ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义

庄玉军, 彭璇, 周艳龙, 何世平, 王盼龙, 王立轩

庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56(1): 63-80. DOI: 10.12401/j.nwg.2022003
引用本文: 庄玉军, 彭璇, 周艳龙, 等. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 2023, 56(1): 63-80. DOI: 10.12401/j.nwg.2022003
ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology, 2023, 56(1): 63-80. DOI: 10.12401/j.nwg.2022003
Citation: ZHUANG Yujun, PENG Xuan, ZHOU Yanlong, et al. Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt[J]. Northwestern Geology, 2023, 56(1): 63-80. DOI: 10.12401/j.nwg.2022003

柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义

基金项目: 中国地质调查局项目“商丹–大柴旦地区区域地质调查”(DD20190069),“西北地区区域基础地质调查”(DD20221636)联合资助。
详细信息
    作者简介:

    庄玉军(1989–),男,工程师,从事区域地质调查及前寒武纪地质研究。E-mail:179966387@qq.com

    通讯作者:

    彭璇(1984–),女,工程师,从事区域地质调查工作。E-mail:pengxuan2012@163.com

  • 中图分类号: P581

Genesis and Geological Significance of Late Ordovician Nb-rich Basalts from Tanjianshan Group in Saishitengshan Mountain, Northern Margin of Qaidam Tectonic belt

  • 摘要:

    产于柴北缘构造带西段赛什腾山地区滩间山群中的变玄武岩的结晶年龄为(444±4)Ma,具有富Na2O、贫K2O、高TiO2、Nb及低LILE/HFSE和HREE/HFSE值等特征,球粒陨石标准化稀土元素配分曲线整体表现为轻稀土相对富集、重稀土平坦的略向右缓倾型配分模式,且在原始地幔标准化微量元素蛛网图中显示Nb、Ta弱正异常,与富铌玄武岩地球化学特征一致。综合分析表明,赛什腾山富铌玄武岩岩浆源区为尖晶石相二辉橄榄岩,是俯冲大洋板片陡角度回转引起的上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与亏损地幔楔混合的产物,指示晚奥陶世柴北缘西段仍处于弧后伸展阶段,陆陆碰撞尚未开始。结合区域已有资料,认为柴北缘滩间山群是晚寒武世—早中志留世洋陆转换过程中不同时期、不同构造背景下(包括洋岛、岛弧、弧后等)的火山-沉积产物,其经历了自大洋俯冲至陆陆碰撞前的整个俯冲消减过程,各类岩石因构造混杂最终保存于柴北缘狭长构造带内。

    Abstract:

    The crystallization age of meta–basalts from Tanjianshan Group in Saishitengshan mountain, in the western part of the northern margin of Qaidam tectonic belt, was 444±4 Ma, which has the characteristics of rich Na2O, poor K2O, high TiO2, Nb, and low LILE/HFSE and HREE/HFSE ratios. The chondrite–normalized REE distribution curve shows a slightly right–leaning distribution pattern with relatively enriched LREE and flat HREE. On the primitive mantle–normalized trace element diagrams, Nb and Ta show weak positive anomalies, which is consistent with the geochemical characteristics of Nb–rich basalts. The comprehensive analysis shows that the magma sources of Nb–rich basalt in Saishiteng Mountain maybe the spinel–phase lherzolite, which is the product of the mixture of upwelling asthenosphere mantle and depleted mantle wedge at the edge of the back–arc basin near the island arc side caused by the steep angleroll–back of the subduction oceanic slab. It indicates that the western part of the northern margin of Qaidam basin was under the stage of back–arc extension during the late Ordovician, and the continental collision had not begun. Combined with the existing regional data, it is considered that the Tanjianshan Group in the northern margin of Qaidam Basin were the volcanic–sedimentary products of different periods and different tectonic settings in the process of ocean–continent transition from Late Cambrian to Early–middle Silurian,and had experienced the whole subduction process from oceanic subduction to continental collision. Due to tectonic mélange, various types of rocks were occurred in the northern margin of Qaidam basin.

  • 柴达木盆地北缘(柴北缘)构造带位于青藏高原东北部,呈北西–南东向夹持于柴达木地块和祁连地块之间,是一个构造变形复杂、物质组成多样、时间跨度巨大的多单元复合构造带(潘桂堂等,2002郭安林等,2009)。自20世纪90年代柴北缘构造带发现榴辉岩以来(杨经绥等,1998),前人对构造带内的高压–超高压变质作用(杨经绥等,1998宋述光等,2001孟繁聪等,2003陈丹玲等,2007)和与高压–超高压变质带空间上伴生的早古生代滩间山群浅变质火山–沉积岩系(赖绍聪等,1996李怀坤等,1999赵凤清等,2003王惠初等,2003朱小辉,2011孙华山等,2012王侃,2014张孝攀等,2015Sun et al.,2017路增龙等,2020周艳龙,2021)等开展了大量研究。然而,作为柴北缘早古生代重要的火山–沉积建造,滩间山群的时代归属及构造属性存在较大争议(图1a)(邬介人等,1987赖绍聪等,1996王惠初等,2003庄儒新,2006史仁灯等,20032004Shi et al.,2006李峰等,20062007孙华山等,2012汪劲草等,2013Liang et al.,2014王侃,2014张孝攀等,2015Sun et al.,2017周宾等,2019江小强等,2020路增龙等,2020周艳龙,2021),导致对柴北缘早古生代构造演化过程(如大洋闭合及陆陆碰撞的具体时限)的认识仍存在分歧(吴才来等,20072014高晓峰等,2011朱小辉等,2015夏林圻等,2016)。

