Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt
-
摘要:
产于柴北缘构造带西段赛什腾山地区滩间山群中的变玄武岩的结晶年龄为(444±4)Ma,具有富Na2O、贫K2O、高TiO2、Nb及低LILE/HFSE和HREE/HFSE值等特征,球粒陨石标准化稀土元素配分曲线整体表现为轻稀土相对富集、重稀土平坦的略向右缓倾型配分模式,且在原始地幔标准化微量元素蛛网图中显示Nb、Ta弱正异常,与富铌玄武岩地球化学特征一致。综合分析表明,赛什腾山富铌玄武岩岩浆源区为尖晶石相二辉橄榄岩,是俯冲大洋板片陡角度回转引起的上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与亏损地幔楔混合的产物,指示晚奥陶世柴北缘西段仍处于弧后伸展阶段,陆陆碰撞尚未开始。结合区域已有资料,认为柴北缘滩间山群是晚寒武世—早中志留世洋陆转换过程中不同时期、不同构造背景下(包括洋岛、岛弧、弧后等)的火山-沉积产物,其经历了自大洋俯冲至陆陆碰撞前的整个俯冲消减过程,各类岩石因构造混杂最终保存于柴北缘狭长构造带内。
Abstract:The crystallization age of meta–basalts from Tanjianshan Group in Saishitengshan mountain, in the western part of the northern margin of Qaidam tectonic belt, was 444±4 Ma, which has the characteristics of rich Na2O, poor K2O, high TiO2, Nb, and low LILE/HFSE and HREE/HFSE ratios. The chondrite–normalized REE distribution curve shows a slightly right–leaning distribution pattern with relatively enriched LREE and flat HREE. On the primitive mantle–normalized trace element diagrams, Nb and Ta show weak positive anomalies, which is consistent with the geochemical characteristics of Nb–rich basalts. The comprehensive analysis shows that the magma sources of Nb–rich basalt in Saishiteng Mountain maybe the spinel–phase lherzolite, which is the product of the mixture of upwelling asthenosphere mantle and depleted mantle wedge at the edge of the back–arc basin near the island arc side caused by the steep angleroll–back of the subduction oceanic slab. It indicates that the western part of the northern margin of Qaidam basin was under the stage of back–arc extension during the late Ordovician, and the continental collision had not begun. Combined with the existing regional data, it is considered that the Tanjianshan Group in the northern margin of Qaidam Basin were the volcanic–sedimentary products of different periods and different tectonic settings in the process of ocean–continent transition from Late Cambrian to Early–middle Silurian,and had experienced the whole subduction process from oceanic subduction to continental collision. Due to tectonic mélange, various types of rocks were occurred in the northern margin of Qaidam basin.
-
西北干旱内陆河流域水资源短缺,制约了该地区社会经济可持续发展(陈亚宁, 2023),区内降雨稀少,蒸发强烈,地表水资源无法满足用水需求,地下水资源成为维系生活、生态、工业、农业的重要水源(Williams 1999; Rockstrom et al, 2009; Wang et al, 2021; 党学亚等, 2022; 胡顺等, 2022; 李文明等, 2022)。随着区域现代化进程加快和农业发展规模扩大,土地利用变化显著改变了区域水文过程(罗先香等, 2003; 张俊等, 2021; 王璐晨等, 2023; 龙睿等, 2023),尤其是水资源的大规模开发利用不仅改变了地下水时空分布特征(徐梦瑶等, 2012; 罗杰等, 2020; 刘伟朋等, 2021; 束龙仓等, 2022; 冯嘉兴等, 2023),同时局部地下水位大幅下降,引发植被退化和荒漠化加剧等诸多生态环境问题(陈亚宁等, 2004;满苏尔·沙比提等, 2011; 郭宏伟等, 2017; 王浩等,2020)。在西北地区,针对地下水流场的演化机制已有大量研究,如乌苏市地下水位变化主要受地下水开采量和地表水引水量影响(高宇阳等, 2019),鄯善县地下水开采是地下水位变化的主导因素(陈泽等, 2023),黑河流域中游地下水位变化主要由人为因素控制(王贞岩, 2019)。然而,由于缺乏历史时期地下水监测数据等因素,限制了长时间尺度地下水位变化的根本驱动力研究。因此,厘清长时间尺度地下水流场演化与土地利用变化间的响应关系,可为今后区域水土资源协调发展提供因地制宜的科学基础。
新疆阿克苏河流域,是典型的干旱内陆河流域。以20世纪90年代为界,阿克苏河流域土地变化从前期的准平衡状态转变为后期的不平衡状态(周德成等, 2010),尤其是耕地面积开始大幅度增加(满苏尔·沙比提等, 2011; 王涛等, 2017; 王志成等, 2018),灌溉用水需求不断增大。引水渠与水库等水利工程的修建,截留了上游来水量用于灌溉,使得中下游河水入渗补给量减少(沈永平等, 2008; 周德成等, 2010)。同时,由于中下游地区地表水不足以满足灌溉用水需求,90年代后期地下水大量开采(张旭等, 2020; Huang et al, 2022),造成流域内绿洲区地下水位的下降。因此,40年来阿克苏河流域地下水流场经历了20世纪90年代前的近天然状态到90年代后的人类活动强烈影响的历史过程,可作为地下水演化特征及成因分析的理想区域。
笔者选取阿克苏河流域平原土地利用变化较大的绿洲区进行重点剖析,基于最新地下水统测数据和地下水监测数据,并与20世纪80年代近天然状态的地下水位历史数据对比,分析流域地下水流场和埋深时空变化历史过程、特征及成因模式,探讨人类活动影响下的地下水演化机制,为地下水的可持续开发利用与生态保护提供科学依据。
1. 研究区概况
阿克苏河流域位于新疆中部、天山山脉中段南麓,为典型的干旱内陆河流域,地理位置处于E 79°55′~80°45′、N 40°36′~41°29′(图1)。研究区海拔高度为1 040~1 180 m,北部多山区,地势呈NW向SE倾斜,地形平坦开阔,地处欧亚大陆腹地,四季分明,夏季干旱炎热,冬季寒冷,多年平均气温约为10 ℃,昼夜温差大;降水稀少,多年平均降水量为75 mm;蒸发强烈,年蒸发量为1 200~1 500 mm,属典型的暖温带干旱气候。阿克苏河是塔里木盆地北缘典型的大河之一,上游有托什干河和库玛拉克河两大支流,均起源于天山西南部,在阿克苏市西北部交汇形成阿克苏河。阿克苏河为冰川融雪水和降水混合补给型河流(Sun et al, 2016; 余斌等, 2021; 普拉提·苏力坦, 2023),年平均输入塔里木河干流水量为33.66亿m3,占塔里木河干流总水量的70%以上(满苏尔·沙比提等, 2011; 阿曼妮萨·库尔班等,2022)。阿克苏河流经途中被各级水利枢纽引入到各级渠系和农田,通过沿途渗漏及农业灌溉等方式补给地下水。
