ISSN 1009-6248CN 61-1149/P Bimonthly

Supervisor:China Geological Survey

Sponsored by:XI'an Center of China Geological Survey
Geological Society of China

    • The Core Journals of China
    • The Key Magazine of China Technology
    • CSCD Included Journals
    • Scopus Included Journals
Advance Search
HU Xiangxiang,SHI Yaya,HU Liangbai,et al. Evaluation of Loess Landslide Susceptibility by Combining InSAR and Information-Machine Learning Coupling Model[J]. Northwestern Geology,2025,58(2):159−171. doi: 10.12401/j.nwg.2024112
Citation: HU Xiangxiang,SHI Yaya,HU Liangbai,et al. Evaluation of Loess Landslide Susceptibility by Combining InSAR and Information-Machine Learning Coupling Model[J]. Northwestern Geology,2025,58(2):159−171. doi: 10.12401/j.nwg.2024112

Evaluation of Loess Landslide Susceptibility by Combining InSAR and Information-Machine Learning Coupling Model

More Information
  • Received Date: June 19, 2024
  • Revised Date: November 25, 2024
  • Accepted Date: November 25, 2024
  • Available Online: February 26, 2025
  • The interaction between environmental factors, meteorological factors, and human activities affects surface morphology change. Especially for the Loess Plateau region, it is easy to cause a loess slide disaster under the complex interaction of many factors, so selecting suitable influencing factors and training models to conduct landslide susceptibility evaluation research is urgent. This study takes Tianshui City as the research area and constructs a multi-factor evaluation system covering terrain scale, basic environmental factors, and human activity scale based on the surface deformation information obtained by InSAR. The coupled models IV-RF, IV-DT, IV-SVM, and IV-BP were constructed by connecting the information content model (IV) to the random forest model (RF), decision tree model (DT), support vector machine model (SVM) and BP neural network model (BP), and the landslide susceptibility evaluation was carried out. The results show that the AUC values of the coupled models (IV-RF, IV-DT, IV-SVM, and IV-BP) are 0.925, 0.846, 0.883, and 0.792, respectively, and IV-RF has stronger accuracy. Compared with the IV-RF model, the landslide frequency gradually increases from the very low prone zone to the very high prone zone, and the results of the landslide-prone zone are more uniform and stable. The IV-RF model has stronger prediction ability and accuracy and is more suitable for evaluating the geological hazard susceptibility of loess landslides. The areas of extremely high, high, medium, low, and very low susceptibility in the IV-RF model accounted for 20.45%, 18.28%, 22.27%, 16.92 and 22.09%, respectively, which were mainly distributed in the mountainous and loess ridge areas with complex geological environment and strong human activities in the north of Tianshui City. Lithology, slope, land use, rainfall, road density, and InSAR deformation rank the top 6 in the contribution rate analysis and are the main controlling factors affecting landslide development. This study aims to provide a reliable scientific basis for predicting and preventing landslide disasters in the Loess Plateau, deepen the modeling ideas for evaluating landslide susceptibility, and optimize the uncertainty of independent model evaluation results.

  • 陈丹璐, 孙德亮, 文海家, 等. 基于不同因子筛选方法的LightGBM-SHAP滑坡易发性研究[J]. 北京师范大学学报(自然科学版), 2024, 60(1): 148−158.

    CHEN Danlu, SUN Deliang, WEN Haijia, et al. Study on landslide susceptibility of LightBM-SHAP based on different factor screening methods[J]. Journal of Beijing Normal University (Natural Science Edition),2024,60(1):148−158.
    窦杰, 向子林, 许强, 等. 机器学习在滑坡智能防灾减灾中的应用与发展趋势[J]. 地球科学, 2023, 48(5): 1657−1674.

    DOU Jie, XIANG Zilin, XU Qiang, et al. Application and development trend of machine learning in landslide intelligent disaster prevention and reduction[J]. Earth Science,2023,48(5):1657−1674.
    杜鹏, 陈宁生, 伍康林, 等. 基于随机森林模型的藏东南地区滑坡易发性评价及主控因素分析[J]. 成都理工大学学报(自然科学版), 2024, 51(2): 328−344.

    DU Peng, CHENG Ningsheng, WU Kanglin, et al. Evaluation of landslide susceptibility in southeast Tibet based on arandom forestmodel[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(2):328−344.
    盖侨侨, 孙倩, 张宁, 等. 融合时序InSAR形变的白银市地质灾害易发性评价[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1434−1443.

