Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt
-
摘要:
产于柴北缘构造带西段赛什腾山地区滩间山群中的变玄武岩的结晶年龄为(444±4)Ma,具有富Na2O、贫K2O、高TiO2、Nb及低LILE/HFSE和HREE/HFSE值等特征,球粒陨石标准化稀土元素配分曲线整体表现为轻稀土相对富集、重稀土平坦的略向右缓倾型配分模式,且在原始地幔标准化微量元素蛛网图中显示Nb、Ta弱正异常,与富铌玄武岩地球化学特征一致。综合分析表明,赛什腾山富铌玄武岩岩浆源区为尖晶石相二辉橄榄岩,是俯冲大洋板片陡角度回转引起的上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与亏损地幔楔混合的产物,指示晚奥陶世柴北缘西段仍处于弧后伸展阶段,陆陆碰撞尚未开始。结合区域已有资料,认为柴北缘滩间山群是晚寒武世—早中志留世洋陆转换过程中不同时期、不同构造背景下(包括洋岛、岛弧、弧后等)的火山-沉积产物,其经历了自大洋俯冲至陆陆碰撞前的整个俯冲消减过程,各类岩石因构造混杂最终保存于柴北缘狭长构造带内。
Abstract:The crystallization age of meta–basalts from Tanjianshan Group in Saishitengshan mountain, in the western part of the northern margin of Qaidam tectonic belt, was 444±4 Ma, which has the characteristics of rich Na2O, poor K2O, high TiO2, Nb, and low LILE/HFSE and HREE/HFSE ratios. The chondrite–normalized REE distribution curve shows a slightly right–leaning distribution pattern with relatively enriched LREE and flat HREE. On the primitive mantle–normalized trace element diagrams, Nb and Ta show weak positive anomalies, which is consistent with the geochemical characteristics of Nb–rich basalts. The comprehensive analysis shows that the magma sources of Nb–rich basalt in Saishiteng Mountain maybe the spinel–phase lherzolite, which is the product of the mixture of upwelling asthenosphere mantle and depleted mantle wedge at the edge of the back–arc basin near the island arc side caused by the steep angleroll–back of the subduction oceanic slab. It indicates that the western part of the northern margin of Qaidam basin was under the stage of back–arc extension during the late Ordovician, and the continental collision had not begun. Combined with the existing regional data, it is considered that the Tanjianshan Group in the northern margin of Qaidam Basin were the volcanic–sedimentary products of different periods and different tectonic settings in the process of ocean–continent transition from Late Cambrian to Early–middle Silurian,and had experienced the whole subduction process from oceanic subduction to continental collision. Due to tectonic mélange, various types of rocks were occurred in the northern margin of Qaidam basin.
-
随着新兴产业的高速发展与低碳经济时代的到来,全球对镍钴金属的需求增长迅猛且前景广阔(张伟波等,2018;王辉等,2019;张照伟等,2021)。丰富的镍钴矿产资源不仅使该国拥有定价权,也提升了国家资源安全供应(Schulz et al.,2018;USGS,2019;Zhang et al.,2019;Li et al.,2019;张照伟等,2020)。目前,中国可利用的镍钴矿床类型相对单一,主要为岩浆Ni–Co硫化物矿床(赵俊兴等,2019;陈华勇,2020;王焰等,2020;李文渊等,2022a)。金川矿床是世界第三、中国最大的岩浆镍钴硫化物矿床,其镍、钴资源储量分别约占国内资源总储量的68.6%和50%,是保障国内镍、钴战略性关键矿产自我供给最重要的资源基地。但由于资源的快速消耗,将严重削弱中国镍、钴资源的自我供给能力,亟需查明矿床深边部找矿潜力,共同致力提升中国镍钴等关键矿产资源控制力和话语权(Maier et al., 2011;侯增谦等,2020;王岩等,2020;张照伟等,2022)。中国目前是全球第一大镍钴金属消费国,然而超过90%的镍钴资源依赖进口,后备资源严重不足(翟裕生,2020;李文渊等,2022a)。鉴于镍钴矿产资源现状,中国新一轮找矿突破战略行动将其列为紧缺战略性矿产,优先部署找矿工作,重点矿山深部是增储上产的核心工作区。
金川矿床自发现以来,经过60余年的地质勘查与研究,对其含矿岩体产状、岩石类型、矿石类型、成矿时代、成矿过程及成矿规律等方面都取得较为一致的认识,认为金川含矿岩体原始产状为“岩床状” 、岩石基性程度及空间形态共同控制矿体分布,基性程度越高,含矿性越好,岩体中下部及空间形态上的突然膨大部位是赋存矿体的关键部位(汤中立等,1995;Naldrett,2011;Chen et al.,2015);金川矿床是“深部熔离–多期侵位”的产物,且多期次成矿元素含量不同的岩浆分别沿不同部位分别上侵,存在多个含矿岩浆入口(Tang et al.,2009;Li et al.,2011;陈列锰等,2015;Duan et al.,2016)。随着对金川矿床深边部及外围勘查的持续加强,对矿床的找矿潜力及勘查方向也有了新的进展,但仍存在诸多找矿方面的具体问题,如地质–地球物理模型的建立和找矿标志的精准约束,矿区地球物理场高背景强干扰条件下探测方法的有效性,含矿岩浆上侵入口位置的精确厘定等,都是制约金川矿床深边部及外围找矿能否实现突破的关键科学问题,亟待解决。笔者围绕金川矿床深边部成矿关键问题和重大找矿需求,通过对金川铜镍矿床成矿特征的深入剖析,研究找矿技术方法有效性;地质、物探深度融合,建立金川矿床地物综合找矿模型;深挖资源潜力,优选找矿新靶区,旨在助推金川镍钴成矿潜力的全面、科学评价和高效找矿勘查。
1. 金川镍钴矿床成矿特征
1.1 区域构造背景
金川镍钴矿床整体位于阿拉善地块西南缘龙首山隆起带中,主体赋存于金川镁铁–超镁铁岩体内(图1)(宋谢炎,2019)。龙首山地区地层自下而上可分为古元古代龙首山岩群、中元古代墩子沟群、新元古代(震旦系)韩母山群/烧火筒沟群和古生代以后的地层。金川矿区及所在的龙首山隆起带经历了多期构造运动,以金川矿床形成时间(831 Ma)为节点,可将区域构造划分为成矿前、成矿期和成矿后构造(李文渊等,2022a)。多期构造活动及其复杂的演化特征,将金川镁铁–超镁铁质岩体及其镍钴矿体重复改造,导致对原始产状难以恢复,并加剧了进一步找矿的复杂性(Sisir et al.,2018;Yao et al.,2018;张照伟等,2021)。龙首山地区岩浆活动强烈,花岗岩类最为发育,分布面积大,多呈岩基产出(图1)。镁铁–超镁铁质侵入岩呈岩墙状、脉状及岩株状产出,断续散布于龙首山区,构成一条重要的镁铁–超镁铁质岩带。伴随侵入活动,岩浆喷发作用亦较强烈,以基性火山岩为主,主要发育于前寒武纪,多已变质,显生宙仅泥盆纪有杏仁状玄武岩喷发(王亚磊等,2023)。根据沉积建造分析,结合岩浆岩同位素定年资料,本区岩浆活动及演化可分为4个阶段:①早元古代基底演化花岗岩作用阶段。②中、晚元古代大陆拉张镁铁质–超镁铁质岩作用阶段。③古生代构造水平挤压花岗岩类作用阶段。④中、新生代断块升降局部中基性火山作用阶段。其中,以②、③阶段岩浆作用为主。
图 1 金川铜镍矿床大地构造位置(a)及龙首山隆起带区域地质简图(b)(据王亚磊等,2023修改)Figure 1. (a) The location of the Jinchuan Ni–Cu deposit in China and (b) simplified geologic map of the Longshoushan terrane1.2 岩体地质特征
龙首山地区的镁铁–超镁铁质侵入体呈岩墙状、岩脉状及岩株状产出,约有20余处,断续分布于龙首山隆起带中(图1),高精度锆石U–Pb年代学研究表明其主要形成于于中、新元古代(焦建刚等,2017)。依据其分布特征,可以将龙首山地区镁铁质–超镁铁质岩带分为西、中、东3个地段:西段岩体包括藏布台、青井子、马莲井、青石窑等单辉岩、橄榄单辉岩岩体,以藏布台岩体为代表;中段岩体包括金川、V号异常、塔马子沟、墩子沟、毛草泉、西井子等二辉橄榄岩岩体,以金川岩体为代表;东段岩体包括小口子、东水崖子、碾磨山、大口子等单辉橄榄岩体,以小口子岩体为代表。