流域内地形地貌主要为中低山区和堆积平原区,地下水类型以松散层孔隙水为主,含水层类型为第四系Qp3~Qh冲洪积松散堆积层潜水和承压水含水层,岩性以砂砾石、中粗砂、细砂为主(图2)。研究区自北向南由冲洪积倾斜平原区过度到冲积细土平原区,岩性由粗变细,由砂砾石转变为中粗砂、粉细砂和粉土。在冲洪积倾斜平原内,含水层为单一结构的第四系潜水,单井涌水量大于5 000 m3/d,富水性强,地下水循环条件好。到冲积细土平原地层发生变化,在阿克苏市-佳木镇-五团以南一带,含水层变为潜水、承压水双层多层结构,上部孔隙潜水富水性强-贫乏等,单井涌水量由1 000~5 000 m3/d逐渐减少为10~100 m3/d,下部承压水单井涌水量自北西向南东,由1 000~5 000 m3/d逐渐减少为100~1 000 m3/d,地下水循环条件逐渐变差,更新能力变弱,TDS变高,水质变差。
自20世纪90年代起,随着土地开发生产活动逐渐加强,原先以地表水为主,地下水为辅的农田灌溉用水结构已无法满足需要,为了缓解用水矛盾,区内开始大量开发利用地下水资源,据统计,1980~2018年耕地面积增加2006.28 km2,年增长率1.26%,其中1980~1990年耕地总面积基本不变,1990~2018年耕地面积增加2307.71 km2,增大将近1倍。随之地下水开采量从1998年的0.23×108 m3增加到2017年的2.97×108 m3,增大超过10倍。
2. 数据来源与处理方法
本研究所选地下水历史数据来源于1979年中国人民解放军OO九二五部队完成的《阿克苏地区1∶20万区域水文地质普查报告》(潘一心, 1979)及5幅1∶20万综合水文地质图。潜水位信息主要提取自该报告和综合水文地质图中埋深分区以及民井、试坑和洛阳铲孔等水点埋深实测数据,承压水头信息提取自水文地质钻孔水位实测数据,共包括潜水点61组和承压水点38组。同时,根据DEM高程数据,将各水点水位埋深数据换算成水位高程数据。现状水位数据,采用中国地质调查局西安地质调查中心于2022年实测的224组地下水统测数据和国家地下水监测工程监测点23组,包括潜水点140组、承压水点107组,采用相同的DEM高程数据将水位埋深数据换算成水位高程数据,以保证高程基准的一致性。
为研究分析研究区地下水流场演化特征,选择阿克苏河流域平原土地利用变化较大的绿洲区,且历史和现状两期地下水点可同时覆盖的地区作为重点分析区。在重点分析区内,根据1979年和2022年两期水位数据,在Arcgis采用克里金插值法,分别生成两期潜水和承压水水位(头)及埋深栅格数据,并绘制相应水位等值线和埋深分区图。采用Arcgis栅格计算功能将两期地下水位栅格数据进行差值运算,并生成1979~2022年潜水水位和承压水水头变幅图。1979年地下水开采量少,水位基本接近天然状态,2022年水位数据选择开采量较少的高水位期,以减少年内水位变化对历史累计变幅的影响。
1980年和2018年土地利用类型来源于中国科学院地理科学与资源研究所发布的中国多时期土地利用遥感监测数据集(CNLUCC)。该数据是以美国陆地卫星Landsat遥感影像作为主要信息源,通过人工目视解译构建的中国国家尺度多时期土地利用/土地覆盖专题数据库。
3. 研究结果
3.1 地下水流场空间分布特征
3.1.1 1979年地下水流场及埋深特征
由图3a中可看出,区内潜水水位高程1 040~1 170 m,由北到南逐渐降低。水力坡度由北到南逐渐变缓,约为0.57‰~1.12‰。地下水流向整体由北向南,与河流方向基本一致。区内潜水埋深较浅,埋深1~3 m区间面积较大,占比超过70%。红旗坡农场-拜什艾日克镇潜水埋深3~10 m,英艾日克乡-巴格托格拉克乡以南潜水埋深小于1 m。
区内承压水头高程1 030~1 180 m之间,由北到南逐渐降低。水力坡度由北到南逐渐变缓,约为0.42‰~1.44‰。承压水流向由北向南,与潜水流向基本一致。托普鲁克乡-古勒阿瓦提乡以南、英艾日克乡-喀拉塔勒镇以北承压水头比潜水位高,承压水越流补给潜水。喀拉塔勒镇以南承压水头与潜水位基本相同。
3.1.2 2022年地下水流场及埋深特征
由图3b中看出,区内潜水水位高程1 040~1 180 m,地下水位空间分布及水力坡度与1979年基本相同。从潜水埋深分区来看,埋深3~10 m区间面积较大,占比超过60%。红旗坡农场-拜什吐格曼乡潜水埋深由1979年的3~10 m变为2022年的大于10 m,埋深变大;艾西曼湖潜水埋深由1979年的小于1 m变为2022年的1~3 m,埋深变大。
区内承压水头高程1 030~1 180 m,由北到南逐渐降低。水力坡度由北到南逐渐变缓,约为0.41~1.54‰。承压水整体流向为SN向、EW向,与潜水流向不同。研究区内总体承压水头低于潜水位,潜水补给承压水。其中在古勒阿瓦提乡以南-喀拉塔勒镇东一带,承压水头由1979年1 050~1 080 m变为2022年的1 020~1 050 m,承压水流向由1979年的南北向变为2022年的EW向。承压水头在托普鲁克乡–古勒阿瓦提乡以南、英艾日克乡–喀拉塔勒镇以北相比2022年下降,且低于潜水水位,由1979年的承压水越流补给潜水变为2022年的潜水补给承压水。
3.2 1979~2022年地下水流场演化
根据1979~2022年潜水水位变幅图(图4),潜水水位整体以下降为主,潜水埋深降幅1~3 m的面积占比较大,超过40%,主要集中在1979年潜水埋深为1~3 m的地段。潜水降幅由北向南呈逐渐减小趋势,红旗坡农场以北,潜水降幅明显,最大降幅达到38.18 m;降幅超过10 m的面积为259.31 km2;降幅3~10 m的面积为1 382.96 km2;降幅小于1 m的面积为1 477.95 km2;此外艾西曼湖及阿克苏河下游潜水水位上升,增幅面积为265.13 km2。
根据1979~2022年承压水水头变幅图(图5),承压水水头整体下降,以研究区中部英艾日克乡-喀拉塔勒镇为界,以北地区降幅大于3 m,最大超过20 m,以南地区降幅小于3 m,且由北向南逐渐减小。其中在六团十连一带降幅明显,最大降幅达到27.2 m;降幅超过20 m的面积为269.40 km2;降幅10~20 m的面积为490.40 km2;降幅3~10 m的面积为1 456.23 km2;降幅小于3 m的面积为2 513.62 km2。
地下水开采量的增加是地下水位下降的主要原因。据统计地下水开采量由1983年92万m3/a增加到2018年2.97亿m3/a,累计开采量约101亿m3/a。根据上述水位变幅计算,1979~2022年潜水累计储存量减少65.89亿m3/a,承压水累计储存量减少16.10亿m3/a,地下水总储存量累计减少81.99亿m3/a(根据《阿克苏地区1:20万区域水文地质普查报告》(潘一心, 1979),给水度取0.0095,弹性释水系数取0.0021),占累计开采量的81%。
4. 讨论
4.1 土地利用变化与地下水流场演化关系
对比1980年(图6a)及2018年(图6b)遥感解译结果,耕地面积由1980年的2 408.34 km2增加到2018年的3 340.76 km2,增加面积为932.42 km2,增幅为38.72%;草(林)地面积由1980年的1 806.56 km2减少到2018年的859.37 km2,减少面积为947.18 km2,降幅52.43%。从不同土地利用类型面积变化可知,1979~2022年期间,研究区草(林)地大量转化为耕地。
耕地面积增加对地下水位变化有重要影响。随着耕地面积增加,研究区潜水和承压水均有不同程度下降。以研究区中部英艾日克乡-喀拉塔勒镇一线为界,北部地区潜水水位和承压水水头降幅均大于南部地区。
北部地区由于耕地面积大幅增加,灌溉用水需求相应大幅增大,因此地下水被大量开采用于农业灌溉,引起地下水位明显下降。尤其是承压水主要靠侧向径流补给,补给条件较差,承压水头下降更为明显,并形成局部下降漏斗,流向发生反转。
由于南部地下水水质较差,农业灌溉以引用地表水灌溉为主,地下水开采强度相对较低,因此地下水下降不如北部地区明显。在艾西曼湖一带潜水位也出现下降,但该区以荒地为主,无耕地面积变化,潜水位下降与农业灌溉无关,主要是由于喀什噶尔河断流,地表水补给量少,引起潜水位下降,并造成湖泊面积和草(林)地面积缩小(图6)。
4.2 地下水流场变化成因模式分析
研究区属于干旱内陆盆地平原区,降水稀少,地下水主要靠地表水补给。土地利用变化通过改变用水结构和地表水空间分布格局,使得地下水补排条件发生剧烈变化,从而引起地下水流场演化和地下水动态类型的改变。由于潜水和承压水在补给排泄条件、水质以及地下水开发利用方式等方面的差别,土地利用变化对潜水和承压水水位的影响也不尽相同。
研究区潜水补给项主要为河流、渠系和田间灌溉入渗补给3项,排泄项主要为蒸发蒸腾、河道和人为开采排泄3项。从补给项变化看,研究区1979~2022年耕地面积明显增大,大量农业引水灌溉,使得渠系和田间灌溉入渗补给大量增加而河流入渗补给减少。从排泄项变化看,研究区潜水位埋深由1979年的1~3 m为主,变为2022年的3~10 m为主,地下水位下降,潜水蒸发蒸腾排泄大幅减少,同时研究区北部潜水水质好富水性强,潜水人工开采用于灌溉,研究区南部地下水水质较差,开采较少,主要以地表水灌溉为主。但因潜水位较浅造成土地盐渍化,通过沟渠排水排盐人工调控降低潜水位(梁籍等,2003)。根据研究区南部潜水位动态监测孔A1(位置见图1),2月中旬春灌期、6~9月夏季农作物灌溉期和11月初冬灌期,渠系和田间灌溉入渗补给量大量增加,造成地下水位上升,地下水动态类型表现为灌溉型,年内变幅1.52 m,地下水位稳定在5 m左右(图7a),潜水蒸发蒸腾作用减弱,土壤表层积盐减轻,盐渍化土地改良。因此,绿洲区潜水水位下降并未引起明显生态问题,仅在艾希曼湖一带出现草(林)地退化。