    GAI Qiaoqiao, SUN Qian, ZHANG Ning, et al. Geological hazard susceptibility evaluation of Baiyin City based on time-series InSAR deformation[J]. Journal of Wuhan University (Information Science Edition),2024,49(8):1434−1443.
    胡祥祥, 明璐璐, 吴涛, 等. 融合InSAR与信息量-层次分析耦合模型的西宁市地质灾害易发性评价[J]. 测绘通报, 2023(12): 51−56+75.

    HU Xiangxiang, MING Lulu, WU Tao, et al. Geological hazard susceptibility evaluation of Xining City by combining InSAR and information-hierarchy analysis coupling model[J]. Bulletin of Surveying and Mapping,2023(12):51−56+75.
    黄发明, 李金凤, 王俊宇, 等. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律[J]. 地质科技通报, 2022, 41(2): 44−59.

    HUANG Faming, LI Jinfeng, WANG Junyu, et al. Landslide susceptibility prediction modeling law considering the suitability of linear environmental factors and different machine learning models[J]. Bulletin of Geological Science and Technology,2022,41(2):44−59.
    黄龙, 孙倩, 胡俊. 基于InSAR与随机森林的滑坡敏感性评价与误差改正[J]. 测绘通报, 2022(10): 13−20.

    HUANG Long, SUN Qian, HU Jun. Landslide sensitivity evaluation and error correction based on InSAR and Random forest[J]. Bulletin of Surveying and Mapping,2022(10):13−20.
    贾俊, 毛伊敏, 孟晓捷, 等. 深度随机森林和随机森林算法的滑坡易发性评价对比——以汉中市略阳县为例[J]. 西北地质, 2023, 56(3): 239−249.

    JIA Jun, MAO Yinmin, MENG Xiaojie, et al. Comparison of landslide susceptibility evaluation between deep random forest and random forest algorithm: A case study of Qingyang County, Hanzhong City[J]. Northwestern Geology,2023,56(3):239−249.
    柯福阳, 胡祥祥, 明璐璐, 等. 面向地表形变高精度监测的GNSS-InSAR融合方法[J]. 遥感技术与应用, 2023, 38(5): 1028−1041.

    KE Fuyang, HU Xiangxiang, MING Lulu, et al. A GNSS-InSAR fusion method for high-precision surface deformation monitoring[J]. Remote Sensing Technology and Application,2023,38(5):1028−1041.
    孔嘉旭, 庄建琦, 彭建兵, 等. 基于信息量和卷积神经网络的黄土高原滑坡易发性评价[J]. 地球科学, 2023, 48(5): 1711−1729.

    KONG Jiaxu, ZHUANG Jianqi, PENG Jianbing, et al. Evaluation of landslide vulnerability in Loess Plateau based on information and convolutional neural networks[J]. Earth Science,2023,48(5):1711−1729.
    李成林, 刘严松, 赖思翰, 等. 基于BP神经网络模型的滑坡易发性评价方法[J]. 科学技术与工程, 2023, 23(13): 5481−5492.

    LI Chenglin, LIU Yansong, LAI Sihan, et al. Landslide susceptibility evaluation method based on BP neural network model[J]. Science Technology and Engineering,2023,23(13):5481−5492.
    李晶, 朱武, 张关龙, 等. 基于InSAR和热点分析技术的黄土高原地质灾害隐患识别[J/OL]. 工程地质学报, 2022, 1−17. doi: 10.13544/j.cnki.jeg.2022-0444.

    LI Jin,ZHU Wu,ZHANG Guanlong,et al. Potential geological hazard identification in Loess Plateau based on InSAR and hot spot analysis techniques [J/OL]. Journal of Engineering Geology, 2022, 1−17. doi: 10.13544/j.cnki.jeg.2022-0444.
    李萍, 叶辉, 谈树成. 基于层次分析法的永德县地质灾害易发性评价[J]. 水土保持研究, 2021, 28(5): 394−399.

    LI Ping, YE Hui, TAN Shucheng. Geological hazard susceptibility evaluation based on analytic hierarchy process in Yongde County[J]. Research of Soil and Water Conservation,2021,28(5):394−399.
    李益敏, 向倩英, 邓选伦, 等. 基于优化 MaxEnt 模型的怒江州滑坡易发性评价[J/OL]. 河南理工大学学报(自然科学版), 2024, 1−11. doi: 10.16186/j.cnki.1673-9787.2023070010.

    LI Yimin,XIANG Qianying,DENG Xuanlun,et al. Evaluation of landslide vulnerability in Nujiang Prefecture based on optimized MaxEnt model [J/OL]. Journal of Henan Polytechnic University (Natural Science Edition),2024,1−11. doi: 10.16186/j.cnki.1673-9787.2023070010.
    李泽芝, 王新刚. 镇域尺度下秦巴山区堆积层滑坡易发性不同单元评价性能对比研究[J]. 西北地质, 2024, 57(1): 1−11.