金川含矿岩体的直接围岩为古元古代白家咀子组地层。白家咀子组地层经历了高级变质和多期岩浆侵入,形成了一套以条带–均质混合岩、大理岩、片麻岩为主的岩系。根据沉积和变质特征,白家咀子组自下而上分为3段:第一段为角砾状–均质混合岩、黑云斜长片麻岩、蛇纹大理岩为主;第二段以条带–均质混合岩、含石榴子石二云母片麻岩、及蛇纹大理岩为主,含少量绿泥石英片岩;第三段主要为含石榴子石二云母片麻岩、含蛇纹石大理岩、条带–均质混合岩、以及蛇纹大理岩(图2a)。金川含矿超镁铁质岩体被一系列NEE断层分为四个岩体,由西向东依次为Ⅲ、Ⅰ、Ⅱ、Ⅳ号岩体(图2a),其中Ⅰ和Ⅱ号岩体出露地表,Ⅲ和Ⅳ岩体均被第四系或白家咀子组地层覆盖的隐伏岩体,是通过磁法测量并经钻探验证所发现的。赋矿岩体总体走向约为310°,沿走向长约为6500 m,宽为20~527 m,出露面积约为1.34 km2,倾向SW,倾角为50°~80°,目前已控制最大延深约为1200 m(图2b),且矿体向深部仍未尖灭,局部还表现出“膨大”的特征。依据最新勘探资料,金川岩体中共赋存有4个主要矿体,由西向东依次为Ⅲ-1号、24号、1号、2号(图2b),各矿体深部延伸差别较大,在纵投影图上,其底部呈明显的“锯齿状”特征。其中,Ⅲ-1号矿体与先前勘探结果相比规模及资源储量明显增大,且深部仍有较大找矿潜力。
图 2 金川矿床矿区地质简图(a)及矿床纵投影图(b)(据王亚磊等,2023修改)Figure 2. (a) Geological map of the Jinchuan intrusion, and (b) a projected long section金川含矿镁铁–超镁铁质岩体最初是近水平的岩床状,由于后期构造运动,金川岩浆镍钴硫化物矿床所在的龙首山整体被从深部逆冲推覆而呈现今的陡倾斜,岩体的另一端仍可能赋存厚大的岩浆镍钴硫化物矿体(图3)(王亚磊等,2012;李文渊,2022b)。
图 3 金川岩浆型铜镍矿床成矿模式图(据李文渊,2022b修改)1.玄武岩;2.纯橄岩;3.花岗混合岩;4.二辉橄榄岩;5.矿体;6.逆冲断层Figure 3. Metallogenic model map of Jinchuan magmatic copper–nickel deposit1.3 矿体地质特征
金川镍钴矿床的矿体主要赋存于III矿区、I矿区、II矿区和IV矿区,其中I矿区和II矿区出露地表,其矿体地质特征多有论述(王辰等,2018);III矿区和IV矿区隐伏于地表,文中重点介绍其矿体地质特征。III矿区含矿岩体全部隐伏于第四系下,埋深约为50~100 m,岩体受F8断层影响,相对于I矿区向南西位移约900 m,岩体呈不规则岩墙状,走向NW–SE(图4),倾向SW,倾角为60°~70°。依据目前钻孔资料,岩体长约为600 m,宽度为20~200 m,沿NW–SE方向岩体厚度呈逐渐变大的趋势。在III矿区1580~1380 m水平联合中段平面图上,8行勘探线以西的岩体规模随着深度的增加而急剧变小,甚至尖灭;但在8行勘探线以东,岩体规模厚大,且向下变化不大。依据最新的钻探资料,在4行和6行勘探线深部沿矿体倾向,岩体及矿体表现出“膨大”的趋势,海绵陨铁状富矿的规模也呈变大的趋势。ZK603钻孔中累计见超基性岩体约为82 m,几乎全岩矿化,其中矿石类型为浸染状–海绵陨铁状矿石(49.4 m),另有少量星点状和斑杂状矿石(32.6 m),海绵陨铁状矿石主要位于含矿岩体下部,与下盘围岩直接接触。化学分析结果表明,矿石中Ni含量为0.2%~3.82%,Cu含量为0.2%~3.12%。
图 4 金川镍钴矿床Ⅲ矿区地质简图(据甘肃省地质矿产局第六地质队,1984修改)Figure 4. Geological sketch of Jinchuan nickel–cobalt deposit Ⅲ mining areaZK404和ZK405钻孔中所揭露的镁铁–超镁铁岩体累计厚度均较大,分别为304 m和388 m;ZK404钻孔中主要矿石类型为星点状(图5a、图5b),局部可见浸染状和脉状矿石(图5b、图5c),其Ni含量为0.2%~1.5%,仅4个样品Ni含量大于1%,Cu含量为0.2%~0.99%。在ZK404钻孔中见有厚大的伟晶状二辉橄榄岩(图5d),其橄榄石粒径可达1~2 cm,在先前所划分的各侵入期次中未见该岩相的报道。通过对该钻孔系统的岩心编录,发现该岩相由两侧向中心,橄榄石含量及粒径均变大,基性程度变高,且橄榄石粒径的均一程度较好(Barnes et al.,2013)。除此之外,其中蕴含的硫化物珠滴的含量也较高,表现出一定流动分异的特征(图6)。
Ⅳ矿区位于金川含矿岩体最东侧,西接Ⅱ矿区56行,向东至Ⅳ矿区26~28行勘探线之间,被F62断层横切,东西长约为1300 m(图2)。Ⅳ矿区全部为隐伏岩体,除岩体西段(2~8行勘探线)隐伏于条痕–均质混合岩外,其东段(8~26行勘探线)岩体直接被第四系覆盖,覆盖厚度为60~140 m;与整个金川含矿岩体相比,其走向偏转较大,约呈NW 80°,倾向SW,倾角一般为49°~60°;4行勘探线和6行勘探线的岩体较陡,为64°~67°,总体呈岩墙状,西段呈明显的收缩趋势,东端分叉尖灭。
在Ⅳ矿区纵投影图上(图7),从Ⅱ矿区56行勘探线至Ⅳ矿区2行勘探线,岩体厚度变化不大,但在4行勘探线岩体厚度突然变大,且产状较陡,矿体在4行勘探线和6行勘探线发育,且均发育在岩体底部,规模也较小,至8行勘探线处岩体深部延伸变小,且岩体底部无矿体产出(图7)。由8行勘探线继续向东,在10行勘探线处,岩体进一步变厚大,延深可达1100 m标高水平,矿体再现,赋存于岩体底部(图7),继续向东至岩体延伸进一步变大,产状无明显的变化,但矿体厚度呈逐渐变大的趋势,矿体所占的比例也逐渐增高。从16行勘探线开始,矿体除位于底部外,也开始发育“上悬式”矿体;在20行勘探线以东岩体规模及埋深均急剧变小,但矿体所占的比例却继续变大,直至28行勘探线处岩体尖灭。通过岩体及矿体规模特征、赋存位置及二者之间的比例关系,认为在Ⅳ矿区以8行勘探线为界,其宏观地质特征存在明显差异。
图 7 金川矿床Ⅳ矿区纵投影图(据甘肃省地质矿产局第六地质队,1984修改)Figure 7. Longitudinal projection map of Ⅳ mining area in Jinchuan deposit2. 找矿勘查技术方法
岩浆铜镍硫化物矿床在物探方法上主要表现为“三高一低”的特点,也就是高磁、高重、高极化和低电阻。金川矿区铜镍赋矿岩石在物性上为高磁化强度、中–低电阻率、高密度的组合特征;在异常曲面与平面上,则表现为高磁、重力局部上隆、中等电阻率的异常场组合特征,而完全的低电阻异常区可能由断裂引起,可从已知断裂与矿体之间的关系,侧面圈定矿体所在。在方法技术上,各种磁法对圈定矿体的平面范围极为有效,在剖面反演中具有较好的指示性,但深度需依赖其他方法进行标定,同时对磁性异常引起的深度较难估算。重力与磁配合,可以精准定位隐伏的镁铁–超镁铁质岩体,继而圈定矿体或找矿目标区。尽管金川矿区已实施多次磁测工作,但重力的测量相对缺乏或不系统,对金川矿床深边部隐伏镁铁–超镁铁质岩体的定位不能给出准确判断。鉴于此,重点加强金川矿区重力测量工作,并与磁测数据密切对应,构建地质–地球物理勘查模型,支撑金川矿床深边部找矿靶区精准定位。
2.1 重力异常特征
金川矿区布格重力异常总体表现为南高、北低,北侧以密集梯级带的形式从重力高异常过渡至低异常,反映了龙首山隆起带与潮水盆地衔接时,由古老变质结晶基底转变为第四系覆盖,布格重力异常迅速降低的典型特征。布格重力异常最高值位于工作区中西部,幅值约为277×10−5 m/s2,最低值位于工作区东北角,幅值约为262×10−5 m/s2。
全区布格重力异常以清晰的重力梯级带方式呈现出明显的分区特征,西区呈椭圆状异常,中间高四周低,最高值约为277×10−5 m/s2,西部椭圆状异常被密集的重力梯级带围绕,南北两侧展布方向为NW向,区内长度约为10 km,梯级带紧密,东端密集,西段稍有发散,梯度达7×10−5 m/s2;东侧梯级带展布方向为NE向,区内长度约为8 km,梯级带宽缓,梯度达10×10−5 m/s2;东区布格重力异常呈带状展布,与区域地层的展布方向相一致,总体表现为南高、北低,高值区异常值明显低于西部,最高值约为271×10−5 m/s2,推测东西两区由明显密度差异的地质单元组成,东区中部呈NEE向展布一梯级带,区内长度约为12 km,梯级带西端密集,东端发散,梯度达7×10−5 m/s2。布格重力异常梯级带均是区域性断裂构造在重力场上的反映。
剩余重力异常(图8)与布格重力异常相比,浅层局部地质体引起的信息明显增强,主要的团块状异常集中于北侧,呈北西向带状分布,现就与航磁异常对应的剩余重力异常进行分析。金川含矿岩体表现为高磁高重异常区,幅值最高处位于I矿区,剩余异常达5.0×10−5 m/s2,其余各矿区的剩余重力异常约为1.0×10−5~1.5×10−5 m/s2。
2.2 含矿岩体重磁反演计算
对金川矿区布格重力异常–地形回归剩余、化极磁力异常使用最小曲率位场分离技术处理,分别得到剩余重力异常、剩余化极磁力异常。在对含矿岩体研究成果充分认识的基础上,选择一些代表性的含矿岩体平面位置识别成果,结合布格重力异常–地形回归剩余、化极磁力异常数据处理结果进行分析。
金川含矿超基性岩体分布与剩余重力异常图显示(图9),已知的超基性岩体分布对应高重力异常值。金川超基性岩体分布与剩余化极磁力异常图(图10)显示,已知的超基性岩体分布对应高磁力异常值。
2.3 重磁三维建模
利用三维物性反演技术来识别岩体的空间分布(潘力等,2023)。进行三维重力反演的主要依据是在三维空间中超基性岩体与围岩的密度差,对此密度差进行三维重力反演,得到由重力反演的超基性岩体三维空间分布结果。进行三维磁力反演的主要依据是在三维空间中超基性岩体的高磁性,对此磁性差进行三维磁力反演,得到由磁力反演的超基性岩体三维空间分布结果。本次反演在模型构置时采用均匀网格剖分,剖分网格间距为150 m×150 m×150 m,剖分深度为地表以下2000 m深。