承压水补给项主要为侧向径流和潜水越流补给两项,排泄项主要为侧向径流和人为开采排泄两项。从补给项变化看,该地区北部柯克亚河和台兰河的两条河流渗漏补给潜水,然后潜水通过侧向径流补给承压水,由于含水层渗透性差,侧向径流补给能力差、承压水更新能力弱。受大量引水灌溉影响,地表水被截流或直接引走,导致潜水渗漏补给减少,继而引起承压水侧向径流补给减少。从排泄项变化看,随着耕地面积增大,地下水开采量增加,引起承压水排泄项的变化,排泄方式由侧向径流排泄转变为人工排泄为主。人类活动开采强度远远大于侧向径流补给,导致承压水头明显下降,尤其是研究区北部阿克苏河东侧六团十连一带承压水水头下降最明显。根据研究区北部承压水动态监测孔A2(图7b),6~8月为开采地下水灌溉的高峰期,承压水头处于低水位期,7月开采量最大导致水头降到全年最低点;9月随着灌溉期结束,开采量减少,水位迅速回升,地下水人为开采导致水位大幅度下降,地下水动态类型表现为开采型,年内变幅达8.28 m。研究区南部承压水水质较差,人工开采排泄较北部少,补排条件变化不大,水头降幅也较北部小。
综上所述,研究区地下水位变化的根本驱动力是土地利用变化,土地利用变化引起的地下水补排条件变化是地下水水位变化的直接原因。潜水水位下降,使得盐渍化土地改良是土地利用变化的正面效应;承压水因补给条件差表现为过度开采,引起区域地下水下降并形成地下水漏斗,是土地利用变化的负面效应。
5. 结论
(1)40年来,受人类活动影响,阿克苏河流域地下水动力场发生改变,形成地下水位下降区。潜水降幅由北向南呈逐渐减小趋势,红旗坡农场以北,降幅明显,最大降幅达到38.18 m;承压水降幅以研究区中部英艾日克乡-喀拉塔勒镇为界,以北地区降幅大于3 m,最大超过20 m,以南地区降幅小于3 m,且由北向南逐渐减小。
(2)土地利用变化是地下水位变化的根本驱动力,随着耕地面积的快速扩张,潜水和承压水均有不同程度下降。
以研究区中部英艾日克乡—喀拉塔勒镇一线为界,北部地区潜水水位和承压水水头降幅均大于南部地区。北部地区由于耕地面积大幅增加,灌溉用水需求相应大幅增大,因此地下水被大量开采用于农业灌溉,引起地下水位明显下降。南部地下水水质较差,农业灌溉以引用地表水灌溉为主,地下水开采强度相对较低,因此地下水下降不如北部地区明显。
(3)土地利用变化通过改变用水结构和地表水空间分布格局,使得地下水补排条件发生剧烈变化,从而引起地下水流场演化和地下水动态类型的改变。潜水的渠系和田间灌溉入渗补给量增加,但河流入渗补给减少,同时人工开采增加,造成潜水位下降。承压水侧向径流补给减少,同时地下水开采量增加,造成承压水头明显下降。人工绿洲范围内地下水位下降,一方面对土壤盐渍化减轻有正面影响,但如果未来地下水位持续下降,将影响地下水资源的可持续利用。同时,地下水位下降可能引起人工绿洲外围区沙漠化、植被退化等问题。今后研究需加强人工绿洲与外围区地下水位动态的监测与预测工作,进一步深化土地利用变化条件下流域水平衡及其生态效应的定量研究。
-
图 3 赛什腾山变玄武岩Zr/TiO2–Nb/Y分类图(a)(底图据Irvine T N,1971)、AFM图解(b)(底图据Winchester J A,1971)及TFeO–TFeO/MgO图解(c)(底图据Miyashiro A,1974)
Figure 3. (a) TAS diagram, (b) AFM diagram and (c) TFeO vs. TFeO / MgO diagram for meta–basalts of Saishiteng mountain
图 5 赛什腾山变玄武岩MgO–Nb/La图解(a)和 Nb–Nb/U图解(b)(底图据Kepezhinskas et al.,1997)
球粒陨石标准化值及原始地幔标准化值据Sun et al.,1989
Figure 5. (a) MgO vs. Nb/La diagram and (b) Nb vs. Nb/U diagram for meta–basalts of Saishiteng mountain
图 7 赛什腾山富铌玄武岩(Tb/Yb)PM –(La/Sm)PM图解(a)(底图据Wang et al.,2002)和Ce/Y–Zr/Nb图解(b)(底图据Deniel,1998)
Figure 7. (a)(Tb/Yb)PM vs La/Sm)PM diagrams and (b) Ce/Y vs Zr/Nb diagrams for meta–basalts of Saishiteng mountain
图 8 赛什腾山富铌玄武岩Zr–Ti图解(a)和Th/Yb–Ta/Yb图解(a)(底图据Pearce J A,1982)
Figure 8. (a) Zr vs Ti diagrams and (b) Th/Yb vs Ta/Yb diagrams for meta–basalts of Saishiteng mountain
图 9 赛什腾山富铌玄武岩成因模式图(据周艳龙,2021修改)
Figure 9. The genetic model map for meta–basalts of Saishiteng mountain
表 1 赛什腾山变玄武岩主量元素(%)、微量元素(10−6)及稀土元素(10−6)含量分析结果
Table 1 Major element (%), trace element (10−6) and REE element (10−6) compositions of meta–basalts of Saishiteng mountain
样号 TK02-1 TK02-2 TK02-3 TK02-4 TK02-5 TK02-6 SiO2 50.08 48.90 49.38 49.48 49.43 52.05 Al2O3 15.46 15.55 15.45 15.54 15.56 14.98 Fe2O3 4.88 5.23 5.41 4.81 4.40 5.30 FeO 6.29 6.44 6.11 6.34 6.74 5.40 CaO 11.16 11.78 11.47 11.17 10.52 11.15 MgO 5.58 5.87 5.62 5.81 6.27 4.89 K2O 0.46 0.43 0.48 0.47 0.52 0.39 Na2O 2.60 2.44 2.56 2.73 3.02 2.43 TiO2 1.45 1.44 1.47 1.48 1.49 1.39 P2O5 0.14 0.14 0.15 0.16 0.14 0.13 MnO 0.140 0.140 0.140 0.140 0.140 0.130 LOI 1.76 1.64 1.76 1.87 1.77 1.76 TOTAL 100 100 100 100 100 100 TFeO 10.68 11.15 10.98 10.67 10.70 10.17 m/f 0.92 0.93 0.90 0.96 1.03 0.85 La 11.9 11.7 11.9 11.4 11.0 11.2 Ce 25.1 24.3 24.0 23.6 24.0 24.2 Pr 3.40 3.29 3.22 3.18 3.35 3.16 Nd 14.6 14.0 14.2 13.7 14.3 13.7 Sm 3.41 3.33 3.30 3.21 3.31 3.19 Eu 1.19 1.16 1.16 1.17 1.14 1.16 Gd 3.55 3.59 3.62 3.43 3.51 3.41 Tb 0.62 0.61 0.60 0.59 0.61 0.58 Dy 3.50 3.51 3.53 3.40 3.50 3.30 Ho 0.69 0.70 0.69 0.67 0.67 0.64 Er 1.87 1.87 1.93 1.84 1.82 1.74 Tm 0.28 0.27 0.27 0.27 0.27 0.25 Yb 1.81 1.71 1.71 1.77 1.76 1.70 Lu 0.25 0.25 0.24 0.24 0.25 0.23 Ba 111.0 80.4 82.0 83.8 98.4 79.5 Rb 16.1 8.7 9.1 9.0 10.5 8.3 Sr 286 273 267 245 256 284 Co 42.6 42.8 38.6 38.3 43.8 36.2 V 279 282 273 275 265 267 Cr 54.2 53.6 60.0 50.1 49.0 47.6 Ni 53.2 51.5 50.6 49.4 51.8 52.0 Nb 13.8 13.5 13.3 13.6 13.5 13.7 表 2 赛什腾山富铌玄武岩锆石LA–ICP–MS U–Pb同位素测年结果
Table 2 LA–ICP–MS zircon U–Pb isotopic analysis for meta–basalts of Saishiteng mountain
样点
编号207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 232Th 238U Th/U 谐和
