Citation: | CHEN Xue,WANG Xiaoxiang,JING Shan,et al. Migration and Enrichment of Heavy Metals During the Weathering Pedogenesis of Rocks in the Ningzhen Ore Cluster Area[J]. Northwestern Geology,2025,58(1):231−244. doi: 10.12401/j.nwg.2023170 |
Weathering pedogenesis of rocks can release heavy metals to soil, and further accumulation of heavy metals in soil may exceed the national standard for safety soils. To understand the source, release, transport, and enrichment of heavy metals in the process of weathering pedogenesis, we systematically studied the migration and enrichment of heavy metals during rock weathering in the representative weathering pedogenesis profiles (carbonate rock, magmatic rock, and clastic rock) of the Ningzhen ore cluster area using a combination of field survey, rock and mineral identification, geochemical analysis and statistical analysis. The results showed that the soil of each profile has a provenance inheritance relationship with its underlying parent rock. The heavy metals in the soil of magmatic rock and clastic rock profiles showed similar chemical composition and content characteristics to the inherited parent rock. In contrast, the carbonate rock profile showed the geochemical characteristics of a low content of heavy metals in rocks and a high content in soil. In particular, the contents of Cd and As even exceeded the risk intervention values for soil contamination of agricultural land. It was revealed that the migration of heavy metals in weathering profiles of rocks under the same climatic conditions is controlled by multiple factors, such as rock lithology, the degree of chemical weathering of the profiles, and the occurrence state of heavy metals in rocks. The migration ability of heavy metals in magmatic rock and clastic rock profiles is proportional to the degree of chemical weathering, while the migration ability of heavy metals in carbonate rock profiles is inversely proportional to the degree of chemical weathering, leading to a higher potential for enrichment of heavy metals. Based on the above research, the release and migration pattern of heavy metals in the processes of rock weathering and soil formation was established.
陈静生, 洪松, 邓宝山, 等. 中国东部花岗岩、玄武岩及石灰岩上土壤微量元素含量的纬向分异[J]. 土壤与环境, 1999(3): 161-167
CHEN Jingsheng, HONG Song, DENG Baoshan, et al. Geographical tendencies of trace element contents in soils derived from granite, basalt and limestone of Eastern China[J]. Soil and Environmental Sciences, 1999(3): 161-167.
|
陈留美, 张甘霖. 滨海沉积物发育的水稻土时间序列母质均一性判定与特性演变[J]. 土壤学报, 2009, 46(5): 753-763 doi: 10.3321/j.issn:0564-3929.2009.05.001
CHEN Liumei, ZHANG Ganlin. Parent material uniformity and evolution of soil characteristics of a paddy soil chronosequence derived from marine sediments[J]. Acta Pedologica Sinica, 2009, 46(5): 753-763. doi: 10.3321/j.issn:0564-3929.2009.05.001
|
冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544 doi: 10.3321/j.issn:1005-2321.2003.04.019
FENG Lianjun, CHU Xuelei, ZHANG Qirui, et al. CIA (chemical index of alteration)and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544. doi: 10.3321/j.issn:1005-2321.2003.04.019
|
冯志刚, 刘威, 张兰英, 等. 贫Cd碳酸盐岩发育土壤Cd的富集与超常富集现象——以贵州岩溶区为例[J]. 地质通报, 2022, 41(4): 533-544 doi: 10.12097/j.issn.1671-2552.2022.04.002
FENG Zhigang, LIU Wei, ZHANG Lanying, et al. Enrichment and supernormal enrichment phenomenon of Cd in soils developed on Cd-poor carbonate rocks: a case study of karst areas in Guizhou, China[J]. Geological Bulletin of China, 2022, 41(4): 533-544. doi: 10.12097/j.issn.1671-2552.2022.04.002
|
冯志刚, 刘炫志, 韩世礼, 等. 碳酸盐岩风化过程中高场强元素的地球化学行为研究: 来自碳酸盐岩淋溶实验的证据[J]. 中国岩溶, 2018, 37(3): 315-329 doi: 10.11932/karst20180301
FENG Zhigang, LIU Xuanzhi, HAN Shili, et al. Study on geochemical behavior of high field strength elements during weathering of carbonate rocks: Evidence from leaching experiment on carbonate rock[J]. Carsologica Sinica, 2018, 37(3): 315-329. doi: 10.11932/karst20180301
|
高雅, 胡晨, 张春雷, 等. 安徽石台地区富硒土壤分布及硒的富集迁移规律探讨[J]. 西北地质, 2022, 55(2): 284-291
GAO Ya, HU Chen, ZHANG Chunlei, et al. Study on the distribution of selenium-rich soil and the regularity of selenium enrichment-migration in Shitai area, Anhui, China[J]. Northwestern Geology, 2022, 55(2): 284-291.
|
龚慧山, 徐友宁, 陈华清, 等. 某地陈家沟河水中重金属元素时空变化及影响因素研究[J]. 西北地质, 2023, 56(4): 169−184.