在三维重力反演切片图(图11)中,红色对应高密度的超基性岩体和含矿超基性岩体,高值集中在地表以下200~1000 m处,可能对应高密度的超基性岩体,而集中在地形以下500~750 m处的更高的密度差值可能对应了密度更高的含矿超基性岩体,其走向为NW向。根据图12中的俯视图,对应前面划分的岩体平面分布位置,可以展示不同密度阈值的地质体的空间展布并大致圈定超基性岩体空间分布且确定物性,整体走向呈NW向,结合地质和物性的认识,可以圈定超基性岩体(密度)的具体空间展布形式。在三维磁力反演切片图(图12)中,红色对应高磁性的超基性岩体和含矿超基性岩体,高值集中在地形以下50~1000 m处,可能对应高磁性的超基性岩体,而集中在地形以下50~750 m处的更高的磁化强度差值可能对应了磁性更高的含矿超基性岩体,其走向为NW向。
根据由钻井信息推测的矿区地质剖面、剖线位置等已知信息,从而获取各矿区的超基性岩体的空间分布,建立各矿区已知超基性岩体的地质模型。正演超基性岩体地质模型引起的重力异常以及化极磁力异常,对比实际观测重力(化极磁力)异常与地质模型正演重力(化极磁力)异常,可以推测已知超基性岩体和实际超基性岩体的差异,从而推断矿区的深边部是否存在可含矿的超基性岩体,以圈定成矿有利区。
矿区已知超基性岩体三维地质建模结果显示(图13),岩体走向为NW方向,倾向SW,倾角为60°~80°,已知的超基性岩体深度约为500~1800 m,对超基性岩体地质模型进行重力异常正演和化极磁力异常正演。超基性岩体模型重力异常幅值约为5 mGal,最高值位于Ⅱ矿区;超基性岩体化极磁力异常幅值约为2600 nT,最高值位于Ⅱ矿区。对比模型的正演重力、磁力异常和实际观测的重力、磁力异常,发现模型与实测磁力异常的形态较为相似,便于对比分析。为了对比分析岩体模型和实测磁力异常的差异,在矿区上布置了5条测线,这5条测线的模型磁力异常与实测磁力异常对比显示,Ⅲ矿区、Ⅰ矿区和Ⅱ矿区的岩体模型和实测磁力异常形态和幅值较为一致,但是Ⅳ矿区的磁力异常显示实测磁力异常远大于模型正演磁力异常,可以推测Ⅳ矿区深部有未探测高磁性岩体,可以圈定Ⅳ矿区深部为成矿有利区。
综合以上重力测量、重磁反演计算及三维建模数据,金川矿区深边部重磁高值区与地质认识及含矿镁铁–超镁铁质岩体原始产状高度吻合,进一步佐证了金川矿区深边部找矿是岩体另一端找矿的问题,存在尖灭、断离和再现,重磁极值点对应了含矿岩浆上侵入口的精确位置,地质-地球物理综合勘查模型进一步揭示了金川岩浆铜镍硫化物矿床深边部找矿潜力。
3. 深部找矿潜力
基于金川含矿镁铁–超镁铁质岩体的形成机制,综合矿床地质特征和矿体分布规律研究,利用重磁等地球物理异常信息与含矿岩体耦合关系,指出金川岩浆镍钴硫化物矿床深部仍具有较好找矿潜力。结合重磁反演计算和三维建模,重磁高值区与含矿岩体赋存空间基本一致,并且已知含矿岩体与隐伏岩体重磁数据高度吻合,代表了新的找矿方向,具体表现在金川矿床4个矿区不同的勘探线上。III矿区4~6行勘探线沿倾向及III矿区4行勘探线的SE向部位可能代表了含矿岩浆上侵的部位;在Ⅰ矿区21~29行勘探线,岩体仍未尖灭,深部仍有较大的铜镍找矿潜力;Ⅱ矿区1号矿体可能是含矿岩浆至少2次沿不同部位侵位的产物,Ⅱ号岩体2~3行勘探线和10~16行勘探线可能是含矿岩浆侵位的2个关键部位;Ⅱ矿区2号矿体44~50行勘探线之间,深部可能仍有一定的找矿潜力;Ⅳ矿区10~26行勘探线之间的深部可能仍存在富矿体,有必要进一步开展深部钻探验证;Ⅳ号岩体(尤其是8行勘探线以东)也可能代表了深部含矿岩浆上侵的另外一个分支,只是目前已控制部分主要代表了其上部演化程度较高的部分。此外,通过对金川矿床原始产状恢复及矿田构造的研究,金川矿床形成后,遭受了明显逆冲推覆和隆升过程,导致其上部含矿岩体与深部可能存在的含矿岩体之间出现明显的间断,进而也表现出明显的“悬空”特征。
4. 结论
(1)金川岩浆镍钴硫化物矿床整体赋存于镁铁–超镁铁质岩体的中下部,岩体最初产状是近水平的岩床,只是由于后期构造而成现在的陡倾斜,金川矿床深部找矿是岩体的另一端含矿性评价问题。
(2)重磁反演计算及三维建模对金川矿区含矿镁铁-超镁铁质岩体进行精准定位,通过已知含矿岩体与隐伏岩体的重磁数据对比,进一步确定金川矿区隐伏岩体的空间位置,建立的地质–地球物理综合勘查模型可快速揭示找矿靶区或目标区。
(3)综合地质、重磁反演计算及三维建模,指出金川岩浆铜镍硫化物矿床深部存在不同程度的找矿潜力,在III矿区(4~6行勘探线)南东端及Ⅳ矿区南部(8行勘探线以东),是新的重点找矿方向。
-
图 3 赛什腾山变玄武岩Zr/TiO2–Nb/Y分类图(a)(底图据Irvine T N,1971)、AFM图解(b)(底图据Winchester J A,1971)及TFeO–TFeO/MgO图解(c)(底图据Miyashiro A,1974)
Figure 3. (a) TAS diagram, (b) AFM diagram and (c) TFeO vs. TFeO / MgO diagram for meta–basalts of Saishiteng mountain
图 5 赛什腾山变玄武岩MgO–Nb/La图解(a)和 Nb–Nb/U图解(b)(底图据Kepezhinskas et al.,1997)
球粒陨石标准化值及原始地幔标准化值据Sun et al.,1989
Figure 5. (a) MgO vs. Nb/La diagram and (b) Nb vs. Nb/U diagram for meta–basalts of Saishiteng mountain
图 7 赛什腾山富铌玄武岩(Tb/Yb)PM –(La/Sm)PM图解(a)(底图据Wang et al.,2002)和Ce/Y–Zr/Nb图解(b)(底图据Deniel,1998)
Figure 7. (a)(Tb/Yb)PM vs La/Sm)PM diagrams and (b) Ce/Y vs Zr/Nb diagrams for meta–basalts of Saishiteng mountain
图 8 赛什腾山富铌玄武岩Zr–Ti图解(a)和Th/Yb–Ta/Yb图解(a)(底图据Pearce J A,1982)
Figure 8. (a) Zr vs Ti diagrams and (b) Th/Yb vs Ta/Yb diagrams for meta–basalts of Saishiteng mountain
图 9 赛什腾山富铌玄武岩成因模式图(据周艳龙,2021修改)
Figure 9. The genetic model map for meta–basalts of Saishiteng mountain
表 1 赛什腾山变玄武岩主量元素(%)、微量元素(10−6)及稀土元素(10−6)含量分析结果
Table 1 Major element (%), trace element (10−6) and REE element (10−6) compositions of meta–basalts of Saishiteng mountain
样号 TK02-1 TK02-2 TK02-3 TK02-4 TK02-5 TK02-6 SiO2 50.08 48.90 49.38 49.48 49.43 52.05 Al2O3 15.46 15.55 15.45 15.54 15.56 14.98 Fe2O3 4.88 5.23 5.41 4.81 4.40 5.30 FeO 6.29 6.44 6.11 6.34 6.74 5.40 CaO 11.16 11.78 11.47 11.17 10.52 11.15 MgO 5.58 5.87 5.62 5.81 6.27 4.89 K2O 0.46 0.43 0.48 0.47 0.52 0.39 Na2O 2.60 2.44 2.56 2.73 3.02 2.43 TiO2 1.45 1.44 1.47 1.48 1.49 1.39 P2O5 0.14 0.14 0.15 0.16 0.14 0.13 MnO 0.140 0.140 0.140 0.140 0.140 0.130 LOI 1.76 1.64 1.76 1.87 1.77 1.76 TOTAL 100 100 100 100 100 100 TFeO 10.68 11.15 10.98 10.67 10.70 10.17 m/f 0.92 0.93 0.90 0.96 1.03 0.85 La 11.9 11.7 11.9 11.4 11.0 11.2 Ce 25.1 24.3 24.0 23.6 24.0 24.2 Pr 3.40 3.29 3.22 3.18 3.35 3.16 Nd 14.6 14.0 14.2 13.7 14.3 13.7 Sm 3.41 3.33 3.30 3.21 3.31 3.19 Eu 1.19 1.16 1.16 1.17 1.14 1.16 Gd 3.55 3.59 3.62 3.43 3.51 3.41 Tb 0.62 0.61 0.60 0.59 0.61 0.58 Dy 3.50 3.51 3.53 3.40 3.50 3.30 Ho 0.69 0.70 0.69 0.67 0.67 0.64 Er 1.87 1.87 1.93 1.84 1.82 1.74 Tm 0.28 0.27 0.27 0.27 0.27 0.25 Yb 1.81 1.71 1.71 1.77 1.76 1.70 Lu 0.25 0.25 0.24 0.24 0.25 0.23 Ba 111.0 80.4 82.0 83.8 98.4 79.5 Rb 16.1 8.7 9.1 9.0 10.5 8.3 Sr 286 273 267 245 256 284 Co 42.6 42.8 38.6 38.3 43.8 36.2 V 279 282 273 275 265 267 Cr 54.2 53.6 60.0 50.1 49.0 47.6 Ni 53.2 51.5 50.6 49.4 51.8 52.0 Nb 13.8 13.5 13.3 13.6 13.5 13.7 表 2 赛什腾山富铌玄武岩锆石LA–ICP–MS U–Pb同位素测年结果