度比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 1 0.049 87 0.001 21 0.286 16 0.006 52 0.0416 2 0.000 43 0.014 98 0.001 08 189 34 256 5 263 3 301 22 247 322 0.77 0.97 2 0.065 81 0.000 83 1.218 75 0.013 34 0.134 33 0.001 16 0.046 71 0.002 9 800 11 809 6 813 7 923 56 230 460 0.50 1.00 3 0.055 39 0.001 94 0.543 69 0.018 05 0.071 2 0.000 97 0.024 02 0.002 23 428 50 441 12 443 6 480 44 118 170 0.69 1.00 4 0.067 82 0.002 8 1.351 75 0.053 45 0.144 58 0.002 5 0.042 26 0.004 86 863 53 868 23 871 14 837 94 38 46 0.83 1.00 5 0.056 47 0.001 0.555 8 0.009 0.071 4 0.000 68 0.025 21 0.001 59 471 20 449 6 445 4 503 31 363 381 0.95 1.01 6 0.082 72 0.001 08 1.804 99 0.020 67 0.158 28 0.001 41 0.088 43 0.005 51 1263 10 1047 7 947 8 1713 102 137 368 0.37 1.11 7 0.096 35 0.003 98 0.553 0.020 99 0.041 63 0.000 78 0.021 42 0.002 5 1555 43 447 14 263 5 428 49 156 278 0.56 1.70 8 0.068 66 0.001 61 1.274 27 0.027 79 0.134 62 0.001 58 0.049 34 0.003 87 889 26 834 12 814 9 973 75 300 490 0.61 1.02 9 0.134 88 0.001 67 7.450 97 0.081 07 0.400 69 0.003 78 0.129 81 0.008 08 2162 8 2167 10 2172 17 2467 145 99 115 0.86 1.00 10 0.054 36 0.001 08 0.532 7 0.009 77 0.071 08 0.000 7 0.025 44 0.001 79 386 24 434 6 443 4 508 35 335 589 0.57 0.98 11 0.050 99 0.002 27 0.292 27 0.012 53 0.041 58 0.000 57 0.015 64 0.001 22 240 73 260 10 263 4 314 24 148 118 1.26 0.99 12 0.055 93 0.003 5 0.545 23 0.032 69 0.070 72 0.001 56 0.029 17 0.004 73 450 94 442 21 440 9 581 93 46 106 0.43 1.00 13 0.056 2 0.002 53 0.547 82 0.023 48 0.070 71 0.001 2 0.032 12 0.004 48 460 65 444 15 440 7 639 88 55 184 0.30 1.01 14 0.052 4 0.001 45 0.302 3 0.007 89 0.041 85 0.000 48 0.014 83 0.001 02 303 39 268 6 264 3 298 20 576 346 1.67 1.02 15 0.111 7 0.001 3 5.031 97 0.049 94 0.326 75 0.002 86 0.106 64 0.007 06 1827 8 1825 8 1823 14 2048 129 127 332 0.38 1.00 16 0.078 27 0.001 18 1.899 1 0.025 7 0.175 99 0.001 66 0.022 9 0.002 42 1154 13 1081 9 1045 9 458 48 258 1275 0.20 1.10 17 0.072 75 0.001 23 0.417 78 0.006 36 0.041 65 0.000 39 0.015 04 0.000 99 1007 16 354 5 263 2 302 20 1090 764 1.43 1.35 18 0.055 4 0.000 88 0.545 81 0.007 78 0.071 47 0.000 64 0.022 65 0.001 53 428 17 442 5 445 4 453 30 474 575 0.83 0.99 19 0.109 15 0.001 32 4.795 4 0.049 75 0.318 68 0.002 82 0.092 01 0.006 43 1785 8 1784 9 1783 14 1779 119 109 194 0.56 1.00 20 0.160 59 0.002 63 10.148 06 0.156 85 0.458 37 0.005 68 0.127 82 0.010 57 2462 12 2448 14 2432 25 2431 189 136 196 0.69 1.01 21 0.112 36 0.003 87 1.106 64 0.034 75 0.071 44 0.001 23 0.065 63 0.007 55 1838 33 757 17 445 7 1285 143 97 378 0.26 1.70 22 0.085 54 0.001 5 2.683 72 0.043 07 0.227 57 0.002 38 0.059 39 0.004 7 1328 16 1324 12 1322 12 1166 90 110 155 0.71 1.00 23 0.093 91 0.003 24 0.538 43 0.017 07 0.041 59 0.000 65 0.025 26 0.002 77 1506 37 437 11 263 4 504 55 143 375 0.38 1.66 24 0.090 44 0.002 08 0.518 9 0.010 84 0.041 62 0.000 48 0.019 65 0.001 7 1435 23 424 7 263 3 393 34 251 493 0.51 1.61 25 0.061 94 0.001 23 0.929 19 0.017 06 0.108 81 0.001 08 0.030 32 0.003 31 672 23 667 9 666 6 604 65 22 138 0.16 1.00 26 0.068 72 0.000 92 0.673 98 0.007 76 0.071 14 0.000 61 0.025 81 0.001 98 890 11 523 5 443 4 515 39 333 951 0.35 1.18 27 0.154 24 0.004 01 0.884 75 0.020 23 0.041 61 0.000 6 0.013 85 0.001 13 2393 20 644 11 263 4 278 23 407 160 2.54 2.45 28 0.118 81 0.001 84 5.639 65 0.079 76 0.344 33 0.003 66 0.112 31 0.013 86 1938 12 1922 12 1907 18 2151 252 28 304 0.09 1.02 29 0.059 62 0.001 85 0.766 41 0.022 65 0.093 25 0.001 16 0.053 93 0.017 41 590 42 578 13 575 7 1062 334 4 137 0.03 1.01 30 0.070 69 0.001 31 1.356 53 0.022 97 0.139 19 0.001 41 0.039 11 0.003 85 948 19 870 10 840 8 775 75 168 680 0.25 1.04 -
陈丹玲, 孙勇, 刘良. 柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J]. 地学前缘, 2007. 14(01): 108-116. CHEN Danling, SUN Yong, LIU Liang. The metamorphic ages of the country rock of the Yukahe eclogites in the North Qaidam and its geological significance[J]. Earth Science Frontiesers(China University of Geosciences, Beijing: Peking University) , 2007, 14(1): 108- 116.
