
    陈吉,肖贤明. 南方古生界3套富有机质页岩矿物组成与脆性分析[J]. 煤炭学报,2013,38(5):822-826.
    CHEN Ji, XIAO Xianming. Mineral composition and brittleness of 3 sets of rich organicshale in the Paleozoic in the South China[J]. Journal of China Coal Society, 2013, 38 (5):822-826.
    陈尚斌,朱炎铭,王红岩,等. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义[J]. 石油学报,2011,32(5):775-782.
    CHEN Shangbin, ZHU Yanming, WANG Hongyan, et al. Characteristics and significance of mineral compositions of Lower Silurian Longmaxi Formation shale gas reservoir in the southern margin of Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32 (5):775-782.
    于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘,2013,20(4):211-220.
    YU Bingsong. Pore classification and characterization of shale gas reservoirs[J]. Geoscience Frontiers, 2013, 20 (4):211-220.
    焦堃. 煤和泥页岩纳米孔隙的成因、演化机制与定量表征[D]. 南京:南京大学,2015.
    JIAO Kun. The genesis, evolution mechanism and quantitative characterization of nano-pores in coal and mud shale[D]. Nanjing:Nanjing University, 2015.
    何建华,丁文龙,付景龙,等. 页岩微观孔隙成因类型研究[J]. 岩性油气藏,2014,26(5):30-35.
    HE Jianhua, DING Wenlong, FU Jinglong, et al. Study on genetic type of micropore in shalereservoir[J]. Lithologic Reservoirs, 2014, 26 (5):30-35.
    READING H G. Sedimentary environments and facies. Second edition[M]. Sedimentary environments and facies. Elsevier:sole distributors in U.S.A. and Canada, Elsevier North-Holland, 1978.
    JU Yiwen, JIANG Bo, HOU Quanlin, et al. Structural evolution of nano-scale pores of tectonic coals in southern North China and its mechanism[J]. Acta Geological Sinica, 2005, 79 (2):269-285.
    LOUCKS R G, REED R M, RUPPEL S C,et al. Morphology, genesis and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
    LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.
    IUPAC (International Union of Pure and Applied Chemistry), Physical Chemistry Division Commissionon Colloid and Surface Chemistry, Subcommittee on Characterization of Porous Solids. Recommendations for the characterization of porous solids(Technical Report)[J]. Pure and Applied Chemistry, 1994, 66(8):1739-1758.
    ROSS D J K, BUSTIN R M. Shale gas potential of the Lower Jurassic Gordondale Member northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55 (1):51-75.
    WANG Y, ZHU Y M, CHEN S B, et al. Characteristics of the nanoscale pore structure in Northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy, high-pressure mercury intrusion and gas adsorption[J]. Energy Fuels, 2014, 28 (2):945-955.
  • Related Articles

  • Cited by

    Periodical cited type(10)

    1. 郑雅兰,刘晓燕,宋登辉. 电阻率孔压静力触探测试技术理论与污染场地应用研究进展. 河南城建学院学报. 2025(01): 107-115 .
    2. 于国强,朱立峰,张霞,刘港. 灌溉诱发湿陷型侧压力对黄土滑坡的影响机制. 西北地质. 2025(02): 111-120 . 本站查看
    3. 吴家琦,刘盼,戴福初,黄志全. 高密度电法在黄土台塬地下水位探测中的应用. 华北水利水电大学学报(自然科学版). 2024(01): 90-100 .
    4. 梁越,张宏杰,许彬,马士谦,夏日风,代磊. 水下抛石电阻率特性试验研究. 水利水运工程学报. 2024(02): 100-107 .
    5. 汪名鹏. 音频大地电磁测深法在深部地热构造勘查中的应用. 西北地质. 2024(04): 240-251 . 本站查看
    6. 刘华,冯洪峰,王宝,孟令俭,胡文乐. 单轴压缩垃圾液污染黄土电阻率特征试验研究. 地下空间与工程学报. 2024(04): 1152-1159 .
    7. 陈熠坤,储亚,蔡国军,刘松玉,韩爱民. 低频电阻率测试技术在特殊土场地中的应用研究进展. 工程地质学报. 2024(05): 1798-1813 .
    8. 王烨,李永全,朱欣悦,党闻语,梁凯. 兰州地区不同类型土壤热湿传递对城市轨道交通杂散电流的影响. 中国铁道科学. 2024(06): 22-32 .
    9. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 .
    10. 李苹,孙树林,李方. 基于电阻率的非饱和盐渍土抗剪强度预测研究. 河南科学. 2022(09): 1404-1410 .

    Other cited types(11)

Catalog

    Article views (1340) PDF downloads (1561) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return