Table 2 LA–ICP–MS zircon U–Pb isotopic analysis for meta–basalts of Saishiteng mountain
样点
编号207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 232Th 238U Th/U 谐和
度比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 1 0.049 87 0.001 21 0.286 16 0.006 52 0.0416 2 0.000 43 0.014 98 0.001 08 189 34 256 5 263 3 301 22 247 322 0.77 0.97 2 0.065 81 0.000 83 1.218 75 0.013 34 0.134 33 0.001 16 0.046 71 0.002 9 800 11 809 6 813 7 923 56 230 460 0.50 1.00 3 0.055 39 0.001 94 0.543 69 0.018 05 0.071 2 0.000 97 0.024 02 0.002 23 428 50 441 12 443 6 480 44 118 170 0.69 1.00 4 0.067 82 0.002 8 1.351 75 0.053 45 0.144 58 0.002 5 0.042 26 0.004 86 863 53 868 23 871 14 837 94 38 46 0.83 1.00 5 0.056 47 0.001 0.555 8 0.009 0.071 4 0.000 68 0.025 21 0.001 59 471 20 449 6 445 4 503 31 363 381 0.95 1.01 6 0.082 72 0.001 08 1.804 99 0.020 67 0.158 28 0.001 41 0.088 43 0.005 51 1263 10 1047 7 947 8 1713 102 137 368 0.37 1.11 7 0.096 35 0.003 98 0.553 0.020 99 0.041 63 0.000 78 0.021 42 0.002 5 1555 43 447 14 263 5 428 49 156 278 0.56 1.70 8 0.068 66 0.001 61 1.274 27 0.027 79 0.134 62 0.001 58 0.049 34 0.003 87 889 26 834 12 814 9 973 75 300 490 0.61 1.02 9 0.134 88 0.001 67 7.450 97 0.081 07 0.400 69 0.003 78 0.129 81 0.008 08 2162 8 2167 10 2172 17 2467 145 99 115 0.86 1.00 10 0.054 36 0.001 08 0.532 7 0.009 77 0.071 08 0.000 7 0.025 44 0.001 79 386 24 434 6 443 4 508 35 335 589 0.57 0.98 11 0.050 99 0.002 27 0.292 27 0.012 53 0.041 58 0.000 57 0.015 64 0.001 22 240 73 260 10 263 4 314 24 148 118 1.26 0.99 12 0.055 93 0.003 5 0.545 23 0.032 69 0.070 72 0.001 56 0.029 17 0.004 73 450 94 442 21 440 9 581 93 46 106 0.43 1.00 13 0.056 2 0.002 53 0.547 82 0.023 48 0.070 71 0.001 2 0.032 12 0.004 48 460 65 444 15 440 7 639 88 55 184 0.30 1.01 14 0.052 4 0.001 45 0.302 3 0.007 89 0.041 85 0.000 48 0.014 83 0.001 02 303 39 268 6 264 3 298 20 576 346 1.67 1.02 15 0.111 7 0.001 3 5.031 97 0.049 94 0.326 75 0.002 86 0.106 64 0.007 06 1827 8 1825 8 1823 14 2048 129 127 332 0.38 1.00 16 0.078 27 0.001 18 1.899 1 0.025 7 0.175 99 0.001 66 0.022 9 0.002 42 1154 13 1081 9 1045 9 458 48 258 1275 0.20 1.10 17 0.072 75 0.001 23 0.417 78 0.006 36 0.041 65 0.000 39 0.015 04 0.000 99 1007 16 354 5 263 2 302 20 1090 764 1.43 1.35 18 0.055 4 0.000 88 0.545 81 0.007 78 0.071 47 0.000 64 0.022 65 0.001 53 428 17 442 5 445 4 453 30 474 575 0.83 0.99 19 0.109 15 0.001 32 4.795 4 0.049 75 0.318 68 0.002 82 0.092 01 0.006 43 1785 8 1784 9 1783 14 1779 119 109 194 0.56 1.00 20 0.160 59 0.002 63 10.148 06 0.156 85 0.458 37 0.005 68 0.127 82 0.010 57 2462 12 2448 14 2432 25 2431 189 136 196 0.69 1.01 21 0.112 36 0.003 87 1.106 64 0.034 75 0.071 44 0.001 23 0.065 63 0.007 55 1838 33 757 17 445 7 1285 143 97 378 0.26 1.70 22 0.085 54 0.001 5 2.683 72 0.043 07 0.227 57 0.002 38 0.059 39 0.004 7 1328 16 1324 12 1322 12 1166 90 110 155 0.71 1.00 23 0.093 91 0.003 24 0.538 43 0.017 07 0.041 59 0.000 65 0.025 26 0.002 77 1506 37 437 11 263 4 504 55 143 375 0.38 1.66 24 0.090 44 0.002 08 0.518 9 0.010 84 0.041 62 0.000 48 0.019 65 0.001 7 1435 23 424 7 263 3 393 34 251 493 0.51 1.61 25 0.061 94 0.001 23 0.929 19 0.017 06 0.108 81 0.001 08 0.030 32 0.003 31 672 23 667 9 666 6 604 65 22 138 0.16 1.00 26 0.068 72 0.000 92 0.673 98 0.007 76 0.071 14 0.000 61 0.025 81 0.001 98 890 11 523 5 443 4 515 39 333 951 0.35 1.18 27 0.154 24 0.004 01 0.884 75 0.020 23 0.041 61 0.000 6 0.013 85 0.001 13 2393 20 644 11 263 4 278 23 407 160 2.54 2.45 28 0.118 81 0.001 84 5.639 65 0.079 76 0.344 33 0.003 66 0.112 31 0.013 86 1938 12 1922 12 1907 18 2151 252 28 304 0.09 1.02 29 0.059 62 0.001 85 0.766 41 0.022 65 0.093 25 0.001 16 0.053 93 0.017 41 590 42 578 13 575 7 1062 334 4 137 0.03 1.01 30 0.070 69 0.001 31 1.356 53 0.022 97 0.139 19 0.001 41 0.039 11 0.003 85 948 19 870 10 840 8 775 75 168 680 0.25 1.04 -
陈丹玲, 孙勇, 刘良. 柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J]. 地学前缘, 2007. 14(01): 108-116. CHEN Danling, SUN Yong, LIU Liang. The metamorphic ages of the country rock of the Yukahe eclogites in the North Qaidam and its geological significance[J]. Earth Science Frontiesers(China University of Geosciences, Beijing: Peking University) , 2007, 14(1): 108- 116.