高晓峰, 校培喜, 贾群子. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J]. 地质学报, 2011, 85(09): 1452-1463 GAO Xiaofeng, XIAO Peixi, JIA Qunzi. Redetermination of the Tanjianshan Group: Geochronological and geochemical evidence of Basalts from the margin of the Qaidam Basin[J]. Acta Geologica Sinica, 2011, 85(09): 1452-1463.
辜平阳, 计文化, 陈锐明, 等. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示[J]. 地球科学, 2020, 45(09): 3268-3281 GU Pingyang, JI Wenhua, CHEN Ruiming, et al. Petrogenesisi of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution[J]. Earth Science, 2020, 45(9): 3268-3281.
郭安林, 张国伟, 强娟, 等. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报, 2009.25(1): 1-12 GUO Anlin, ZHANG Guowei, QIANG Juan, et al. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet plateau[J]. Acta Petrologica Sinica, 2009, 25(1): 1-12.
韩吟文, 马振东, 张宏飞等. 地球化学[M]. 北京: 地质出版社, 2004 HAN Yinwen, MA Zhendong, ZHANG Hongfei, et al. Geochemistry[M]. Beijing: Geological Publishing House, 2004.
江小强, 肖渊甫, 李建兵, 等. 柴北缘阿木尼克山滩间山群火山岩地球化学特征及地质意义[J]. 地质找矿论丛, 2020, 35(01): 73-84 doi: 10.6053/j.issn.1001-1412.2020.01.009 JIANG Xiaoqiang, XIAO Yuanfu, LI Jianbing, et al. Geochemical characteristics and geological significance of Volcanic rocks in the Tanjianshan Formation of the Amunik mountains in the northern margin of the Qaidam Basin[J]. Contributions to Geology and Mineral Resources Research, 2020, 35(1): 73-84. doi: 10.6053/j.issn.1001-1412.2020.01.009
赖绍聪, 邓晋福, 赵海玲. 柴达木北缘古生代蛇绿岩及其构造意义[J]. 现代地质, 1996, 10(01): 19-22+24-29. LAI SC, DENG JF and ZHAO HL. Paleozoic ophiolites and its tectonic significance on north margin of Qaidam basin[J]. Geoscience, 1996, 10(1): 18-28.
蓝江波, 徐义刚, 杨启军, 等. 滇西高黎贡带~40Ma OIB型基性岩浆活动: 消减特提斯洋片与印度板块断离的产物?[J]. 岩石学报, 2007(06): 1334-1346 doi: 10.3969/j.issn.1000-0569.2007.06.010 LAN JB, XU YG, YANG QJ, et al. ~40Ma OIB-type mafic magmatism in the Gaoligong belt: results of break-off between subducting Tethyan slab and Indian plate? [J]. Acta Petrologica Sinica, 2007, 23(6): 1334-1346. doi: 10.3969/j.issn.1000-0569.2007.06.010
李峰, 吴志亮, 李保珠. 柴达木北缘滩间山群时代及其地质意义[J]. 大地构造与成矿学, 2007, 31(02): 226-233 doi: 10.3969/j.issn.1001-1552.2007.02.012 LI Feng, WU Zhiliang, LI Baozhu. Recognition on Formation age of the Tanjianshan group on the Northern Margin of the Qaidam Basin and its Geological significance[J]. Geotectonica et Metallogenia, 2007, 31(2): 226-233. doi: 10.3969/j.issn.1001-1552.2007.02.012
李峰, 吴志亮, 李保珠, 等. 柴达木盆地北缘滩间山群新厘定[J]. 西北地质, 2006, 39(3): 83-90 doi: 10.3969/j.issn.1009-6248.2006.03.012 LI Feng, WU Zhiliang, LI Baozhu, et al. Revision of the Tanjianshan Group on the Northern Margin of the Qaidam Basin[J]. Northwestern Geology, 2006, 39(3): 83-90. doi: 10.3969/j.issn.1009-6248.2006.03.012
李怀坤, 陆松年, 赵风清, 等. 柴达木北缘新元古代重大地质事件年代格架[J]. 现代地质, 1999, 02: 3-5 LI Huaikun, LU Songnian, ZHAO Fengqing, et al. Geochronological Framework of the Neoproterozoic Major Geological Events in the Northern Margin of the Qaidam Basin[J]. Geoscience, 1999, (2): 3-5.
李治华, 李碧乐, 王斌, 等. 柴北缘苦水泉金矿英云闪长岩和细粒闪长岩年代学、地球化学和Hf同位素及地质意义[J]. 岩石学报, 2021, 37(06): 1653-1673 doi: 10.18654/1000-0569/2021.06.02 LI ZH, LI BL, WANG B, et al. Geochronology, geochemistry, Hf isotope, and their geological significance of the tonalite and fine-grained diorite from Kushuiquan gold deposit, North Qaidam[J]. Acta Petrologica Sinica, 2021, 37(6): 1653-1673. doi: 10.18654/1000-0569/2021.06.02
陆松年, 王惠初, 李怀坤, 等. 柴达木盆地北缘“达肯大坂群”的再厘定[J]. 地质通报, 2002, 21(1): 19-23 doi: 10.3969/j.issn.1671-2552.2002.01.004 LU Songnian, WANG Huichu, LI Huaikun, et al. Redefinition of the“Dakendaban Group”on the Northern margin of the Qaidam basin[J]. Geological bulletin of China, 2002, 21(1): 19-23. doi: 10.3969/j.issn.1671-2552.2002.01.004
路增龙, 张建新, 毛小红, 等. 柴北缘东段奥陶纪埃达克岩-富Nb玄武岩: 对大陆深俯冲之前大洋俯冲及地壳增生的启示[J]. 岩石学报, 2020, 36(10): 2995-3017 doi: 10.18654/1000-0569/2020.10.05 LU Zenglong, ZHANG Jianxin, MAO Xiaohong, et al. Ordovician adakite-Nb-enriched basalt suite in the eastern North Qaidam Moutains: Implications for oceanic subduction and crustal accretion prior to deep continental subduction[J]. Acta Petrologica Sinica, 2020, 36(10): 2995-3017. doi: 10.18654/1000-0569/2020.10.05
孟繁聪, 张建新, 杨经绥, 等. 柴北缘锡铁山榴辉岩的地球化学特征[J]. 岩石学报, 2003.19(03): 435-442 doi: 10.3969/j.issn.1000-0569.2003.03.007 MENG FC, ZHANG JX, YANG JS, et al. Geochemical Characteristics of eclogites in Xitieshan area, North Qaidam of northwestern China[J]. Acta Geologica Sinica, 2003.19(3): 435-442. doi: 10.3969/j.issn.1000-0569.2003.03.007
潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707 doi: 10.3969/j.issn.1671-2552.2002.11.002 PAN Guitang, LI Xingzhen, WANG Liquan, et al. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological bulletin of China, 2002, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002
青海省地质矿产局. 青海省区域地质志. 中华人民共和国地质矿产部地质专报[M]. 北京: 地质出版社, 1991 Qinghai Bureau of Geology and Mineral Resources. Regional Geology of Qinghai Province. Geological Memoirs of Ministry of Geology and Mineral Resources of People’s Republic of China [M]. Beijing: Geological Publishing House, 1991.
邱士东, 辜平阳, 庞新愉, 等. 青海冷湖北片麻状石英闪长岩的MC-LA-ICP-MS锆石U-Pb年龄、地球化学特征及地质意义[J]. 地质论评, 2015, 61(04): 948-960 QIU Shidong, GU Pingyang, PANG Xinyu, et al. Zircon MC-LA-ICP-MS U-Pb dating, Geochemistry and Geological Significance of Gneissic Quartz Diorite in Northern Lenghu, Qinghai[J]. Geological Review, 2015, 61(4): 948-960.
