Abstract
To reveal the impact of atmospheric pollutant emissions from coal-fired power plants on the surrounding water environment, a typical coal-fired power plant was used as a research object to analyze the atmospheric pollutants (soot, SO2, NOx, NH3 and heavy metals in particulate matter) of the power plant and the water quality of typical reservoirs around the power plant from 2008 to 2020. The correlation between atmospheric pollutant emissions from power plants and reservoir water quality and their contributions to sulfide, nitrogen oxide, and heavy metals in reservoir waterbodies were estimated. The results showed that the emissions of soot, SO2, NOx and heavy metals (Hg, Cu, Zn, As, Cd, Cr and Pb) from the power plant showed an overall decreasing trend from 2008 to 2020, while the emissions of NH3 fluctuated from 2015 to 2020. From 2008 to 2020, the water quality at the entrance and centre of the reservoir all met the Environmental Quality Standard for Surface Water (GB3838-2002). The heavy metal contents in the water at the entrance and centre of the reservoir were significantly correlated with the heavy metal emissions from the power plant. The results of CALPUFF model showed that water pollutants SO42−, HNO3, NH3-N, Hg, As, Cd, Cr6+, Cu, Pb, and Zn, which were transformed by SO2, SO42−, NOx, HNO3, NH3, Hg, As, Cd, Cr, Cu, Pb, Zn deposited into the water surface of the reservoir from the power plant, contributed to the concentration of 3.35×10−3 mg/L, 5.86×10−3 mg/L, 5.88×10−4 mg/L, 3.73×10−7 mg/L, 1.32×10−5 mg/L, 7.46×10−10 mg/L, 7.56×10−7 mg/L, 2.16×10−7 mg/L, 9.48×10−8 mg/L, 8.66×10−6 mg/L, respectively. The order of proportion of various pollutants to standard was Hg>NH3-N>HNO3>As>Cr6+>SO42−>Pb>Zn>Cu>Cd.