高晓峰, 校培喜, 贾群子. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J]. 地质学报, 2011, 85(09): 1452-1463 GAO Xiaofeng, XIAO Peixi, JIA Qunzi. Redetermination of the Tanjianshan Group: Geochronological and geochemical evidence of Basalts from the margin of the Qaidam Basin[J]. Acta Geologica Sinica, 2011, 85(09): 1452-1463.
辜平阳, 计文化, 陈锐明, 等. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示[J]. 地球科学, 2020, 45(09): 3268-3281 GU Pingyang, JI Wenhua, CHEN Ruiming, et al. Petrogenesisi of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution[J]. Earth Science, 2020, 45(9): 3268-3281.
郭安林, 张国伟, 强娟, 等. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报, 2009.25(1): 1-12 GUO Anlin, ZHANG Guowei, QIANG Juan, et al. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet plateau[J]. Acta Petrologica Sinica, 2009, 25(1): 1-12.
韩吟文, 马振东, 张宏飞等. 地球化学[M]. 北京: 地质出版社, 2004 HAN Yinwen, MA Zhendong, ZHANG Hongfei, et al. Geochemistry[M]. Beijing: Geological Publishing House, 2004.
江小强, 肖渊甫, 李建兵, 等. 柴北缘阿木尼克山滩间山群火山岩地球化学特征及地质意义[J]. 地质找矿论丛, 2020, 35(01): 73-84 doi: 10.6053/j.issn.1001-1412.2020.01.009 JIANG Xiaoqiang, XIAO Yuanfu, LI Jianbing, et al. Geochemical characteristics and geological significance of Volcanic rocks in the Tanjianshan Formation of the Amunik mountains in the northern margin of the Qaidam Basin[J]. Contributions to Geology and Mineral Resources Research, 2020, 35(1): 73-84. doi: 10.6053/j.issn.1001-1412.2020.01.009
赖绍聪, 邓晋福, 赵海玲. 柴达木北缘古生代蛇绿岩及其构造意义[J]. 现代地质, 1996, 10(01): 19-22+24-29. LAI SC, DENG JF and ZHAO HL. Paleozoic ophiolites and its tectonic significance on north margin of Qaidam basin[J]. Geoscience, 1996, 10(1): 18-28.
蓝江波, 徐义刚, 杨启军, 等. 滇西高黎贡带~40Ma OIB型基性岩浆活动: 消减特提斯洋片与印度板块断离的产物?[J]. 岩石学报, 2007(06): 1334-1346 doi: 10.3969/j.issn.1000-0569.2007.06.010 LAN JB, XU YG, YANG QJ, et al. ~40Ma OIB-type mafic magmatism in the Gaoligong belt: results of break-off between subducting Tethyan slab and Indian plate? [J]. Acta Petrologica Sinica, 2007, 23(6): 1334-1346. doi: 10.3969/j.issn.1000-0569.2007.06.010
李峰, 吴志亮, 李保珠. 柴达木北缘滩间山群时代及其地质意义[J]. 大地构造与成矿学, 2007, 31(02): 226-233 doi: 10.3969/j.issn.1001-1552.2007.02.012 LI Feng, WU Zhiliang, LI Baozhu. Recognition on Formation age of the Tanjianshan group on the Northern Margin of the Qaidam Basin and its Geological significance[J]. Geotectonica et Metallogenia, 2007, 31(2): 226-233. doi: 10.3969/j.issn.1001-1552.2007.02.012
李峰, 吴志亮, 李保珠, 等. 柴达木盆地北缘滩间山群新厘定[J]. 西北地质, 2006, 39(3): 83-90 doi: 10.3969/j.issn.1009-6248.2006.03.012 LI Feng, WU Zhiliang, LI Baozhu, et al. Revision of the Tanjianshan Group on the Northern Margin of the Qaidam Basin[J]. Northwestern Geology, 2006, 39(3): 83-90. doi: 10.3969/j.issn.1009-6248.2006.03.012
李怀坤, 陆松年, 赵风清, 等. 柴达木北缘新元古代重大地质事件年代格架[J]. 现代地质, 1999, 02: 3-5 LI Huaikun, LU Songnian, ZHAO Fengqing, et al. Geochronological Framework of the Neoproterozoic Major Geological Events in the Northern Margin of the Qaidam Basin[J]. Geoscience, 1999, (2): 3-5.
李治华, 李碧乐, 王斌, 等. 柴北缘苦水泉金矿英云闪长岩和细粒闪长岩年代学、地球化学和Hf同位素及地质意义[J]. 岩石学报, 2021, 37(06): 1653-1673 doi: 10.18654/1000-0569/2021.06.02 LI ZH, LI BL, WANG B, et al. Geochronology, geochemistry, Hf isotope, and their geological significance of the tonalite and fine-grained diorite from Kushuiquan gold deposit, North Qaidam[J]. Acta Petrologica Sinica, 2021, 37(6): 1653-1673. doi: 10.18654/1000-0569/2021.06.02
陆松年, 王惠初, 李怀坤, 等. 柴达木盆地北缘“达肯大坂群”的再厘定[J]. 地质通报, 2002, 21(1): 19-23 doi: 10.3969/j.issn.1671-2552.2002.01.004 LU Songnian, WANG Huichu, LI Huaikun, et al. Redefinition of the“Dakendaban Group”on the Northern margin of the Qaidam basin[J]. Geological bulletin of China, 2002, 21(1): 19-23. doi: 10.3969/j.issn.1671-2552.2002.01.004
路增龙, 张建新, 毛小红, 等. 柴北缘东段奥陶纪埃达克岩-富Nb玄武岩: 对大陆深俯冲之前大洋俯冲及地壳增生的启示[J]. 岩石学报, 2020, 36(10): 2995-3017 doi: 10.18654/1000-0569/2020.10.05 LU Zenglong, ZHANG Jianxin, MAO Xiaohong, et al. Ordovician adakite-Nb-enriched basalt suite in the eastern North Qaidam Moutains: Implications for oceanic subduction and crustal accretion prior to deep continental subduction[J]. Acta Petrologica Sinica, 2020, 36(10): 2995-3017. doi: 10.18654/1000-0569/2020.10.05
孟繁聪, 张建新, 杨经绥, 等. 柴北缘锡铁山榴辉岩的地球化学特征[J]. 岩石学报, 2003.19(03): 435-442 doi: 10.3969/j.issn.1000-0569.2003.03.007 MENG FC, ZHANG JX, YANG JS, et al. Geochemical Characteristics of eclogites in Xitieshan area, North Qaidam of northwestern China[J]. Acta Geologica Sinica, 2003.19(3): 435-442. doi: 10.3969/j.issn.1000-0569.2003.03.007
潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707 doi: 10.3969/j.issn.1671-2552.2002.11.002 PAN Guitang, LI Xingzhen, WANG Liquan, et al. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological bulletin of China, 2002, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002
青海省地质矿产局. 青海省区域地质志. 中华人民共和国地质矿产部地质专报[M]. 北京: 地质出版社, 1991 Qinghai Bureau of Geology and Mineral Resources. Regional Geology of Qinghai Province. Geological Memoirs of Ministry of Geology and Mineral Resources of People’s Republic of China [M]. Beijing: Geological Publishing House, 1991.