史仁灯, 杨经绥, 吴才来. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J]. 岩石矿物学杂志, 2003(03): 229-236 doi: 10.3969/j.issn.1000-6524.2003.03.004 SHI Rendeng, YANG Jingsui, WU Cailai. The discovery of adakitic dacite in Early Palaeozoic island arc volcanic rocks on the northern margin of Qaidam basin and its geological significance[J]. Acta Petrologica et Mineralogica, 2003, 22(3): 229-236. doi: 10.3969/j.issn.1000-6524.2003.03.004
史仁灯, 杨经绥, 吴才来, 等. 柴达木北缘超高压变质带中的岛弧火山岩[J]. 地质学报, 2004, 78(1): 52-64 doi: 10.3321/j.issn:0001-5717.2004.01.007 SHI Rendeng, YANG Jingsui, WU Cailai, et al. Island arc volcanic rocks in the North Qaidam UHP metamorphic belt[J]. Acta Geologica Sinica, 2004, 78(1): 52-64. doi: 10.3321/j.issn:0001-5717.2004.01.007
宋述光, 杨经绥. 柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体: 超高压变质作用的证据[J]. 地质学报, 2001, (02): 180-185 doi: 10.3321/j.issn:0001-5717.2001.02.006 SONG Shuguang, YANg Jingsui. Sanidine + Quartz Inclusions in Dulan Eclogites: Evidence for UHP Metamorphism on the North Margin of the Qaidam Basin, N W China[J]. Acta Geologica Sinica, 2001, (2): 180-185. doi: 10.3321/j.issn:0001-5717.2001.02.006
宋述光, 王梦珏, 王潮, 等. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学: 地球科学, 2015, 45(07): 916-940 SONG Shuguang, WANG Mengjue, WANG Chao. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: Aperspective[J]. Science China: Earth Science, 2015, 45(7): 916-940.
孙华山, 赵立军, 吴冠斌, 等. 锡铁山块状硫化物铅锌矿床成矿构造环境及矿区南部找矿潜力: 来自滩间山群火山岩岩石化学、地球化学证据[J]. 岩石学报, 2012, 28(02): 652-664 SUN Huashan, ZHAO Lijun, WU Guanbin, et al. Metallogenic tectonic setting and ore-finding potential of Xitieshan massive sulfide lead-zinc deposit: Evidence from lithochemistry and geochemistry of ore-hosted volcanic strata, Tanjianshan Group[J]. Acta Petrologica Sinica, 2012, 28(02): 652-664.
王惠初, 陆松年, 莫宣学, 等. 柴达木盆地北缘早古生代碰撞造山系统[J]. 地质通报, 2005, 24(7): 603-612 doi: 10.3969/j.issn.1671-2552.2005.07.003 WANG Huichu, LU Songnian, MO Xuanxue, et al. An Early Paleozoic collisional orogen on the northern margin of the Qaidam basin, northwestern China[J]. Geological Bulletin of China, 2005, 24(7): 603-612. doi: 10.3969/j.issn.1671-2552.2005.07.003
王惠初, 陆松年, 袁桂邦, 等. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报, 2003, 22(07): 487-493 doi: 10.3969/j.issn.1671-2552.2003.07.005 WANG Huichu, LU Songnian, YUAN Guibang, et al. Tectonic setting and age of the “Tanjianshan Group” on the northern margin of the Qaidam basin, Northwestern China[J]. Geological Bulletin of China, 2003, 22(7): 487-493. doi: 10.3969/j.issn.1671-2552.2003.07.005
汪劲草, 韦龙云, 郝森, 等. 柴北缘滩间山群构造对南祁连加里东造山及超高压变质岩折返的启示[J]. 桂林理工大学学报, 2013, 33(04): 575-586 doi: 10.3969/j.issn.1674-9057.2013.04.001 WANG Jincao, WEI Longyun, HAO Sen, et al. Structure Implication in Tanjianshan group on Southern Qilian Caledonian Orogeny and Exhumation of UHP Metamorphic Rocks in Northern Qaidam[J]. Journal of Guilin University of Technology, 2013, 33(4): 575-586. doi: 10.3969/j.issn.1674-9057.2013.04.001
王侃. 柴北缘布赫特山滩间山群地质特征及构造环境分析[D]. 西安:长安大学, 2014 WANG Kan. Geological Characteristics and Tectonic Environment Analysis of the Tanjianshan group in the Buhete mountain in the Northern Margin of the Qaidam Basin[D]. Xi’an: Chang’an University, 2014.
王立轩, 何世平, 庄玉军, 等. 青海小赛什腾山地区达肯大坂岩群中新解体出一套变火山岩系[J]. 西北地质, 2022, 55(1): 1-18 doi: 10.19751/j.cnki.61-1149/p.2022.01.001 WANG Lixuan, HE Shiping, ZHUANG Yujun, et al. Discussion on Newly Disintegrated Metavolcanic Rock Series from the Dakendaban Group in Xiaosaishiteng Mountain Area, Qinghai Province[J]. Northwestern Geology, 2022, 55(1): 1-18. doi: 10.19751/j.cnki.61-1149/p.2022.01.001
吴才来, 郜源红, 吴锁平, 等. 柴北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报, 2007, 23(8): 1861—1875 doi: 10.3969/j.issn.1000-0569.2007.08.008 WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam basin, NW China[J]. Acta Petrologica Sinica, 2007, 23(8): 1861-1875. doi: 10.3969/j.issn.1000-0569.2007.08.008
吴才来, 郜源红, 吴锁平, 等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学(D辑: 地球科学), 2008, 23(8): 930-949 WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating and geochemical characteristics of the western Qaidam granites[J]. Science in China Series D: Earth Sciences, 2008, 23(8): 930-949.
吴才来, 郜源红, 李兆丽, 等. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架[J].中国科学:地球科学, 2014,44(10):2142-2165. WU Cailai, GAO Yuanhong, LI Zhaoli, et al. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China[J]. Science China: Earth Sciences, 2014, 44(10):2142-2165.
邬介人, 任秉琛, 张苺, 等. 青海锡铁山块状硫化物矿床的类型及地质特征[J]. 西北地质科学, 1987, 20(06): 1-81+83-88 WU J R, REN B C, ZHANG M, et al. The genetic type and geological characteristics of the Xitieshan massive Sulphide deposit, Qinghai[J]. Northwest Geoscience, 1987, 20(6): 1-81+83-88.
夏林圻, 李向民, 余吉远, 等. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 2016, 43(4): 1087-1138 XIA Linqi, LI Xiangmin, YU Jiyuan, et al. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 2016, 43(4): 1087-1138.
解超明, 段梦龙, 于云鹏, 等. 西藏松多地区早侏罗世变质辉长岩的成因及其构造意义[J]. 岩石学报, 2019, 35(10): 3065-3082 doi: 10.18654/1000-0569/2019.10.07 XIE Chaoming, DUAN Menglong, YU Yunpeng, et al. Genesisi and geological significance of Early Jurassic metamorphic gabbro in the Sumdo area. Tibet[J]. Acta Petrologica Sinica, 2019, 35(10): 3065-3082. doi: 10.18654/1000-0569/2019.10.07
辛后田, 王惠初, 周世军. 柴北缘的大地构造演化及其地质事件群[J]. 地质调查与研究, 2006, 29(04): 311-320 doi: 10.3969/j.issn.1672-4135.2006.04.010 XIN Houtian, WANG Huichu, ZHOU Shijun. Geological events and tectonic evolution of the north margin of the Qaidam Basin[J]. Geological Survey and Research, 2006, 29(04): 311-320. doi: 10.3969/j.issn.1672-4135.2006.04.010
杨经绥, 许志琴, 李海兵, 等. 我国西部柴北缘地区发现榴辉岩[J]. 科学通报, 1998. (14): 1544-1549. YANG Jingsui, XU Zhiqin, LI Haibing, et al. Eclogite is found in the northern margin of China[J]. Science Bulletin, 1998, (14): 1554-1549.
杨士杰. 柴北缘绿梁山复式花岗岩体及其中片麻岩、榴闪岩包裹体的成因与形成机制[D]. 西安: 西北大学, 2016 YANG Shijie. The Genesisi and Formation Mechanism of Lvliangshan Composite Granite Body and Enclosed Gneiss and Garnet Amphibolite Lenses[D]. Xi’an: Northwest University, 2016.
于胜尧. 都兰地区高压麻粒岩单元的构造热历史: 对柴北缘古生代碰撞造山作用的启示[D]. 北京: 中国地质科学院, 2011 YU Shengyao. Tectonothermal History of High Pressure Granulite Unit in Dulan Area, the North Qaidam Mountains: Implications for Paleozoic collisional Orogeny[D]. Beijing: Chinese Academy of Geological Sciences, 2011.