    图  1  柴北缘地质简图(a)及研究区地质图(b)
    1.达肯大坂岩群第一岩组;2.达肯大坂岩群第二岩组;3.达肯大坂岩群第三岩组;4.达肯大坂岩群第四岩组;5.滩间山群;6.晚志留世黑云母花岗岩;7.早二叠世石英闪长岩;8.中二叠世二长花岗岩;9.早三叠世二长花岗岩(脉);10.第四系;11.晚奥陶世变玄武岩;12.早志留世英安岩/流纹岩;13.中二叠世辉长岩脉;14.晚二叠世辉长闪长岩脉;15.闪长岩;16.采样点
    Figure  1.  (a) Sketch map of tectonic location and (b) the geological map of study areas

    特定的镁铁质岩石(组合)的成因研究可有效判别其所经历的地球动力学过程和构造环境(Liu et al.,2017)。富铌玄武岩是一类具有相对高的TiO2(1%~2%)和Nb(>7×10–6)、低LILE/HFSE和HREE/HFSE值及弱Nb、Ta 负异常甚至正异常等特征的玄武岩(Kepezhinaskas et al.,1996Sajona et al.,1996张海祥等,2005Wang et al.,2007Castillo,2012Liao et al.,2018),通常被认为是由俯冲板片熔体交代的地幔楔橄榄岩部分熔融产生的,是大洋板片俯冲作用的直接产物(Aguillón-Robles et al.,2001Zhang et al.,2012Liu et al.,2014Chen et al.,2016);但也有学者提出富铌玄武岩是深部地幔物质参与下不均一的上地幔部分熔融产物(Petrone et al.,2008Castillo,2012Sorbadere et al.,2013)。对其形成时代和成因的准确厘定,可为区域构造演化历史提供有效约束。最近,笔者在柴北缘赛什腾山地区开展专项地质调查时,在滩间山群中识别出一套富铌玄武岩,为探讨柴北缘滩间山群时代归属、构造属性以及柴北缘早古生代构造演化提供了新的载体。由此,本文通过对该富铌玄武岩的地球化学、年代学研究,探讨其岩石成因及构造环境,旨在为柴北缘早古生代的构造格局与演化提供新的约束。

    柴北缘构造带南部以柴北缘深大断裂为界与柴达木地块相接,北部以拉脊山–中祁连南缘断裂与祁连地块毗邻,东西两端分别被哇洪山断裂和阿尔金断裂所围限(辛后田等,2006)。构造带内分别以乌兰–鱼卡断裂和宗务隆–青海南山断裂为界,由南至北由柴北缘早古生代结合带、欧龙布鲁克微地块和宗务隆晚古生代—早中生代裂陷带等3个次一级构造单元组成(潘桂堂等,2002)。研究区位于柴北缘构造带西段赛什腾山西北部,属于早古生代结合带与欧龙布鲁克微地块过渡部位。研究区内出露的地层主要为古元古界达肯大坂岩群和下古生界滩间山群(图1b),整体上呈北西或北北西向展布。区内达肯大坂岩群是一套原岩为火山-碎屑岩系并经历了中高级变质作用的表壳岩组合(陆松年等,2002王立轩等,2022),局部卷入后期造山过程中使其年轻化、复杂化。根据变形变质程度及岩性组合可划分为4个岩组,与区内滩间山群呈断层接触关系(图2);滩间山群总体为一套早古生代浅变质海相火山–沉积建造,在研究区内主要由浅变质火山碎屑岩夹少量碳酸盐岩、硅质岩和变火山岩组成,变形程度较弱,普遍发育低绿片岩相变质,与区域上滩间山群碎屑岩组可对比(青海地质矿产局,1991),其中浅变质火山碎屑岩主要岩性为灰色–浅灰绿色变(凝灰质)砂岩、灰绿色(凝灰质)千枚岩、灰黑色含炭质粉砂质板岩和灰色钙质粉砂岩,少量断裂带附近的凝灰质砂岩受韧性剪切改造为黑云母长英质糜棱岩;变火山岩呈条带状与变火山碎屑岩互层产出,岩性主要为灰绿色变流纹岩、变英安岩以及灰黑色变玄武岩等组成。晚古生代侵入岩呈岩体或岩脉侵入上述地层之中。

    图  2  赛什腾山变玄武岩宏观产出特征及显微镜下特征
    a. 变玄武岩宏观产出特征;b. 变玄武岩野外露头;c~d. 变余斑状结构,变斑晶为绿帘石化角闪石,基质为角闪石、斜长石、阳起石、绿泥石及少量石英(正交偏光);Ep. 绿帘石;Hbl. 角闪石;Act. 阳起石;Chl. 绿泥石;Pl. 斜长石;Qtz. 石英
    Figure  2.  Macroscopic and microscopic characteristics for meta–basalts of Saishiteng mountain

    本次用于同位素及地球化学研究的变玄武岩(编号TK02)样品采自赛什腾山西北部滩间山群中,距冷湖镇东约55 km处,采样坐标为93°56′23.4″E、38°36′57.1″N。变玄武岩(TK02)位于达肯大坂岩群与滩间山群断层界线附近,出露宽度约3 m,受后期韧性剪切作用改造呈北西向透镜状产于黑云母长英质糜棱岩之中(图2a)。岩石呈灰黑色,具片状、块状构造,柱状粒状结构,变余斑状结构(图2b图2c);变余斑晶为由角闪石蚀变而成的压扁拉长状绿帘石,基质主要为细粒柱状斜长石、角闪石、阳起石、绿泥石,含少量石英(图2c图2d);受后期韧性剪切变形作用影响,矿物发生剪切定向和塑性变形(图2d),高倍镜下可观察到斜长石聚片双晶沿长轴方向定向排列。

    样品的主微量及稀土元素测试分析在中国地质调查局西安地质调查中心实验测试中心完成,其中主量元素采用SX45型X荧光光谱仪(XRF)进行分析,分析误差小于1%;微量和稀土元素利用SX50型电感耦合等离子体光谱仪(ICP–MS)进行测定,分析误差小于5%~10%。样品锆石挑选由河北廊坊诚信地质服务有限公司完成,锆石的制靶及反射光阴极发光照相在陕西爱思拓普测试技术有限公司完成,测试点的选取首先根据锆石反射光和透射光照片进行初选,再与CL图像反复对比,力求避开内部裂隙和包裹体,以获得较准确的年龄信息。LA–ICP–MS锆石微区U–Pb年龄测定在自然资源部岩浆作用成矿与找矿重点实验室完成,采用193 nm ArF准分子(excimer)激光器的Geo Las 200M剥蚀系统,ICP–MS为Agilent 7700,激光束斑直径24 μm,以GJ–1为同位素监控标样,91500为年龄标定标样,NIST610为元素含量标样进行校正,普通铅校正依据实测204Pb进行校正。