邱士东, 辜平阳, 庞新愉, 等. 青海冷湖北片麻状石英闪长岩的MC-LA-ICP-MS锆石U-Pb年龄、地球化学特征及地质意义[J]. 地质论评, 2015, 61(04): 948-960 QIU Shidong, GU Pingyang, PANG Xinyu, et al. Zircon MC-LA-ICP-MS U-Pb dating, Geochemistry and Geological Significance of Gneissic Quartz Diorite in Northern Lenghu, Qinghai[J]. Geological Review, 2015, 61(4): 948-960.
史仁灯, 杨经绥, 吴才来. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J]. 岩石矿物学杂志, 2003(03): 229-236 doi: 10.3969/j.issn.1000-6524.2003.03.004 SHI Rendeng, YANG Jingsui, WU Cailai. The discovery of adakitic dacite in Early Palaeozoic island arc volcanic rocks on the northern margin of Qaidam basin and its geological significance[J]. Acta Petrologica et Mineralogica, 2003, 22(3): 229-236. doi: 10.3969/j.issn.1000-6524.2003.03.004
史仁灯, 杨经绥, 吴才来, 等. 柴达木北缘超高压变质带中的岛弧火山岩[J]. 地质学报, 2004, 78(1): 52-64 doi: 10.3321/j.issn:0001-5717.2004.01.007 SHI Rendeng, YANG Jingsui, WU Cailai, et al. Island arc volcanic rocks in the North Qaidam UHP metamorphic belt[J]. Acta Geologica Sinica, 2004, 78(1): 52-64. doi: 10.3321/j.issn:0001-5717.2004.01.007
宋述光, 杨经绥. 柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体: 超高压变质作用的证据[J]. 地质学报, 2001, (02): 180-185 doi: 10.3321/j.issn:0001-5717.2001.02.006 SONG Shuguang, YANg Jingsui. Sanidine + Quartz Inclusions in Dulan Eclogites: Evidence for UHP Metamorphism on the North Margin of the Qaidam Basin, N W China[J]. Acta Geologica Sinica, 2001, (2): 180-185. doi: 10.3321/j.issn:0001-5717.2001.02.006
宋述光, 王梦珏, 王潮, 等. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学: 地球科学, 2015, 45(07): 916-940 SONG Shuguang, WANG Mengjue, WANG Chao. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: Aperspective[J]. Science China: Earth Science, 2015, 45(7): 916-940.
孙华山, 赵立军, 吴冠斌, 等. 锡铁山块状硫化物铅锌矿床成矿构造环境及矿区南部找矿潜力: 来自滩间山群火山岩岩石化学、地球化学证据[J]. 岩石学报, 2012, 28(02): 652-664 SUN Huashan, ZHAO Lijun, WU Guanbin, et al. Metallogenic tectonic setting and ore-finding potential of Xitieshan massive sulfide lead-zinc deposit: Evidence from lithochemistry and geochemistry of ore-hosted volcanic strata, Tanjianshan Group[J]. Acta Petrologica Sinica, 2012, 28(02): 652-664.
王惠初, 陆松年, 莫宣学, 等. 柴达木盆地北缘早古生代碰撞造山系统[J]. 地质通报, 2005, 24(7): 603-612 doi: 10.3969/j.issn.1671-2552.2005.07.003 WANG Huichu, LU Songnian, MO Xuanxue, et al. An Early Paleozoic collisional orogen on the northern margin of the Qaidam basin, northwestern China[J]. Geological Bulletin of China, 2005, 24(7): 603-612. doi: 10.3969/j.issn.1671-2552.2005.07.003
王惠初, 陆松年, 袁桂邦, 等. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报, 2003, 22(07): 487-493 doi: 10.3969/j.issn.1671-2552.2003.07.005 WANG Huichu, LU Songnian, YUAN Guibang, et al. Tectonic setting and age of the “Tanjianshan Group” on the northern margin of the Qaidam basin, Northwestern China[J]. Geological Bulletin of China, 2003, 22(7): 487-493. doi: 10.3969/j.issn.1671-2552.2003.07.005
汪劲草, 韦龙云, 郝森, 等. 柴北缘滩间山群构造对南祁连加里东造山及超高压变质岩折返的启示[J]. 桂林理工大学学报, 2013, 33(04): 575-586 doi: 10.3969/j.issn.1674-9057.2013.04.001 WANG Jincao, WEI Longyun, HAO Sen, et al. Structure Implication in Tanjianshan group on Southern Qilian Caledonian Orogeny and Exhumation of UHP Metamorphic Rocks in Northern Qaidam[J]. Journal of Guilin University of Technology, 2013, 33(4): 575-586. doi: 10.3969/j.issn.1674-9057.2013.04.001
王侃. 柴北缘布赫特山滩间山群地质特征及构造环境分析[D]. 西安:长安大学, 2014 WANG Kan. Geological Characteristics and Tectonic Environment Analysis of the Tanjianshan group in the Buhete mountain in the Northern Margin of the Qaidam Basin[D]. Xi’an: Chang’an University, 2014.
王立轩, 何世平, 庄玉军, 等. 青海小赛什腾山地区达肯大坂岩群中新解体出一套变火山岩系[J]. 西北地质, 2022, 55(1): 1-18 doi: 10.19751/j.cnki.61-1149/p.2022.01.001 WANG Lixuan, HE Shiping, ZHUANG Yujun, et al. Discussion on Newly Disintegrated Metavolcanic Rock Series from the Dakendaban Group in Xiaosaishiteng Mountain Area, Qinghai Province[J]. Northwestern Geology, 2022, 55(1): 1-18. doi: 10.19751/j.cnki.61-1149/p.2022.01.001
吴才来, 郜源红, 吴锁平, 等. 柴北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报, 2007, 23(8): 1861—1875 doi: 10.3969/j.issn.1000-0569.2007.08.008 WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam basin, NW China[J]. Acta Petrologica Sinica, 2007, 23(8): 1861-1875. doi: 10.3969/j.issn.1000-0569.2007.08.008
吴才来, 郜源红, 吴锁平, 等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学(D辑: 地球科学), 2008, 23(8): 930-949 WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating and geochemical characteristics of the western Qaidam granites[J]. Science in China Series D: Earth Sciences, 2008, 23(8): 930-949.
吴才来, 郜源红, 李兆丽, 等. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架[J].中国科学:地球科学, 2014,44(10):2142-2165. WU Cailai, GAO Yuanhong, LI Zhaoli, et al. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China[J]. Science China: Earth Sciences, 2014, 44(10):2142-2165.
邬介人, 任秉琛, 张苺, 等. 青海锡铁山块状硫化物矿床的类型及地质特征[J]. 西北地质科学, 1987, 20(06): 1-81+83-88 WU J R, REN B C, ZHANG M, et al. The genetic type and geological characteristics of the Xitieshan massive Sulphide deposit, Qinghai[J]. Northwest Geoscience, 1987, 20(6): 1-81+83-88.
夏林圻, 李向民, 余吉远, 等. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 2016, 43(4): 1087-1138 XIA Linqi, LI Xiangmin, YU Jiyuan, et al. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 2016, 43(4): 1087-1138.
解超明, 段梦龙, 于云鹏, 等. 西藏松多地区早侏罗世变质辉长岩的成因及其构造意义[J]. 岩石学报, 2019, 35(10): 3065-3082 doi: 10.18654/1000-0569/2019.10.07 XIE Chaoming, DUAN Menglong, YU Yunpeng, et al. Genesisi and geological significance of Early Jurassic metamorphic gabbro in the Sumdo area. Tibet[J]. Acta Petrologica Sinica, 2019, 35(10): 3065-3082. doi: 10.18654/1000-0569/2019.10.07
辛后田, 王惠初, 周世军. 柴北缘的大地构造演化及其地质事件群[J]. 地质调查与研究, 2006, 29(04): 311-320 doi: 10.3969/j.issn.1672-4135.2006.04.010 XIN Houtian, WANG Huichu, ZHOU Shijun. Geological events and tectonic evolution of the north margin of the Qaidam Basin[J]. Geological Survey and Research, 2006, 29(04): 311-320. doi: 10.3969/j.issn.1672-4135.2006.04.010
杨经绥, 许志琴, 李海兵, 等. 我国西部柴北缘地区发现榴辉岩[J]. 科学通报, 1998. (14): 1544-1549. YANG Jingsui, XU Zhiqin, LI Haibing, et al. Eclogite is found in the northern margin of China[J]. Science Bulletin, 1998, (14): 1554-1549.
杨士杰. 柴北缘绿梁山复式花岗岩体及其中片麻岩、榴闪岩包裹体的成因与形成机制[D]. 西安: 西北大学, 2016 YANG Shijie. The Genesisi and Formation Mechanism of Lvliangshan Composite Granite Body and Enclosed Gneiss and Garnet Amphibolite Lenses[D]. Xi’an: Northwest University, 2016.