张贵宾, 张立飞, 宋述光. 柴北缘超高压变质带: 从大洋到大陆的深俯冲过程[J]. 高校地质学报, 2012, 18(01): 28-40 doi: 10.3969/j.issn.1006-7493.2012.01.003 ZHANG Guibin, ZHANG Lifei, SONG Shuguang. An Overview of the Tectonic Evolution of North Qaidam UHPM Belt: from Oceanic Subduction to Continental Collision[J]. Geological Journal of China University, 2012, 18(1): 28-40. doi: 10.3969/j.issn.1006-7493.2012.01.003
张海祥, 张伯友, 牛贺才. 富铌玄武岩: 板片熔体交代的地幔楔橄榄岩部分熔融产物[J]. 地球科学进展, 2005, 20(11): 1234-1242 doi: 10.3321/j.issn:1001-8166.2005.11.010 ZHANG Haixiang, ZHANG Boyou, NIU Hecai. Nb-Enriched Basalt: The Product of the Partial Melting of the Slab-derived melt metasomatized mantle peridotite[J]. Advances in Earth Science, 2005, 20(11): 1234-1242. doi: 10.3321/j.issn:1001-8166.2005.11.010
张孝攀, 王权锋, 惠洁, 等. 柴北缘滩间山群火山岩岩石化学特征及构造环境[J]. 矿物岩石, 2015, 35(01): 18-26 doi: 10.19719/j.cnki.1001-6872.2015.01.004 ZHANG Xiaopan, WANG Quanfeng, HUI Jie, et al. Chemical characteristics of volcanic rocks from the Tanjianshan Group on the northern margin of the Qaidam basin and its tectonic environment[J]. Journal of Mineralogy and Petrology, 2015, 35(1): 18-26. doi: 10.19719/j.cnki.1001-6872.2015.01.004
张永, 徐兴旺. 新疆青河县科克辉长岩体: 氧化地幔楔部分熔融岩浆的记录[J]. 地质学报, 2019, 93(5): 1037-1054. DOI: 10.19762/j.cnki.dizhixuebao.2019046. ZHANG Yong, XU Xingwang. The Keke gabbro in Qinghe County of Xinjiang:records from partial melting magma of the oxidized mantle wedge[J]. Acta Geologica Sinica, 2019, 93(5):1037-1054. doi: 10.19762/j.cnki.dizhixuebao.2019046
赵风清, 郭进京, 李怀坤. 青海锡铁山地区滩间山群的地质特征及同位素年代学[J]. 地质通报, 2003, 22(1): 28-31 doi: 10.3969/j.issn.1671-2552.2003.01.005 ZHAO Fengqing, GUO Jinjing, LI Huaikun. Geological characteristics and isotopic age of Tanjianshan Group along northern margin of Qaidam basin[J]. Geological Bulletin of China, 2003, 22(1): 28-31. doi: 10.3969/j.issn.1671-2552.2003.01.005
周宾, 郑有业, 聂晓亮, 等. 柴北缘滩间山群玄武岩锆石定年及其地质意义 [J]. 东华理工大学学报(自然科学版), 2019, 42(03): 227-33+46. ZHOU Bin, ZHENG Youye, NIE Xiaoliang, et al. Zircon U-Pb dating for basaltic and esite of Tanjianshan group in the Lvliangshan region of Qaidam basin north margin and its geological significance[J]. Journal of East China University of Technology(Natural Science), 2019, 42(3): 227-233+246.
周宾, 郑有业, 童海奎, 等. 柴北缘早古生代埃达克质花岗岩锆石定年及其地质意义[J]. 现代地质, 2014, 28(5): 875-883. doi: 10.3969/j.issn.1000-8527.2014.05.001 ZHOU Bin, ZHENG Youye, TONG Haikui, et al. Zircon dating of early Paleozoic adakitic granite on the Northern Margin of Qaidam basin and its geological significance[J].Geoscience, 2014,28(5):875-883. doi: 10.3969/j.issn.1000-8527.2014.05.001
周宾, 郑有业, 许荣科, 等. 青海柴达木山岩体LA-ICP-MS锆石U-Pb定年及Hf同位素特征[J]. 地质通报, 2013, 32(07): 1027-1034 doi: 10.3969/j.issn.1671-2552.2013.07.008 ZHOU Bin, ZHENG Youye, XU Rongke, et al. LA-ICP-MS zircon U-Pb dating and Hf isotope geochemical characteristics of Qaidamshan instrusive body[J]. Geological Bulletin of China, 2013, 32(7): 1027-1034. doi: 10.3969/j.issn.1671-2552.2013.07.008
周艳龙. 柴北缘赛什腾山一带滩涧山群地质地球化学特征及构造演化[D]. 西安: 长安大学, 2021 ZHOU Yanlong. Geological and Geochemical Characteristics and Tectonic Evolution of Tanjianshan Group in the Saishiteng mountain, Northern Margin of Qaidam Basin[D]. Xi’an: Chang’an University, 2021.
朱小辉. 柴达木盆地北缘滩间山群火山岩地球化学及年代学研究[D]. 西安: 西北大学, 2011 ZHU Xiaohui. Geochemical and zircon U-Pb dating studies of the volcanic of Tanjianshan Group in the North Qaidam[D]. Xi’an: Northwest University, 2011.
朱小辉, 陈丹玲, 王超, 等. 柴达木盆地北缘新元古代-早古生代大洋的形成、发展和消亡[J]. 地质学报, 2015, 89(02): 234-251 ZHU Xiaohui, Chen Danling, Wang Chao. The Initiation, Development and Termination of the Neoproterozoic-Early Paleozoic Ocean in the Northern Margin of Qaidam Basin[J]. Acta Geologica Sinica, 2015, 89(2): 234-251.
庄儒新. 柴达木盆地北缘滩间山群火山岩岩石组合及形成环境[D]. 昆明: 昆明理工大学, 2006 ZHUANG Ruxin. The Volcanic Rock Associations and Formation Environment of Tanjianshan group in the Northern Margin of Qaidam Basin[D]. Kunming: Kunming University of Science and Technology, 2006.
庄玉军, 辜平阳, 高永伟, 等. 柴北缘赛什腾中二叠世辉长岩成因及其对宗务隆洋盆俯冲时限的制约[J]. 岩石矿物学杂志, 2020, 39(06): 718-734 doi: 10.3969/j.issn.1000-6524.2020.06.004 ZHUANG Yujun, GU Pingyang, GAO Yongwei, et al. Petrogenesis of Middle Permian gabbro in Saishiteng Moutain of the northern Qaidam Basin and its constraint to the time of Zongwulong Ocean subduction[J]. Acta Petrologiaca Et Mineralogica, 2020, 39(6): 718-734. doi: 10.3969/j.issn.1000-6524.2020.06.004
庄玉军, 辜平阳, 李培庆, 等. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学、年代学及Hf同位素特征[J]. 地质通报, 2019, 38(11): 1801-1812 doi: 10.12097/j.issn.1671-2552.2019.11.004 ZHUANG Yujun, GU Pingyang, LI Peiqing, et al. Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northestern margin of Oulongbuluke micro-block on the northern margin of Qaidam basin[J]. Geological Bulletin of China, 2019, 38(11): 1801-1812. doi: 10.12097/j.issn.1671-2552.2019.11.004
Aguillón-Robles A, Calmus T, Benoit M, et al. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California?[J]. Geology, 2001, 29(6): 531-534. doi: 10.1130/0091-7613(2001)029<0531:LMAANE>2.0.CO;2
Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59-79.
Becker H, Jochum KP and Carlson RW. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones[J]. Chemical Geology, 1999, 160(4): 291-308. doi: 10.1016/S0009-2541(99)00104-7
Castillo PR. Adakite petrogenesis[J]. Lithos, 2012, 134-135: 304-316. doi: 10.1016/j.lithos.2011.09.013
Chen D L, Liu L, Sun Y, et al. Geochemistry and zircon U -Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China [J]. Journal of Asian Earth Sciences, 2009, 35(3-4): 259 -272. doi: 10.1016/j.jseaes.2008.12.001
Chen SS , Shi RD , Yi GD, et al. Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet): Geochronology, petrogenesis, and tectonic implications[J]. Tectonophysics, 2016, 666:90-102.