    采用Glitter(ver4.0,Macquarie University)程序对锆石的同位素比值及元素含量进行计算,并按照Andersen Tom的方法(Andersen T,2002),用LAMICPMS Common Lead Correction(ver3.15)对其进行了普通铅校正,年龄计算及谐和图采用Isoplot(ver3.0)完成(Ludwig,2003)。

    本次选取新鲜、无蚀变或弱蚀变的变玄武岩样品进行全岩地球化学分析,分析结果见表1。赛什腾山滩间山群变玄武岩的烧失量较低(1.64%~1.87%),表明样品受后期低温蚀变作用及风化作用的影响较小。样品中SiO2含量为48.90%~52.05%,具相对高的MgO(4.89%~6.27%)、FeOT(10.17%~11.15%)、CaO(10.56%~11.78%),TiO2(1.35%~1.49%),低于OIB玄武岩,高于岛弧玄武岩,与E–MORB相似。全碱含量较低,K2O=0.39%~0.52%,Na2O=2.43%~3.02%,Na2O/ K2O为5.33~6.23,相对富钠贫钾;P2O5含量较低,为0.13%~0.16%。镁铁比m/f﹝Mg2+/(Fe3++ Fe3++ Mn2+)〕为0.90~1.03,属铁质基性岩类(m/f=0.5~2);扣除烧失量作归一化处理后分别对变玄武岩的6个样品进行投图,在哈克图解(图略)中除FeO、TiO2、Al2O3与MgO呈正相关关系外,其它主量元素与MgO相关性不明显, 暗示在变玄武岩形成过程中,分离结晶作用所起的作用有限;在Zr/TiO2–Nb/Y图解中样品均落入亚碱性玄武岩与碱性玄武岩边界附近(图3a),在AFM图解(图3b)和FeOT–FeOT/MgO图解(图3c)中样品均投到拉斑玄武岩系列范围内,综合认为赛什腾山变玄武岩为拉斑玄武岩。

    表  1  赛什腾山变玄武岩主量元素(%)、微量元素(10−6)及稀土元素(10−6)含量分析结果
    Table  1.  Major element (%), trace element (10−6) and REE element (10−6) compositions of meta–basalts of Saishiteng mountain
    样号TK02-1TK02-2TK02-3TK02-4TK02-5TK02-6
    SiO250.0848.9049.3849.4849.4352.05
    Al2O315.4615.5515.4515.5415.5614.98
    Fe2O34.885.235.414.814.405.30
    FeO6.296.446.116.346.745.40
    CaO11.1611.7811.4711.1710.5211.15
    MgO5.585.875.625.816.274.89
    K2O0.460.430.480.470.520.39
    Na2O2.602.442.562.733.022.43
    TiO21.451.441.471.481.491.39
    P2O50.140.140.150.160.140.13
    MnO0.1400.1400.1400.1400.1400.130
    LOI1.761.641.761.871.771.76
    TOTAL100100100100100100
    TFeO10.6811.1510.9810.6710.7010.17
    m/f0.920.930.900.961.030.85
    La11.911.711.911.411.011.2
    Ce25.124.324.023.624.024.2
    Pr3.403.293.223.183.353.16
    Nd14.614.014.213.714.313.7
    Sm3.413.333.303.213.313.19
    Eu1.191.161.161.171.141.16
    Gd3.553.593.623.433.513.41
    Tb0.620.610.600.590.610.58
    Dy3.503.513.533.403.503.30
    Ho0.690.700.690.670.670.64
    Er1.871.871.931.841.821.74
    Tm0.280.270.270.270.270.25
    Yb1.811.711.711.771.761.70
    Lu0.250.250.240.240.250.23
    Ba111.080.482.083.898.479.5
    Rb16.18.79.19.010.58.3
    Sr286273267245256284
    Co42.642.838.638.343.836.2
    V279282273275265267
    Cr54.253.660.050.149.047.6
    Ni53.251.550.649.451.852.0
    Nb13.813.513.313.613.513.7
    下载: 导出CSV 
    | 显示表格
    图  3  赛什腾山变玄武岩Zr/TiO2–Nb/Y分类图(a)(底图据Irvine T N,1971)、AFM图解(b)(底图据Winchester J A,1971)及TFeO–TFeO/MgO图解(c)(底图据Miyashiro A,1974
    Figure  3.  (a) TAS diagram, (b) AFM diagram and (c) TFeO vs. TFeO / MgO diagram for meta–basalts of Saishiteng mountain

    赛什腾山滩间山群变玄武岩稀土总量(ΣREE)较低,为80.26×10−6~112.47×10−6,LREE=56.26×10−6~59.20×10−6,高于E–MORB而低于OIB, HREE含量则稍低于E–MORB(22.48×10−6~55.86×10−6);LREE/HREE=1.01~2.57,(La/Yb)N =4.21~4.69,表明样品中轻稀土弱富集,轻重稀土元素分异不明显;(La/Sm)N=2.09~2.27,(Gd/Yb)N=1.56~1.71,显示轻、重稀土内部分异也不明显;σEu=1.02~1.07,为弱正异常,表明源区斜长石分离结晶不明显(韩吟文等,2004)。在球粒陨石标准化稀土元素配分图上,各样品具有与E–MORB相似的稀土分布模式(图4a),即LREE相对富集、HREE平坦的略向右缓倾型配分模式。样品具富Nb(13.3×10−6~13.8×10−6)以及高的(Nb/Th)PM(1.10~1.63)、(Nb/La)PM(1.08~1.18)和Nb/U(50.7~66.3)特征,在原始地幔标准化微量元素蛛网图中显示Nb、Ta弱正异常(图4b),此类地球化学特征与正常岛弧玄武岩不同,而与富铌玄武岩相似(Sajona et al.,1996张海祥等,2005Wang et al.,2007Castillo,2012Liao et al.,2018),在MgO–Nb/La和Nb–Nb/U图解(图5)中,均落入富铌玄武岩区域,表明柴北缘赛什腾山变玄武岩属富铌玄武岩系列。