于胜尧. 都兰地区高压麻粒岩单元的构造热历史: 对柴北缘古生代碰撞造山作用的启示[D]. 北京: 中国地质科学院, 2011 YU Shengyao. Tectonothermal History of High Pressure Granulite Unit in Dulan Area, the North Qaidam Mountains: Implications for Paleozoic collisional Orogeny[D]. Beijing: Chinese Academy of Geological Sciences, 2011.
张贵宾, 张立飞, 宋述光. 柴北缘超高压变质带: 从大洋到大陆的深俯冲过程[J]. 高校地质学报, 2012, 18(01): 28-40 doi: 10.3969/j.issn.1006-7493.2012.01.003 ZHANG Guibin, ZHANG Lifei, SONG Shuguang. An Overview of the Tectonic Evolution of North Qaidam UHPM Belt: from Oceanic Subduction to Continental Collision[J]. Geological Journal of China University, 2012, 18(1): 28-40. doi: 10.3969/j.issn.1006-7493.2012.01.003
张海祥, 张伯友, 牛贺才. 富铌玄武岩: 板片熔体交代的地幔楔橄榄岩部分熔融产物[J]. 地球科学进展, 2005, 20(11): 1234-1242 doi: 10.3321/j.issn:1001-8166.2005.11.010 ZHANG Haixiang, ZHANG Boyou, NIU Hecai. Nb-Enriched Basalt: The Product of the Partial Melting of the Slab-derived melt metasomatized mantle peridotite[J]. Advances in Earth Science, 2005, 20(11): 1234-1242. doi: 10.3321/j.issn:1001-8166.2005.11.010
张孝攀, 王权锋, 惠洁, 等. 柴北缘滩间山群火山岩岩石化学特征及构造环境[J]. 矿物岩石, 2015, 35(01): 18-26 doi: 10.19719/j.cnki.1001-6872.2015.01.004 ZHANG Xiaopan, WANG Quanfeng, HUI Jie, et al. Chemical characteristics of volcanic rocks from the Tanjianshan Group on the northern margin of the Qaidam basin and its tectonic environment[J]. Journal of Mineralogy and Petrology, 2015, 35(1): 18-26. doi: 10.19719/j.cnki.1001-6872.2015.01.004
张永, 徐兴旺. 新疆青河县科克辉长岩体: 氧化地幔楔部分熔融岩浆的记录[J]. 地质学报, 2019, 93(5): 1037-1054. DOI: 10.19762/j.cnki.dizhixuebao.2019046. ZHANG Yong, XU Xingwang. The Keke gabbro in Qinghe County of Xinjiang:records from partial melting magma of the oxidized mantle wedge[J]. Acta Geologica Sinica, 2019, 93(5):1037-1054. doi: 10.19762/j.cnki.dizhixuebao.2019046
赵风清, 郭进京, 李怀坤. 青海锡铁山地区滩间山群的地质特征及同位素年代学[J]. 地质通报, 2003, 22(1): 28-31 doi: 10.3969/j.issn.1671-2552.2003.01.005 ZHAO Fengqing, GUO Jinjing, LI Huaikun. Geological characteristics and isotopic age of Tanjianshan Group along northern margin of Qaidam basin[J]. Geological Bulletin of China, 2003, 22(1): 28-31. doi: 10.3969/j.issn.1671-2552.2003.01.005
周宾, 郑有业, 聂晓亮, 等. 柴北缘滩间山群玄武岩锆石定年及其地质意义 [J]. 东华理工大学学报(自然科学版), 2019, 42(03): 227-33+46. ZHOU Bin, ZHENG Youye, NIE Xiaoliang, et al. Zircon U-Pb dating for basaltic and esite of Tanjianshan group in the Lvliangshan region of Qaidam basin north margin and its geological significance[J]. Journal of East China University of Technology(Natural Science), 2019, 42(3): 227-233+246.
周宾, 郑有业, 童海奎, 等. 柴北缘早古生代埃达克质花岗岩锆石定年及其地质意义[J]. 现代地质, 2014, 28(5): 875-883. doi: 10.3969/j.issn.1000-8527.2014.05.001 ZHOU Bin, ZHENG Youye, TONG Haikui, et al. Zircon dating of early Paleozoic adakitic granite on the Northern Margin of Qaidam basin and its geological significance[J].Geoscience, 2014,28(5):875-883. doi: 10.3969/j.issn.1000-8527.2014.05.001
周宾, 郑有业, 许荣科, 等. 青海柴达木山岩体LA-ICP-MS锆石U-Pb定年及Hf同位素特征[J]. 地质通报, 2013, 32(07): 1027-1034 doi: 10.3969/j.issn.1671-2552.2013.07.008 ZHOU Bin, ZHENG Youye, XU Rongke, et al. LA-ICP-MS zircon U-Pb dating and Hf isotope geochemical characteristics of Qaidamshan instrusive body[J]. Geological Bulletin of China, 2013, 32(7): 1027-1034. doi: 10.3969/j.issn.1671-2552.2013.07.008
周艳龙. 柴北缘赛什腾山一带滩涧山群地质地球化学特征及构造演化[D]. 西安: 长安大学, 2021 ZHOU Yanlong. Geological and Geochemical Characteristics and Tectonic Evolution of Tanjianshan Group in the Saishiteng mountain, Northern Margin of Qaidam Basin[D]. Xi’an: Chang’an University, 2021.
朱小辉. 柴达木盆地北缘滩间山群火山岩地球化学及年代学研究[D]. 西安: 西北大学, 2011 ZHU Xiaohui. Geochemical and zircon U-Pb dating studies of the volcanic of Tanjianshan Group in the North Qaidam[D]. Xi’an: Northwest University, 2011.
朱小辉, 陈丹玲, 王超, 等. 柴达木盆地北缘新元古代-早古生代大洋的形成、发展和消亡[J]. 地质学报, 2015, 89(02): 234-251 ZHU Xiaohui, Chen Danling, Wang Chao. The Initiation, Development and Termination of the Neoproterozoic-Early Paleozoic Ocean in the Northern Margin of Qaidam Basin[J]. Acta Geologica Sinica, 2015, 89(2): 234-251.
庄儒新. 柴达木盆地北缘滩间山群火山岩岩石组合及形成环境[D]. 昆明: 昆明理工大学, 2006 ZHUANG Ruxin. The Volcanic Rock Associations and Formation Environment of Tanjianshan group in the Northern Margin of Qaidam Basin[D]. Kunming: Kunming University of Science and Technology, 2006.
庄玉军, 辜平阳, 高永伟, 等. 柴北缘赛什腾中二叠世辉长岩成因及其对宗务隆洋盆俯冲时限的制约[J]. 岩石矿物学杂志, 2020, 39(06): 718-734 doi: 10.3969/j.issn.1000-6524.2020.06.004 ZHUANG Yujun, GU Pingyang, GAO Yongwei, et al. Petrogenesis of Middle Permian gabbro in Saishiteng Moutain of the northern Qaidam Basin and its constraint to the time of Zongwulong Ocean subduction[J]. Acta Petrologiaca Et Mineralogica, 2020, 39(6): 718-734. doi: 10.3969/j.issn.1000-6524.2020.06.004
庄玉军, 辜平阳, 李培庆, 等. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学、年代学及Hf同位素特征[J]. 地质通报, 2019, 38(11): 1801-1812 doi: 10.12097/j.issn.1671-2552.2019.11.004 ZHUANG Yujun, GU Pingyang, LI Peiqing, et al. Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northestern margin of Oulongbuluke micro-block on the northern margin of Qaidam basin[J]. Geological Bulletin of China, 2019, 38(11): 1801-1812. doi: 10.12097/j.issn.1671-2552.2019.11.004
Aguillón-Robles A, Calmus T, Benoit M, et al. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California?[J]. Geology, 2001, 29(6): 531-534. doi: 10.1130/0091-7613(2001)029<0531:LMAANE>2.0.CO;2
Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59-79.
Becker H, Jochum KP and Carlson RW. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones[J]. Chemical Geology, 1999, 160(4): 291-308. doi: 10.1016/S0009-2541(99)00104-7
Castillo PR. Adakite petrogenesis[J]. Lithos, 2012, 134-135: 304-316. doi: 10.1016/j.lithos.2011.09.013
Chen D L, Liu L, Sun Y, et al. Geochemistry and zircon U -Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China [J]. Journal of Asian Earth Sciences, 2009, 35(3-4): 259 -272. doi: 10.1016/j.jseaes.2008.12.001
Chen SS , Shi RD , Yi GD, et al. Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet): Geochronology, petrogenesis, and tectonic implications[J]. Tectonophysics, 2016, 666:90-102.