    LI Zezhi, WANG Xingang. Comparative study on evaluation performance of different units for landslide susceptibility of accumulative strata in Qinba Mountain area at township scale [J]. Northwestern Geology, 2024, 57 (1): 1−11.
    林琴, 郭永刚, 吴升杰, 等. 基于梯度提升的优化集成机器学习算法对滑坡易发性评价: 以雅鲁藏布江与尼洋河两岸为例[J]. 西北地质, 2014, 57(1): 12−22.

    LIN Qin, GUO Yonggang, WU Shengjie, et al. Evaluation of landslide susceptibility by an optimized integrated machine learning algorithm based on gradient lifting: A case study of the two banks of the Yarlung Zangbo River and the Niyang River[J]. Northwest Geology,2014,57(1):12−22.
    林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953−966. doi: 10.12082/dqxxkx.2023.220567

    LIN Xuanxin, XIAO Guirong, ZHOU Houbo. Landslide susceptibility assessment method considering land use dynamic change[J]. Journal of Geo-Information Science,2023,25(5):953−966. doi: 10.12082/dqxxkx.2023.220567
    刘福臻, 王灵, 肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报, 2021, 32(6): 98−106.

    LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. Chinese Journal of Geological Hazards and Control,2021,32(6):98−106.
    刘帅, 朱杰勇, 杨得虎, 等. 不同降雨工况条件下的崩滑地质灾害危险性评价[J]. 地质科技通报, 2024, 43(2): 253−267.

    LIU Shuai, ZHU Jieyong, YANG Dehu, et al. Risk assessment of landslide geological hazards under different rainfall conditions[J]. Bulletin of Geological Science and Technology,2024,43(2):253−267.
    卢星宇. 基于InSAR技术的九寨沟地质灾害危险性评价研究[D]. 成都: 电子科技大学, 2021.

    LU Xingyu. Research on geological hazard assessment of Jiuzhaigou Valley based on InSAR technology [D]. Chengdu:University of Electronic Science and Technology of China, 2021.
    谭翠, 黄钦, 杨波, 等. 随机森林算法在区域生态旅游适宜性评价中的应用研究[J]. 地球信息科学学报, 2024, 26(2): 318−331. doi: 10.12082/dqxxkx.2024.230198

    TAN Cui, HUANG Qin, YANG Bo, et al. Application of random forest algorithm in regional ecotourism suitability evaluation[J]. Journal of Geoinformation Science,2024,26(2):318−331. doi: 10.12082/dqxxkx.2024.230198
    王本栋, 李四全, 许万忠, 等. 基于 3 种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质, 2024, 57(1): 34−43.

    WANG Bendong, LI Siquan, XU Wanzhong, et al. Comparative study on landslide susceptibility evaluation based on Three different machine learning algorithms [J]. Northwestern Geology, 2019, 57 (1): 34−43.
    王瑞琪, 王学良, 刘海洋, 等. 基于精细 DEM 的崩塌滑坡灾害识别及主控因素分析——以雅鲁藏布江缝合带加查-朗县段为例[J]. 工程地质学报, 2019, 27(5): 1146−1152.

    WANG Ruiqi, WANG Xueliang, LIU Haiyang, et al. Landslide hazard identification and main control factors analysis based on fine DEM: A case study of Jiacha-Lang County section of Yarlung Zangbo River suture zone[J]. Journal of Engineering Geology,2019,27(5):1146−1152.
    魏文豪, 贾雨霏, 盛逸凡, 等. 基于I、SVM、I-SVM的滑坡灾害易发性评价模型研究[J]. 安全与环境工程, 2023, 30(3): 136−144.

    WEI Wenghao, JIA Yufei, SHENG Yifan, et al. Research on landslide hazard susceptibility evaluation model based on I, SVM and I-SVM[J]. Safety and Environmental Engineering,2023,30(3):136−144.
    武雪玲, 杨经宇, 牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1223−1232.

    WU Xueling, YANG Jingyu, NIU Ruiqing. A landslide susceptibility evaluation method with SMOTE and Convolutional neural network[J]. Journal of Wuhan University (Information Science Edition),2020,45(8):1223−1232.
    徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1214−1222.

    XU Shenghua, LIU Jiping, WANG Xianghong, et al. Landslide hazard susceptibility evaluation method based on entropy index integrated with support vector machine: A case study of Shaanxi Province[J]. Journal of Wuhan University (Information Science Edition),2020,45(8):1214−1222.
    吴铭洋, 陈宁生, 杨溢, 等. 三工河小流域泥石流生态—岩土工程调控措施减缓土壤侵蚀的定量研究[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 117−129.