    图  4  赛什腾山变玄武岩稀土元素球粒陨石标准化图解(a)和微量元素原始地幔标准化蛛网图(b)
    Figure  4.  (a) Chondrite–normalized REE patterns diagram and (b) Primitive–mantle normalised spidergram diagram for meta–basalts of Saishiteng mountain
    图  5  赛什腾山变玄武岩MgO–Nb/La图解(a)和 Nb–Nb/U图解(b)(底图据Kepezhinskas et al.,1997
    球粒陨石标准化值及原始地幔标准化值据Sun et al.,1989
    Figure  5.  (a) MgO vs. Nb/La diagram and (b) Nb vs. Nb/U diagram for meta–basalts of Saishiteng mountain

    在背散射电子(BSE)和阴极发光(CL)图像分析的基础上,选择样品中30颗锆石开展LA–ICP–MS锆石微区U–Pb年龄测定。锆石阴极发光(CL)图像见于图6,锆石表面年龄数据及Th、U元素含量见表2。得到的锆石年龄数据为263~2 462 Ma(<1000 Ma为206Pb–238U年龄,>1 000 Ma为206Pb/207Pb年龄),其中8颗锆石具有差的谐和度(<0.90或>1.10),偏离谐和曲线,其余22颗均在U–Pb谐和曲线之上或附近。22颗锆石中有6颗年龄较为集中(440 ~445 Ma),谐和线年龄为(444±4)Ma(MSWD=0.14),206Pb/238U表面年龄加权平均值为(443±3)Ma(MSWD=0.14),锆石晶体多呈四方柱与四方双锥的聚形,具特征的岩浆震荡环带和较高的Th/U值(0.30~0.95),稀土元素球粒陨石标准化配分模式显示锆石显著富集HREE,并具有明显的正Ce异常和负Eu异常(图略),表明此6颗锆石为典型的岩浆锆石成因,故其年龄可代表富铌玄武岩的形成时代,即晚奥陶世。此外,4颗锆石(9、15、20、28号)的206Pb/207Pb年龄为1 827 ~2 462 Ma,锆石呈近椭圆状,为捕获锆石,指示研究区存在古元古代基底;9颗锆石表面年龄为575~1 785 Ma,锆石Th/U值为0.03~0.83,CL图像显示锆石晶面复杂或发育震荡环带(如4号锆石),表明这些捕获锆石可能是早期岩浆或变质事件的产物(辜平阳等,2020);另在2颗锆石(11、14号)变质增生边上获得263 Ma 的206Pb/238U年龄,与中二叠世宗务隆洋俯冲消减时间一致(庄玉军等,2020),可能是这次强烈构造–热事件的反映。

    图  6  赛什腾山富铌玄武岩锆石U–Pb年龄谐和图(a)及典型锆石阴极发光图像(b)
    Figure  6.  (a)The U–Pb Concordian diagram of zircons and (b)Representative cathodoluminescence images of the zircons for meta–basalts of Saishiteng mountain
    表  2  赛什腾山富铌玄武岩锆石LA–ICP–MS U–Pb同位素测年结果
    Table  2.  LA–ICP–MS zircon U–Pb isotopic analysis for meta–basalts of Saishiteng mountain
    样点
    编号
    207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th232Th238UTh/U谐和
    比值 比值 比值 比值 年龄(Ma) 年龄(Ma) 年龄(Ma) 年龄(Ma)
    10.049 870.001 210.286 160.006 520.0416 20.000 430.014 980.001 081893425652633301222473220.770.97
    20.065 810.000 831.218 750.013 340.134 330.001 160.046 710.002 98001180968137923562304600.501.00
    30.055 390.001 940.543 690.018 050.071 20.000 970.024 020.002 2342850441124436480441181700.691.00
    40.067 820.002 81.351 750.053 450.144 580.002 50.042 260.004 868635386823871148379438460.831.00
    50.056 470.0010.555 80.0090.071 40.000 680.025 210.001 594712044964454503313633810.951.01
    60.082 720.001 081.804 990.020 670.158 280.001 410.088 430.005 5112631010477947817131021373680.371.11
    70.096 350.003 980.5530.020 990.041 630.000 780.021 420.002 5155543447142635428491562780.561.70
    80.068 660.001 611.274 270.027 790.134 620.001 580.049 340.003 8788926834128149973753004900.611.02
    90.134 880.001 677.450 970.081 070.400 690.003 780.129 810.008 08216282167102172172467145991150.861.00
    100.054 360.001 080.532 70.009 770.071 080.000 70.025 440.001 793862443464434508353355890.570.98
    110.050 990.002 270.292 270.012 530.041 580.000 570.015 640.001 2224073260102634314241481181.260.99
    120.055 930.003 50.545 230.032 690.070 720.001 560.029 170.004 734509444221440958193461060.431.00
    130.056 20.002 530.547 820.023 480.070 710.001 20.032 120.004 484606544415440763988551840.301.01
    140.052 40.001 450.302 30.007 890.041 850.000 480.014 830.001 023033926862643298205763461.671.02
    150.111 70.001 35.031 970.049 940.326 750.002 860.106 640.007 06182781825818231420481291273320.381.00
    160.078 270.001 181.899 10.025 70.175 990.001 660.022 90.002 4211541310819104594584825812750.201.10
    170.072 750.001 230.417 780.006 360.041 650.000 390.015 040.000 99100716354526323022010907641.431.35
    180.055 40.000 880.545 810.007 780.071 470.000 640.022 650.001 534281744254454453304745750.830.99
    190.109 150.001 324.795 40.049 750.318 680.002 820.092 010.006 43178581784917831417791191091940.561.00
    200.160 590.002 6310.148 060.156 850.458 370.005 680.127 820.010 5724621224481424322524311891361960.691.01
    210.112 360.003 871.106 640.034 750.071 440.001 230.065 630.007 551838337571744571285143973780.261.70
    220.085 540.001 52.683 720.043 070.227 570.002 380.059 390.004 71328161324121322121166901101550.711.00
    230.093 910.003 240.538 430.017 070.041 590.000 650.025 260.002 77150637437112634504551433750.381.66
    240.090 440.002 080.518 90.010 840.041 620.000 480.019 650.001 714352342472633393342514930.511.61
    250.061 940.001 230.929 190.017 060.108 810.001 080.030 320.003 31672236679666660465221380.161.00
    260.068 720.000 920.673 980.007 760.071 140.000 610.025 810.001 988901152354434515393339510.351.18
    270.154 240.004 010.884 750.020 230.041 610.000 60.013 850.001 13239320644112634278234071602.542.45
    280.118 810.001 845.639 650.079 760.344 330.003 660.112 310.013 861938121922121907182151252283040.091.02
    290.059 620.001 850.766 410.022 650.093 250.001 160.053 930.017 4159042578135757106233441370.031.01
    300.070 690.001 311.356 530.022 970.139 190.001 410.039 110.003 8594819870108408775751686800.251.04
    下载: 导出CSV 
    | 显示表格