Deniel C. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean)[J]. Chemical Geology, 1998, 144(3-4): 281-303. doi: 10.1016/S0009-2541(97)00139-3
Ernst R. E. , Buchan K. L. , Hamilton M. A. , et al. Integrated paleomagnetism and U-Pb geochronology of mafic dikes of the eastern Anabar Shield Region, Siberia: Implications for Mesoproterozoic Paleolatitude of siberia and Comparison with Laurentia[J]. The Journal of Geology, 2000, 108: 381-401. doi: 10.1086/314413
Escuder-Viruete J, Pérez-Estaún A, Weis D, et al. Geochemical characteristics of the Río Verde complex, central Hispaniola: Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc[J]. Lithos, 2010, 114(1-2): 168-185. doi: 10.1016/j.lithos.2009.08.007
Hajash A Jr. Rare earth element abundances and distribution patterns in hydrothermally altered basalts: Experimental results[J]. Contributions to Mineralogy and petrology, 1984, 85(4): 409-412. doi: 10.1007/BF01150297
Irvine T. N. and BaragarW. R. A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548. doi: 10.1139/e71-055
Kepezhinskas P, Defant MJ and Drummond MS. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60(7): 1217-1229. doi: 10.1016/0016-7037(96)00001-4
Kepezhinskas P. , Mcdermott F. , Defant M. J. , et al. Trace element and SrNdPb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis [J]. Geochimica Et Cosmochimica Acta, 1997, 61(3): 577-600. doi: 10.1016/S0016-7037(96)00349-3
Lassiter J C, DePaolo D J. Plumes/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotope constraints[J]. American Geophysical Union, 1997, 100: 335-355.
Liang X. Q. , Fu J. G. , Wang C. , et al. Redefinition and Formation Age of the Tanjianshan Group in Xitieshan Region, Qinghai [J]. Acta Geologica Sinica-English Edition, 2014, 88(2): 394-409. doi: 10.1111/1755-6724.12204
Liao FX, Chen NS, Santosh M, et al. Paleoproterozoic Nb–enriched meta-gabbros in the Quanji Massif, NW China: Implications for assembly of the Columbia supercontinent[J]. Geoscience Frontiers, 2018, 9(2): 577-590. doi: 10.1016/j.gsf.2017.05.007
Liu CH, Zhao GC, Liu FL, Shi J, et al. 2.2 Ga magnesian andesites, Nb-enriched basalt-andesites, and adakitic rocks in the Lüliang Complex: Evidence for early Paleoproterozoic subduction in the North China Craton. Lithos[J]. 2014, 208-209: 104-117.
Liu H C, Wang YJ, Cawood P A, et al. Episodic slab rollback and back-arc extension in the Yunnan-Burma region: Insights from Cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks[J]. Geological Society of America Bulletin, 2017, 129(5-6): 698–714. doi: 10.1130/B31604.1
Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel [J]. Berkeley Geochronology Center Special Publication. 2003, (4): 1–70.
Mattinson CG, Wooden JL, Liou JG, et al. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China [J]. Mineralogy&Petrology, 2006, 88(1-2): 227 -241.
Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355. doi: 10.2475/ajs.274.4.321
Ormerod D S, Hawkesworth C J, Rogers N W, et al. Tectonic and magmatic transition in the western Great Basin, USA [J]. Nature, 1988, 333(6171-6172): 394~353.
Pearce J A. and Noryy M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69: 33-47. doi: 10.1007/BF00375192
Petrone CM, Ferrari L. Quaternary adakite—Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence?[J]. Contributions to Mineralogy and Petrology, 2008, 156(1): 73-86. doi: 10.1007/s00410-007-0274-9
Pollock J C and Hibbard J P. Geochemistry and tectonic significance of the Stony Mountain gabbro, North Carolina: Implications for the Early Paleozoic evolution of Carolinia[J]. Gondwana Research, 2010, 17(2-3): 500-515. doi: 10.1016/j.gr.2009.09.009
Sajona FG, Maury RC, Bellon H, et al. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines) [J]. Journal of petrology, 1996, 37(3): 693-726. doi: 10.1093/petrology/37.3.693
Shaw J. E. , Baker J. A. , Menzies M. A. , et al. Petrogenesis of the Largest Intraplate Volcanic Field on the Arabian Plate (Jordan): a Mixed Lithosphere–Asthenosphere Source Activated by Lithospheric Extension[J]. Journal of Petrology, 2003, 44(9): 1657-1679. doi: 10.1093/petrology/egg052
Shi R. D. , Yang J. S. , Wu C. L. , et al. Island arc volcanic rocks in the north Qaidam UHP belt, northern Tibet plateau: Evidence for ocean–continent subduction preceding continent–continent subduction [J]. Journal of Asian Earth Sciences, 2006, 28(2-3): 151-159. doi: 10.1016/j.jseaes.2005.09.019
Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continental collision/subduction, to orogen collapse, and recycling: The example of the North Qaidam UHPM belt, NW China [J]. Earth Science Reviews, 2014, 129(1): 59 -84.
Song SG, Zhang LF, Niu YL, et al. Evolution from oceanic subduction to continental collision: a case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data [J]. Journal of Petrol, 2006, 47(3): 435 -455. doi: 10.1093/petrology/egi080
Sorbadere F, Schiano P, Métrich N, et al. Small-scale coexistence of island-arc-and enriched-MORB-type basalts in the central Vanuatu arc[J]. Contributions to Mineralogy and Petrology, 2013, 166(5): 1305-1321. doi: 10.1007/s00410-013-0928-8
Sun HS , Li H , Evans N J , et al. Volcanism, mineralization and metamorphism at the Xitieshan Pb–Zn deposit, NW China: Insights from zircon geochronology and geochemistry[J]. Ore Geology Reviews, 2017, 88: 289-303. S016913681730080X.
Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Sauders AD and Norry MJ. eds. Magmatism in the Ocean Basins[J]. Geological Society. Special Publication, 1989, 42(1): 3l3-345.
Thorkelson DJ, Madsen JK, Sluggett CL. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry[J]. Geology, 2011. 39(3): 267-270. doi: 10.1130/G31522.1
Wang K, Plant T, Walker J D, et al. A mantle melting profile across the Basin and Range, SW USA[J]. Journal of Geophysical Research: Solid Earth, 2002.107(B1).
Wang Q, Wyman DA, Zhao ZH, et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology, 2007, 236(1-2): 42-64. doi: 10.1016/j.chemgeo.2006.08.013
Winchester J. A, , Floyd P. A. Geochemical discrimination of different magma series and their differentiation products using immobile elements [J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2
Xiong Q, Zheng J P, Griffin W L, et al. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the north qaidam terrane (western China): Meso - Neoproterozoic crust- mantle coupling and early Paleozoic convergent plate-margin processes [J]. Precambrian Research, 2011, 187(1-2), 33-57. doi: 10.1016/j.precamres.2011.02.003
Zhang A, Wang Y, Fan W, et al. Earliest Neoproterozoic (ca. 1.0 Ga) arc–back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: geochronological and geochemical evidence from the metabasite[J]. Precambrian Research, 2012, 220: 217-233.
Zhang C. , Zhang, LF. , Van Roermund, et al. Petrology and SHRIMP U–Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4): 752-767. doi: 10.1016/j.jseaes.2011.04.002
Zhang GB, Song SG, Zhang LF, et al. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology[J]. Lithos, 2008, 104(1- 4): 99-118.
Zhang J X, Mattinson C G, Meng F C, et al. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP⁄UHP metamorphic terrane, Western China: evidence fromzircon U -Pb geochronology [J]. Geological Society of America Bulletin, 2008, 120(5-6): 732 -749. doi: 10.1130/B26093.1
Zhang J X, Mattinson C G, Yu S Y, et al. U - Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction [J]. Journal of Metamorphic Geology, 2010,28(9):955-978.
-
期刊类型引用(5)
1. 孟凡超,秦丽媛,王扬州,刘朋,周瑶琪. 华北克拉通中生代幔源岩浆岩放射性元素生热率的时空差异与主控因素. 中国石油大学学报(自然科学版). 2024(01): 36-45 . 百度学术
2. 袁星芳,杨明爽,王晓翠,柳禄湧,钟振楠,李方舟. 山东威海市呼雷汤地热水化学、成因与开发潜力. 地质通报. 2024(01): 143-152 . 百度学术
3. 邵誉炜,毛绪美,查希茜,李翠明,赵桐. 水化学和同位素揭示的广东儒洞地热咸水形成机制. 地质通报. 2024(05): 779-788 . 百度学术
4. 陆宇,姜星. 地热资源勘查中水文地质调查的运用. 中国资源综合利用. 2024(05): 74-77 . 百度学术
5. 汪名鹏. 音频大地电磁测深法在深部地热构造勘查中的应用. 西北地质. 2024(04): 240-251 . 本站查看
其他类型引用(0)