    WU Mingyang, CHEN Ningsheng, YANG Yi, et al. Quantitative study on the mitigation of soil erosion by comprehensive ecological and geotechnical debris flow treatment measures in small basins: A case study of the Sangong River Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(1):117−129.
    许强, 陈婉琳, 蒲川豪, 等. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践[J]. 工程地质学报, 2022, 30(4): 1179−1192.

    XU Qiang, CHEN Wanling, PU Chuanhao, et al. Theory and practice of nature-based solutions in disaster prevention and control of major projects on the Loess Plateau[J]. Journal of Engineering Geology,2022,30(4):1179−1192.
    杨根云, 周伟, 方教勇. 基于信息量模型和数据标准化的滑坡易发性评价[J]. 地球信息科学学报, 2018, 20(5): 674−683. doi: 10.12082/dqxxkx.2018.170535

    YANG Genyun, ZHOU Wei, FANG Jiaoyong. Landslide susceptibility evaluation based on information model and data standardization[J]. Journal of Geoinformation Science,2018,20(5):674−683. doi: 10.12082/dqxxkx.2018.170535
    杨畅, 赵建军, 王寿宇, 等. 基于MatDEM的易贡滑坡铲刮效应研究[J]. 成都理工大学学报(自然科学版), 2024, 51(3): 477−488.

    YANG Chang, ZHAO Jianjun, WANG Shouzi, et al. MatDEM-based investigation of shovel-scraping effect on Yigongland slidel[J]. Journal of Chengdu University of Technology (Science & Technolgy Edition),2024,51(3):477−488.
    赵永辉. 雅鲁藏布江公路滑坡发育特征及破坏机理研究[J]. 公路, 2021, 66(4): 6−10.

    ZHAO Yonghui. Development characteristics and failure mechanism of highway landslide in Yarlung Zangbo River[J]. Highway,2021,66(4):6−10.
    赵占骜, 王继周, 毛曦, 等. 多维CNN耦合的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1466−1481.

    ZHAO Zhanao, WANG Jizhou, MAO Xi, et al. Landslide susceptibility evaluation method based on multi-dimensional CNN coupling[J]. Journal of Wuhan University (Information Science Edition),2024,49(8):1466−1481.
    周超, 甘露露, 王悦, 等. 综合非滑坡样本选取指数与异质集成机器学习的区域滑坡易发性建模[J]. 地球信息科学学报, 2023, 25(8): 1570−1585.

    ZHOU Chao, GAN Lulu, WANG Yue, et al. Regional landslide susceptibility modeling based on non-landslide sample selection index and heterogeneous integrated machine learning[J]. Journal of Geoinformation Science,2023,25(8):1570−1585.
    朱怡飞, 姚鑫, 姚磊华, 等. 基于InSAR和光学遥感的贵州鬃岭采煤滑坡识别与危险性评价[J]. 地质力学学报, 2022, 28(2): 268−280.

    ZHU Yifei, YAO Xin, YAO Leihua, et al. Identification and risk assessment of coal mining landslide in Ziling, Guizhou Province based on InSAR and optical remote sensing[J]. Chinese Journal of Geomechanics,2022,28(2):268−280.
    Ayalew L, Yamagishi H. The application of GIS-based logistic regression for landslide susceptibility mapping in the KakudaYahiko Mountains, Central Japan[J]. Geomorphology,2005,65(1):15−31.
    Dou J, Ali P Y, Dieu T B, et al. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan[J]. Landslides, 2020, 17(3).641−658
    Jiang N, Li Y, Han Z, et al. A dataset-enhanced Linformer model for geo-hazards susceptibility assessment: a case study of the railway in Southwest China[J]. Environmental Earth Sciences, 2023, 82(17).
    Jin B, Zeng T, Yin K, et al. Dynamic landslide susceptibility mapping based on the PS-InSAR deformation intensity[J]. Environmental Science and Pollution Research, 2024: 1−17.
    Li W B, Fan X M, Huang F M, et al. Uncertainties of landslide susceptibility modeling under different environmental factor connections and prediction models[J]. Earth Science,2021,46(10):3777−3795.
    Zhang Y, Chen Y Y, Ming D P, et al. Landslide hazard analysis based on SBAS-InSAR and MCE-CNN model: a case study of Kongtong, Pingliang[J]. Geocarto International,2023,38(1):1−22.

Catalog

    Article views (42) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return