    因REE和部分HFSE元素(包括Nb、Ta、Zr、Hf、Th、Ce、U、Ti等)的活动性较差,其含量基本不受后期蚀变或热液作用影响,甚至在高级变质作用中亦能相对稳定(Hajash A Jr,1984Becker H et al.,1999Escuder-Viruete J et al.,2010),故常用上述不活动元素对岩浆演化过程及源区进行示踪。

    (1)同化混染与分离结晶

    赛什腾山富铌玄武岩中捕获锆石或继承锆石的存在,表明存在一定程度的地壳混染作用。众所周知,地壳同化混染可导致显著的Nb亏损(夏林圻等,2016),然而赛什腾山富铌玄武岩在原始地幔标准化微量元素蛛网图中却显示Nb弱正异常,暗示其遭受地壳同化混染程度可能较弱。此外,在封闭的岩浆体系中,元素丰度随结晶程度不同而发生相应变化,但总分配系数相同或者很相近的元素比值不会因结晶作用而改变,若有外来物质显著混染,则会导致这些元素比值发生巨大变化(张永,2019),因此常用总分配系数相同或者很相近且对同化混染作用敏感的元素比值(如Nb /U、Nb/La、Th/Nb、La/Sm等)来判定是否发生同化混染作用。高的La/Sm(>5)(Lassiter et al.,1997张永等,2019)和原始地幔标准化 Th/Nb 值($\gg $1)(Ormerod,1988)以及低Nb/La 值(<1)(Ernst et al.,2000)均是判断发生地壳混染作用的可靠微量元素指标(庄玉军等,2020)。赛什腾山富铌玄武岩La/Sm<5(3.32~3.61),(Th/Nb)PM<1(0.61~0.91),Nb/La>1(1.12~1.23),均指示富铌玄武岩形成过程未遭受或仅遭受弱的地壳混染。综合上述分析可知,赛什腾山富铌玄武岩形成过程中虽存在弱的地壳混染作用,但对岩石微量元素组成的影响有限。此外,如前所述,哈克图解中除FeO、TiO2、Al2O3与MgO呈正相关关系外,其它主量元素与MgO相关性不明显,暗示在富铌玄武岩形成过程中,分离结晶作用所起的作用不明显。

    (2)源区性质与部分熔融

    因LREE和HREE在不同的岩浆源区具有不同的矿物相/熔体相分配系数,故可用来限定地幔岩浆源区的组分及部分熔融的程度(Shaw et al.,2003)。赛什腾山富铌玄武岩具LREE相对富集、HREE平坦及低的(La/Yb)N(4.21~4.69)和(Gd/Yb)N(1.56~1.71),暗示其源区可能无石榴子石存在(蓝江波等,2007Pollock et al.,2010)。富铌玄武岩(Tb/Yb)PM<1.8(1.51~1.62),与尖晶石橄榄岩平衡熔体的(Tb/Yb)PM值一致,在(Tb/Yb)PM –(La/Sm)PM图解中(图7a)落入尖晶石二辉橄榄岩,表明岩石部分熔融可能发生在尖晶石稳定区域,而非石榴石稳定区域(解超明等,2019Wang et al.,2002)。在Ce/Y–Zr/Nb图解中(图7b),样品均位于原始尖晶石相二辉橄榄岩低程度熔融区域(<0.5%),进一步表明富铌玄武岩的岩浆源区为尖晶石相二辉橄榄岩。

    图  7  赛什腾山富铌玄武岩(Tb/Yb)PM –(La/Sm)PM图解(a)(底图据Wang et al.,2002)和Ce/Y–Zr/Nb图解(b)(底图据Deniel,1998
    Figure  7.  (a)(Tb/Yb)PM vs La/Sm)PM diagrams and (b) Ce/Y vs Zr/Nb diagrams for meta–basalts of Saishiteng mountain