GONG Huishan, XU Youning, CHEN Huaqing, et al. Temporal and Spatial Variation and Influencing Factors of Heavy Metals in the Water of the Chenjiagou River in a Certain Place[J]. Northwestern Geology, 2023, 56(4): 169−184.
|
顾会, 赵涛, 高月, 等. 贵州省典型铅锌矿区土壤重金属污染特征及来源解析[J]. 地球与环境, 2022, 50(4): 506-515
GU Hui, ZHAO Tao, GAO Yue, et al. Pollution characteristics and source analysis of heavy metals in soils of a typical lead-zinc mining area in guizhou province[J]. Earth and Environment, 2022, 50(4): 506-515.
|
韩宝华, 胡永浩, 段星星, 等. 西北地区重金属元素累积现状及典型地区成因分析[J]. 西北地质, 2022, 55(3): 318-325
HAN Baohua, HU Yonghao, DUAN Xing xing, et al. Accumulation status of heavy metals in northwest China and analysis of causes in typical areas[J]. Northwestern Geology, 2022, 55(3): 318-325.
|
贾晓丹, 王晖, 徐友宁. 某钼矿集中开采区尾矿库排水重金属环境风险等级及其贡献率分析[J]. 西北地质, 2023, 56(4): 152−161.
JIA Xiaodan, WANG Hui, XU Youning. Analysis of Heavy Metal Environmental Risk Level and Contribution Rate of Tailings Storerooms of A Molybdenum Mine[J]. Northwestern Geology, 2023, 56(4): 152-161.
|
李杰, 战明国, 钟晓宇, 等. 广西典型岩溶地区重金属在土壤-农作物系统中累积特征及其影响因素[J]. 环境科学学报, 2021, 41(2): 597-606 doi: 10.13671/j.hjkxxb.2020.0235
LI Jie, ZHAN Mingguo, ZHONG Xiaoyu, et al. Distribution and accumulation of heavy metals in soil⁃crop systems from a typical carbonate rocks area in Guangxi[J]. Acta Scientiae Circumstantiae, 2021.41(2): 597-606. doi: 10.13671/j.hjkxxb.2020.0235
|
李娟. 黄铁矿表生氧化及其微生物相互作用关系研究[D]. 南京: 南京大学, 2015
LI Juan. Supergenic oxidation of pyrite and the study for microbial oxidation mechanism [D].Nanjing: Nanjing University, 2015.
|
廖启林, 吴新民, 金洋. 南京—镇江地区多目标地球化学调查初步成果[J]. 物探与化探, 2004(3): 257-260
LIAO Qilin, WU Xin Min, JIN Yang. Preliminary achievements of multi-objective geochemical survey in Nanjing-Zhenjiang area[J]. Geophysical & Geochemical Exploration, 2004, 28(3): 257-260.
|
刘南. 宁镇中段矽卡岩型铜多金属矿床成矿物质来源及找矿方向[D]. 长沙: 中南大学, 2010
LIU Nan. Ore sources and prospecting direction of skarn-typecopper-polymetallic deposit in the middle of ningzhen mountains [D]. Changsha: Central South University, 2010.
|
刘鹏, 张德会, 吴鸣谦, 等. 浅谈花岗岩浆热液的形成及成矿作用[J]. 地质论评, 2020, 66(3): 699-719 doi: 10.16509/j.georeview.2020.03.012
LIU Peng, ZHANG Dehui, WU Mingqian, et al. Discussion on magma-hydrothermal formation and mineralization of granites[J]. Geological Review, 2020, 66(3): 699-719. doi: 10.16509/j.georeview.2020.03.012
|
季文兵, 杨忠芳, 尹爱经, 等. 地质高背景地区土壤中铁锰结核形成机理——以广西桂中地区为例[J]. 生态学杂志, 2021, 40(8): 2302-2314 doi: 10.13292/j.1000-4890.202108.006
JI Wenbing, YANG Zhongfang, YIN Aijing, et al. Formation mechanisms of iron-manganese nodules in soils from high geological back-ground area of central Guangxi[J]. 生态学杂志, 2021, 40(8): 2302-2314. doi: 10.13292/j.1000-4890.202108.006
|
K. H. 马尔夫. 层控矿床河层状矿床(第三卷)[M]. 北京: 地质出版社, 1979
K. H. 马尔夫. 层控矿床河层状矿床(第三卷)[M]. 北京: 地质出版社, 1979. K. H. Wolfed. Hndbook of strt-bound nd strtiform ore deposits(Vol. 3)[M]. Beijing: Geological Publishing House, 1979.