Deniel C. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean)[J]. Chemical Geology, 1998, 144(3-4): 281-303. doi: 10.1016/S0009-2541(97)00139-3
Ernst R. E. , Buchan K. L. , Hamilton M. A. , et al. Integrated paleomagnetism and U-Pb geochronology of mafic dikes of the eastern Anabar Shield Region, Siberia: Implications for Mesoproterozoic Paleolatitude of siberia and Comparison with Laurentia[J]. The Journal of Geology, 2000, 108: 381-401. doi: 10.1086/314413
Escuder-Viruete J, Pérez-Estaún A, Weis D, et al. Geochemical characteristics of the Río Verde complex, central Hispaniola: Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc[J]. Lithos, 2010, 114(1-2): 168-185. doi: 10.1016/j.lithos.2009.08.007
Hajash A Jr. Rare earth element abundances and distribution patterns in hydrothermally altered basalts: Experimental results[J]. Contributions to Mineralogy and petrology, 1984, 85(4): 409-412. doi: 10.1007/BF01150297
Irvine T. N. and BaragarW. R. A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548. doi: 10.1139/e71-055
Kepezhinskas P, Defant MJ and Drummond MS. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60(7): 1217-1229. doi: 10.1016/0016-7037(96)00001-4
Kepezhinskas P. , Mcdermott F. , Defant M. J. , et al. Trace element and SrNdPb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis [J]. Geochimica Et Cosmochimica Acta, 1997, 61(3): 577-600. doi: 10.1016/S0016-7037(96)00349-3
Lassiter J C, DePaolo D J. Plumes/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotope constraints[J]. American Geophysical Union, 1997, 100: 335-355.
Liang X. Q. , Fu J. G. , Wang C. , et al. Redefinition and Formation Age of the Tanjianshan Group in Xitieshan Region, Qinghai [J]. Acta Geologica Sinica-English Edition, 2014, 88(2): 394-409. doi: 10.1111/1755-6724.12204
Liao FX, Chen NS, Santosh M, et al. Paleoproterozoic Nb–enriched meta-gabbros in the Quanji Massif, NW China: Implications for assembly of the Columbia supercontinent[J]. Geoscience Frontiers, 2018, 9(2): 577-590. doi: 10.1016/j.gsf.2017.05.007
Liu CH, Zhao GC, Liu FL, Shi J, et al. 2.2 Ga magnesian andesites, Nb-enriched basalt-andesites, and adakitic rocks in the Lüliang Complex: Evidence for early Paleoproterozoic subduction in the North China Craton. Lithos[J]. 2014, 208-209: 104-117.
Liu H C, Wang YJ, Cawood P A, et al. Episodic slab rollback and back-arc extension in the Yunnan-Burma region: Insights from Cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks[J]. Geological Society of America Bulletin, 2017, 129(5-6): 698–714. doi: 10.1130/B31604.1
Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel [J]. Berkeley Geochronology Center Special Publication. 2003, (4): 1–70.
Mattinson CG, Wooden JL, Liou JG, et al. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China [J]. Mineralogy&Petrology, 2006, 88(1-2): 227 -241.
Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355. doi: 10.2475/ajs.274.4.321
Ormerod D S, Hawkesworth C J, Rogers N W, et al. Tectonic and magmatic transition in the western Great Basin, USA [J]. Nature, 1988, 333(6171-6172): 394~353.
Pearce J A. and Noryy M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69: 33-47. doi: 10.1007/BF00375192
Petrone CM, Ferrari L. Quaternary adakite—Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence?[J]. Contributions to Mineralogy and Petrology, 2008, 156(1): 73-86. doi: 10.1007/s00410-007-0274-9
Pollock J C and Hibbard J P. Geochemistry and tectonic significance of the Stony Mountain gabbro, North Carolina: Implications for the Early Paleozoic evolution of Carolinia[J]. Gondwana Research, 2010, 17(2-3): 500-515. doi: 10.1016/j.gr.2009.09.009
Sajona FG, Maury RC, Bellon H, et al. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines) [J]. Journal of petrology, 1996, 37(3): 693-726. doi: 10.1093/petrology/37.3.693
Shaw J. E. , Baker J. A. , Menzies M. A. , et al. Petrogenesis of the Largest Intraplate Volcanic Field on the Arabian Plate (Jordan): a Mixed Lithosphere–Asthenosphere Source Activated by Lithospheric Extension[J]. Journal of Petrology, 2003, 44(9): 1657-1679. doi: 10.1093/petrology/egg052
Shi R. D. , Yang J. S. , Wu C. L. , et al. Island arc volcanic rocks in the north Qaidam UHP belt, northern Tibet plateau: Evidence for ocean–continent subduction preceding continent–continent subduction [J]. Journal of Asian Earth Sciences, 2006, 28(2-3): 151-159. doi: 10.1016/j.jseaes.2005.09.019
Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continental collision/subduction, to orogen collapse, and recycling: The example of the North Qaidam UHPM belt, NW China [J]. Earth Science Reviews, 2014, 129(1): 59 -84.
Song SG, Zhang LF, Niu YL, et al. Evolution from oceanic subduction to continental collision: a case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data [J]. Journal of Petrol, 2006, 47(3): 435 -455. doi: 10.1093/petrology/egi080
Sorbadere F, Schiano P, Métrich N, et al. Small-scale coexistence of island-arc-and enriched-MORB-type basalts in the central Vanuatu arc[J]. Contributions to Mineralogy and Petrology, 2013, 166(5): 1305-1321. doi: 10.1007/s00410-013-0928-8
Sun HS , Li H , Evans N J , et al. Volcanism, mineralization and metamorphism at the Xitieshan Pb–Zn deposit, NW China: Insights from zircon geochronology and geochemistry[J]. Ore Geology Reviews, 2017, 88: 289-303. S016913681730080X.
Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Sauders AD and Norry MJ. eds. Magmatism in the Ocean Basins[J]. Geological Society. Special Publication, 1989, 42(1): 3l3-345.
Thorkelson DJ, Madsen JK, Sluggett CL. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry[J]. Geology, 2011. 39(3): 267-270. doi: 10.1130/G31522.1
Wang K, Plant T, Walker J D, et al. A mantle melting profile across the Basin and Range, SW USA[J]. Journal of Geophysical Research: Solid Earth, 2002.107(B1).
Wang Q, Wyman DA, Zhao ZH, et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology, 2007, 236(1-2): 42-64. doi: 10.1016/j.chemgeo.2006.08.013
Winchester J. A, , Floyd P. A. Geochemical discrimination of different magma series and their differentiation products using immobile elements [J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2
Xiong Q, Zheng J P, Griffin W L, et al. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the north qaidam terrane (western China): Meso - Neoproterozoic crust- mantle coupling and early Paleozoic convergent plate-margin processes [J]. Precambrian Research, 2011, 187(1-2), 33-57. doi: 10.1016/j.precamres.2011.02.003
Zhang A, Wang Y, Fan W, et al. Earliest Neoproterozoic (ca. 1.0 Ga) arc–back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: geochronological and geochemical evidence from the metabasite[J]. Precambrian Research, 2012, 220: 217-233.
Zhang C. , Zhang, LF. , Van Roermund, et al. Petrology and SHRIMP U–Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4): 752-767. doi: 10.1016/j.jseaes.2011.04.002
Zhang GB, Song SG, Zhang LF, et al. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology[J]. Lithos, 2008, 104(1- 4): 99-118.
Zhang J X, Mattinson C G, Meng F C, et al. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP⁄UHP metamorphic terrane, Western China: evidence fromzircon U -Pb geochronology [J]. Geological Society of America Bulletin, 2008, 120(5-6): 732 -749. doi: 10.1130/B26093.1
Zhang J X, Mattinson C G, Yu S Y, et al. U - Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction [J]. Journal of Metamorphic Geology, 2010,28(9):955-978.