    (3)构造环境

    前已提及,富铌玄武岩主要有2种成因机制:①俯冲板片熔融形成的埃达克质岩浆交代的地幔楔橄榄岩部分熔融产物(Aguillón-Robles et al.,2001Zhang et al.,2012Liu et al.,2014Chen et al.,2016)。②由富集地幔或洋岛玄武岩与亏损地幔混合的产物(Castillo,2008Petrone et al.,2008Sorbadere et al.,2013),如北美西部出露大规模的富铌玄武岩,被认为是从科迪勒拉板片窗上涌的软流圈地幔与俯冲交代的地幔楔相互作用的产物(Thorkelson et al.,2011)。然而,柴北缘已报道的与赛什腾山富铌玄武岩同时期的埃达克岩成因多与板片早期俯冲无关,而是加厚地壳部分熔融(于胜尧等,2011周宾等,2014杨士杰,2016)或陆壳折返阶段榴辉岩部分熔融的产物(李治华,2021);此外,与板片俯冲有关的埃达克岩是热的(即高温榴辉岩相)俯冲条件下部分熔融形成的(路增龙等,2020),但柴北缘地区早古生代与洋壳俯冲相关的榴辉岩均形成于相对冷的俯冲环境下(Zhang et al.,2008a2008b),在此环境下洋壳难以部分熔融形成埃达克质岩浆,进而也不可能交代地幔楔橄榄岩形成富铌玄武岩。综上可排除赛什腾山富铌玄武岩来源于俯冲板片熔体交代的地幔楔橄榄岩部分熔融产物的可能。

    柴北缘赛什腾山富铌玄武岩富Na2O、贫K2O,具相对高的TiO2和弱的Nb、Ta正异常,其球粒陨石标准化稀土元素配分曲线和原始地幔标准化蛛网配分形式与E–MORB类似,且在Zr–Ti图解(图8a)和Nb/Yb–Th/Yb图解(图8b)中样品均落在E-MORB区域附近或内部,表明其岩浆源区有富集地幔组分的加入。前人研究表明,早寒武世—晚奥陶世期间(520~445 Ma),柴北缘低角度北向俯冲的大洋板片发生陡角度回转,诱发软流圈地幔上涌,引起弧后伸展进而形成弧后盆地(夏林圻等,2016),而上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与上覆亏损地幔楔混合,形成富铌玄武岩的源区,即低程度部分熔融(<0.5%)的尖晶石相二辉橄榄岩,后沿构造薄弱部位喷出地表,形成赛什腾山富铌玄武岩(图9)。

    图  8  赛什腾山富铌玄武岩Zr–Ti图解(a)和Th/Yb–Ta/Yb图解(a)(底图据Pearce J A,1982
    Figure  8.  (a) Zr vs Ti diagrams and (b) Th/Yb vs Ta/Yb diagrams for meta–basalts of Saishiteng mountain
    图  9  赛什腾山富铌玄武岩成因模式图(据周艳龙,2021修改)
    Figure  9.  The genetic model map for meta–basalts of Saishiteng mountain

    20世纪90年代以来,柴北缘因发现早古生代大陆深俯冲的高压–超高压变质岩石(杨经绥等,1998宋述光等,2001孟繁聪等,2003陈丹玲等,2007),而引起了国内外学者的广泛关注(Song et al., 2006, 2014Mattinson et al., 2006Zhang et al.,2008a2008b2010Chen et al.,2009Xiong et al., 2011张贵宾等,2012),并针对其早古生代地球动力学背景和构造演化等开展了大量的研究工作,认为区内在早古生代经历了大洋板片俯冲→弧后拉伸→洋盆闭合→弧-陆碰撞和陆–陆碰撞→碰撞后板块折返→后造山陆内伸展的完整造山旋回(史仁灯等,2003王惠初等,2005吴才来等,2007吴才来等,2008高晓峰等,2011Zhang et al.,2011周宾等,2013朱小辉等,2015邱士东等,2015宋述光等,2015庄玉军等,2019),但学者们对大洋闭合及陆陆碰撞的具体时限还存在争议。吴才来等(2007)通过锆石SHRIMP定年得出柴北缘西段柴达木山S型花岗岩结晶年龄为(446.3±3.9)Ma,并认为该年龄反映了柴达木板块与中南祁连板块陆陆碰撞的时代;朱小辉等(2015)对柴北缘地区陆壳深俯冲前新元古代—早古生代大洋发展与演化的岩石记录进行了系统总结,认为洋盆闭合于460~450 Ma;夏林圻等(2016)总结柴北缘高压–超高压变质带中与大洋俯冲有关的高压变质作用峰期年龄和与大陆俯冲有关的超高压变质作用峰期年龄分别为476~442 Ma和440~421 Ma,并据此认为南祁连洋闭合时限为441 Ma,随后转入陆陆碰撞阶段;而周宾等(2019)在绿梁山识别出形成于弧后盆地环境的中志留世玄武安山岩(431.5±5.7 Ma),笔者也在赛什腾山发现产于硅质岩与凝灰岩之间的与弧后盆地环境相关的早志留世流纹岩(436±2 Ma,未发表数据),均暗示在早—中志留世柴北缘尚有部分地区未发生陆陆碰撞。赛什腾山富铌玄武岩形成于晚奥陶世(444±4 Ma),是俯冲大洋板片陡角度回转引起的上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与上覆亏损地幔楔混合的产物,这表明晚奥陶世柴北缘西段仍处于弧后伸展阶段,同时也说明该时期柴北缘西段陆陆碰撞尚未开始。而造成上述构造环境差异的原因,可能与区内不同地段板块形状不规则有关(吴才来等,2007)。