|
曲向荣. 土壤环境学[M]. 北京: 清华大学出版社, 2010
QU Xiangrong. Soil environmental science[M]. Beijing: Tsinghua University Press, 2010.
|
生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准(GB 15618-2018)[S]. 北京: 中国标准出版社, 2018
The Ministry of Ecology and Environment P. R. C. Soil environmental quality risk control standard for soil contamination of agricultural land(GB 15618-2018) [S]. Beijing: China Quality and Standards Publishing & Media Co. Ltd, 2018.
|
涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社, 2004
TU Guangchi, GAO Zhenmin, HU Ruizhong, et al. Disperse element geochemistry and metallogenic mechanism [M]. Beijing: Geological Publishing House, 2004.
|
王浩贤. 江苏盱眙和雷琼地区玄武岩地质高背景农田重金属污染研究[D]. 南京: 南京大学, 2019
WANG Haoxian. Study on heavy metals in agricultural land of basaltic area in xuyi county, jiangsu province and leiqiong area, eastern china[D]. Nanjing: Nanjing University, 2019.
|
王孝, 叶青, 李建武, 等. 新嵊盆地玄武岩发育土壤的母质均一性判定[J]. 土壤通报, 2021, 52(2): 253-260 doi: 10.19336/j.cnki.trtb.2020060201
WANG Xiao, YE Qing, LI Jianwu, et al. Determination for the uniformity of parent material of basalt-developed soil in the Xinsheng Basin[J]. Chinese Journal of Soil Science, 2021, 52(2): 253-260. doi: 10.19336/j.cnki.trtb.2020060201
|
王云, 魏复盛. 土壤环境元素化学[M]. 北京: 中国环境科学出版社. 1995.
WANG Yun, WEI Fusheng. Soil environmental element chemistry [M]. Beijing: China Environmental Science Press, 1995.
|
肖高强, 向龙洲, 代达龙, 等. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城一姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146
XIAO Gaoqiang, XIANG Longzhou, DAI Dalong, et al. Geochemical characteristics and ecological risk assessment of heavy metals in granitic magmatic soil: A case study of the Jiucheng-Jiemao area in Yingjiang County, Yunnan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1135-1146.
|
徐颖菲, 张耿苗, 张丽君, 等. 亚热带不同母岩成壤过程中金属元素的迁移和积累特点[J]. 浙江农业学报, 2019, 31(12): 2064-2072 doi: 10.3969/j.issn.1004-1524.2019.12.16
XU Yingfei, ZHANG Gengmiao, ZHANG Lijun, et al. Migration and accumulation of metal elements during formation of soils derived from different parent rocks in subtropical zone[J]. Acta Agriculturae Zhejiangensis, 2019, 31(12): 2064-2072. doi: 10.3969/j.issn.1004-1524.2019.12.16
|
Xu Youning, Zhang Jianghua. Ke Hailing, et al. An assessment methodfor heavy metal cumulative risk on farmland soil in the miningarea: A case study of the Xiaoqinling gold mining area[J]. Geological Bulletin of China, 2014, 33(8): 1097-1105(in Chinese with English abstract).
|
徐争启. 攀枝花钒钛磁铁矿区重金属元素地球化学特征[D]. 成都: 成都理工大学, 2009
XU Zhengqi. Geochemical Characteristics of heavy metals in different media in Panzhihua V-Ti-Magnetite zone[D].Chengdu: Chengdu University of Technology, 2009.
|
阎长虹, 许宝田, 吴澄宇, 等. 宁镇地区山前缓坡地层结构及其稳定性分析[J]. 工程地质学报, 2019, 27(1): 48-54 doi: 10.13544/j.cnki.jeg.2019-007
YAN Changhong, XU Baotian, WU Chengyu, et al. The stratigraphic structure and stability analysis in gentle slopes of piedmontat Ningzhen area[J]. Journal of Engineering Geology, 2019, 27(1): 48-54. doi: 10.13544/j.cnki.jeg.2019-007
|
曾昭华. 长江中下游地区地下水的Ni, Ti, Mo元素的形成及其分布规律[J]. 江西科学, 1998(1): 28-32
ZENG Zhaohua. Formation and distribution of Ni, Ti, Mo elements in groundwater in the middle and lower reaches of the Yangtze River [J]. Jiangxi Science, 1998 (1): 28-32.