    此外,作为滩间山群物质组成部分,与弧后伸展环境有关的赛什腾山晚奥陶世富铌玄武岩的发现,表明晚奥陶世晚期(444 Ma)区域内与滩间山群有关的火山–沉积作用仍在继续,即滩间山群形成时代至少可延至晚奥陶世晚期。而前人基于野外地质特征、古生物组合、同位素年龄、构造–热事件和火山–沉积演化等不同研究视角,先后分别对柴北缘滩间山群形成时代进行了厘定,提出中—晚奥陶世(Liang et al.,2014)、奥陶纪(李峰等,20062007江小强等,2020)、晚奥陶世—志留纪(青海地质矿产局,1991)、早奥陶世(李怀坤等,1999赵凤清等,2003)、寒武纪—奥陶纪(王惠初等,2003高晓峰等,2011王侃,2014)、奥陶纪-志留纪(庄儒新,2006)、晚寒武世—晚奥陶世(汪劲草等,2013)、晚寒武世—早奥陶世(张孝攀等,2015)、晚寒武世—早志留世(周宾等,2019周艳龙,2021)等不同观点;而滩间山群形成的构造环境也同样存在诸如大陆裂谷(邬介人,1987)、洋岛或洋脊(赖绍聪等,1996朱小辉等,2015)、岛弧(高晓峰等,2011王侃,2014路增龙等,2020)、弧前盆地(朱小辉,2011)及弧后盆地(孙华山等,2012Sun et al.,2017)等环境的争议;另有部分学者认为滩间山群是洋陆俯冲过程中不同阶段(如岛弧和弧后盆地)(王惠初等,2003史仁灯等,2004Shi et al.,2006汪劲草等,2013张孝攀等,2015)的产物。存在上述争议的原因,笔者认为可能与柴北缘构造带在早古生代及其以后遭受了包括大陆深俯冲在内的多期强烈地质作用改造有关,构造混杂作用导致滩间山群中大量不同时代、不同构造环境成因的岩石混杂堆积在狭长构造带之内,如赛什腾山地区既存在代表大洋早期俯冲的晚寒武世埃达克质英安岩(史仁灯等,2003),又存在与弧后伸展有关的晚奥陶世富铌玄武岩。基于上述分析,笔者认为柴北缘滩间山群是晚寒武世—早中志留世洋陆转换过程中不同时期、不同构造背景下(包括洋岛、岛弧、弧后等)的火山–沉积产物,其经历了自大洋俯冲至陆陆碰撞前的整个俯冲消减过程,因构造混杂导致各类岩石混杂堆积于柴北缘狭长构造带内。

    (1)柴北缘赛什腾山滩间山群变玄武岩具富Na2O、Nb、高TiO2以及低LILE/HFSE和HREE/HFSE的地球化学特征,为富铌玄武岩。

    (2)赛什腾山富铌玄武岩结晶年龄为(444±4)Ma,岩浆源区为尖晶石相二辉橄榄岩,是俯冲大洋板片陡角度回转引起的上涌软流圈地幔在弧后盆地边缘(靠近岛弧侧)与上覆亏损地幔楔混合的产物,表明晚奥陶世柴北缘西段仍处于弧后伸展阶段,陆陆碰撞尚未开始。

    (3)结合前人相关研究,认为柴北缘滩间山群是晚寒武世—早中志留世洋陆转换过程中不同时期、不同构造背景下的火山–沉积产物,其经历了自大洋俯冲至陆陆碰撞前的整个俯冲消减过程,在形成后遭受多次强烈构造作用改造,致使不同构造背景的岩石混杂堆积于狭长构造带内。

  • 图  1   柴北缘地质简图(a)及研究区地质图(b)

    1.达肯大坂岩群第一岩组;2.达肯大坂岩群第二岩组;3.达肯大坂岩群第三岩组;4.达肯大坂岩群第四岩组;5.滩间山群;6.晚志留世黑云母花岗岩;7.早二叠世石英闪长岩;8.中二叠世二长花岗岩;9.早三叠世二长花岗岩(脉);10.第四系;11.晚奥陶世变玄武岩;12.早志留世英安岩/流纹岩;13.中二叠世辉长岩脉;14.晚二叠世辉长闪长岩脉;15.闪长岩;16.采样点

    Figure  1.   (a) Sketch map of tectonic location and (b) the geological map of study areas

    图  2   赛什腾山变玄武岩宏观产出特征及显微镜下特征

    a. 变玄武岩宏观产出特征;b. 变玄武岩野外露头;c~d. 变余斑状结构,变斑晶为绿帘石化角闪石,基质为角闪石、斜长石、阳起石、绿泥石及少量石英(正交偏光);Ep. 绿帘石;Hbl. 角闪石;Act. 阳起石;Chl. 绿泥石;Pl. 斜长石;Qtz. 石英

    Figure  2.   Macroscopic and microscopic characteristics for meta–basalts of Saishiteng mountain

    图  3   赛什腾山变玄武岩Zr/TiO2–Nb/Y分类图(a)(底图据Irvine T N,1971)、AFM图解(b)(底图据Winchester J A,1971)及TFeO–TFeO/MgO图解(c)(底图据Miyashiro A,1974

    Figure  3.   (a) TAS diagram, (b) AFM diagram and (c) TFeO vs. TFeO / MgO diagram for meta–basalts of Saishiteng mountain

    图  4   赛什腾山变玄武岩稀土元素球粒陨石标准化图解(a)和微量元素原始地幔标准化蛛网图(b)

    Figure  4.   (a) Chondrite–normalized REE patterns diagram and (b) Primitive–mantle normalised spidergram diagram for meta–basalts of Saishiteng mountain

    图  5   赛什腾山变玄武岩MgO–Nb/La图解(a)和 Nb–Nb/U图解(b)(底图据Kepezhinskas et al.,1997

    球粒陨石标准化值及原始地幔标准化值据Sun et al.,1989

    Figure  5.   (a) MgO vs. Nb/La diagram and (b) Nb vs. Nb/U diagram for meta–basalts of Saishiteng mountain

    图  6   赛什腾山富铌玄武岩锆石U–Pb年龄谐和图(a)及典型锆石阴极发光图像(b)

    Figure  6.   (a)The U–Pb Concordian diagram of zircons and (b)Representative cathodoluminescence images of the zircons for meta–basalts of Saishiteng mountain

    图  7   赛什腾山富铌玄武岩(Tb/Yb)PM –(La/Sm)PM图解(a)(底图据Wang et al.,2002)和Ce/Y–Zr/Nb图解(b)(底图据Deniel,1998

    Figure  7.   (a)(Tb/Yb)PM vs La/Sm)PM diagrams and (b) Ce/Y vs Zr/Nb diagrams for meta–basalts of Saishiteng mountain