|
张立娟. 热带土壤剖面风化成壤过程中的元素地球化学特征[D]. 南京: 南京大学, 2011
ZHANG Lijuan. The element geochemistry characteristic of weathering and soil forming processes in tropical soil profiles—take soil profiles developed from basalts in leiqiong area for example[D].Nanjing: Nanjing University, 2011.
|
张明超, 陈仁义, 叶天竺, 等. 宁镇矿集区安基山花岗闪长斑岩和韦岗花岗闪长岩的锆石U-Pb年龄、Hf同位素特征及其地质意义[J]. 地质学报, 2018, 92(11): 2248-2268
ZHANG Mingchao, CHEN Renyi, YE Tianzhu, et al. Zircon U-Pb dating and Hf isotopic compositions of the Anjishan granodiorite porphyry and Weigang granodiorite in the Ningzhen ore cluster area and their geological implications. ACTA GEOLOGICA SINICA, 2018, 92(11): 2248-2268.
|
张术根, 徐莺, 余旭辉. 宁镇中段岩浆带杂岩体的斜长石矿物学研究[J]. 矿物岩石, 2010, 30(3): 15-22 doi: 10.3969/j.issn.1001-6872.2010.03.002
ZHANG Shugen, XU Ying, YU Xuhui. Research on the mineralogy of plagioclase from the magmatic complex in the middle segment of nanjing-zhenjiang mesozoic magmatic belt[J]. Journal of Mineralogy and Petrology, 2010, 30(3): 15-22. doi: 10.3969/j.issn.1001-6872.2010.03.002
|
张远根, 周木林, 吴行国. 江苏省句容县土壤志[R]. 句容: 句容县土壤普查办公室, 1987.
|
周正. 碎屑岩储层成岩作用影响因素研究[J]. 石化技术, 2020, 27(2): 115+135 doi: 10.3969/j.issn.1006-0235.2020.02.072
ZHOU Zheng. Study on the influencing factors of diagenesis of clastic reservoir[J]. Petrochemical Industry Technology, 2020, 27(2): 115+135. doi: 10.3969/j.issn.1006-0235.2020.02.072
|
朱继保, 陈繁荣, 卢龙, 等. 广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J]. 环境科学学报, 2005(3): 414-422 doi: 10.3321/j.issn:0253-2468.2005.03.025
ZHU Jibao, CHEN Fanrong, LU Long, et al. Heavy metal geochemistry behavior during the oxidation of the Fankou Pb-Zn minetailings in Guangdong province and the implications for environmental remediation of the mines[J]. Acta Scientiae Circumstantiae, 2005(3): 414-422. doi: 10.3321/j.issn:0253-2468.2005.03.025
|
Brimhall G H, Dietrich W E. Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis[J]. Geochimica et Cosmochimica Acta, 1987, 51: 567-587. doi: 10.1016/0016-7037(87)90070-6
|
Chapman S L, Horn M E. Parent material uniformity and origin of silty soils in northwest Arkansas based on zirconium-titanium contents[J]. Soil Science Society of America Journal, 1968, 32: 265−271.
|
Drees L R, Wilding L P. Elemental distribution in the light isolate of soil separates[J]. Soil Science Society of America Journal, 1978, 42: 976-978. doi: 10.2136/sssaj1978.03615995004200060031x
|
Fralick P W, Kronberg B I. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997, 113: 111-124.31-33. doi: 10.1016/S0037-0738(97)00049-3
|
Hao Q Z, Guo Z T, Qiao Y S, et al. Geochemical Evidence for the provenance of middle pleistocene loess depositsin Southern China[J]. Quaternary Science Reviews, 2010, 29: 3317−3326.
|
Mahmoodi M, Khormali F, Amini A, et al. Weathering and soils formation on different parent materials in Golestan Province, Noethern Iran[J]. Journal of Mountain Science, 2016, 13(5). : 870-881. doi: 10.1007/s11629-015-3567-x
|
McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993. 101: 295−303.
|
Morse J W, Arvidson R S. The dissolution kinetics of major sedimentary carbonate minerals[J]. Earth-Science Reviews, 2002, 58: 51−84.
|
Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3
|
Sheoran A S, Sheoran V.Heavy metal removal mechanism of acid mine drainage in wetlands:A critical review[J]. Minerals Engineering, 2006,19: 105-116.
|
Taylor S R , McLeman S M. The continental crust: its composition and evolutio [M]. London: Blackwell Scientific Publications, 1985.
|