    图  8   赛什腾山富铌玄武岩Zr–Ti图解(a)和Th/Yb–Ta/Yb图解(a)(底图据Pearce J A,1982

    Figure  8.   (a) Zr vs Ti diagrams and (b) Th/Yb vs Ta/Yb diagrams for meta–basalts of Saishiteng mountain

    图  9   赛什腾山富铌玄武岩成因模式图(据周艳龙,2021修改)

    Figure  9.   The genetic model map for meta–basalts of Saishiteng mountain

    表  1   赛什腾山变玄武岩主量元素(%)、微量元素(10−6)及稀土元素(10−6)含量分析结果

    Table  1   Major element (%), trace element (10−6) and REE element (10−6) compositions of meta–basalts of Saishiteng mountain

    样号TK02-1TK02-2TK02-3TK02-4TK02-5TK02-6
    SiO250.0848.9049.3849.4849.4352.05
    Al2O315.4615.5515.4515.5415.5614.98
    Fe2O34.885.235.414.814.405.30
    FeO6.296.446.116.346.745.40
    CaO11.1611.7811.4711.1710.5211.15
    MgO5.585.875.625.816.274.89
    K2O0.460.430.480.470.520.39
    Na2O2.602.442.562.733.022.43
    TiO21.451.441.471.481.491.39
    P2O50.140.140.150.160.140.13
    MnO0.1400.1400.1400.1400.1400.130
    LOI1.761.641.761.871.771.76
    TOTAL100100100100100100
    TFeO10.6811.1510.9810.6710.7010.17
    m/f0.920.930.900.961.030.85
    La11.911.711.911.411.011.2
    Ce25.124.324.023.624.024.2
    Pr3.403.293.223.183.353.16
    Nd14.614.014.213.714.313.7
    Sm3.413.333.303.213.313.19
    Eu1.191.161.161.171.141.16
    Gd3.553.593.623.433.513.41
    Tb0.620.610.600.590.610.58
    Dy3.503.513.533.403.503.30
    Ho0.690.700.690.670.670.64
    Er1.871.871.931.841.821.74
    Tm0.280.270.270.270.270.25
    Yb1.811.711.711.771.761.70
    Lu0.250.250.240.240.250.23
    Ba111.080.482.083.898.479.5
    Rb16.18.79.19.010.58.3
    Sr286273267245256284
    Co42.642.838.638.343.836.2
    V279282273275265267
    Cr54.253.660.050.149.047.6
    Ni53.251.550.649.451.852.0
    Nb13.813.513.313.613.513.7
    下载: 导出CSV

    表  2   赛什腾山富铌玄武岩锆石LA–ICP–MS U–Pb同位素测年结果

    Table  2   LA–ICP–MS zircon U–Pb isotopic analysis for meta–basalts of Saishiteng mountain

    样点
    编号
    207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th207Pb/206Pb207Pb/235U206Pb/238U208Pb/232Th232Th238UTh/U谐和
    比值 比值 比值 比值 年龄(Ma) 年龄(Ma) 年龄(Ma) 年龄(Ma)
    10.049 870.001 210.286 160.006 520.0416 20.000 430.014 980.001 081893425652633301222473220.770.97
    20.065 810.000 831.218 750.013 340.134 330.001 160.046 710.002 98001180968137923562304600.501.00
    30.055 390.001 940.543 690.018 050.071 20.000 970.024 020.002 2342850441124436480441181700.691.00
    40.067 820.002 81.351 750.053 450.144 580.002 50.042 260.004 868635386823871148379438460.831.00
    50.056 470.0010.555 80.0090.071 40.000 680.025 210.001 594712044964454503313633810.951.01
    60.082 720.001 081.804 990.020 670.158 280.001 410.088 430.005 5112631010477947817131021373680.371.11
    70.096 350.003 980.5530.020 990.041 630.000 780.021 420.002 5155543447142635428491562780.561.70
    80.068 660.001 611.274 270.027 790.134 620.001 580.049 340.003 8788926834128149973753004900.611.02
    90.134 880.001 677.450 970.081 070.400 690.003 780.129 810.008 08216282167102172172467145991150.861.00
    100.054 360.001 080.532 70.009 770.071 080.000 70.025 440.001 793862443464434508353355890.570.98
    110.050 990.002 270.292 270.012 530.041 580.000 570.015 640.001 2224073260102634314241481181.260.99
    120.055 930.003 50.545 230.032 690.070 720.001 560.029 170.004 734509444221440958193461060.431.00
    130.056 20.002 530.547 820.023 480.070 710.001 20.032 120.004 484606544415440763988551840.301.01
    140.052 40.001 450.302 30.007 890.041 850.000 480.014 830.001 023033926862643298205763461.671.02
    150.111 70.001 35.031 970.049 940.326 750.002 860.106 640.007 06182781825818231420481291273320.381.00
    160.078 270.001 181.899 10.025 70.175 990.001 660.022 90.002 4211541310819104594584825812750.201.10
    170.072 750.001 230.417 780.006 360.041 650.000 390.015 040.000 99100716354526323022010907641.431.35
    180.055 40.000 880.545 810.007 780.071 470.000 640.022 650.001 534281744254454453304745750.830.99
    190.109 150.001 324.795 40.049 750.318 680.002 820.092 010.006 43178581784917831417791191091940.561.00
    200.160 590.002 6310.148 060.156 850.458 370.005 680.127 820.010 5724621224481424322524311891361960.691.01
    210.112 360.003 871.106 640.034 750.071 440.001 230.065 630.007 551838337571744571285143973780.261.70
    220.085 540.001 52.683 720.043 070.227 570.002 380.059 390.004 71328161324121322121166901101550.711.00
    230.093 910.003 240.538 430.017 070.041 590.000 650.025 260.002 77150637437112634504551433750.381.66
    240.090 440.002 080.518 90.010 840.041 620.000 480.019 650.001 714352342472633393342514930.511.61
    250.061 940.001 230.929 190.017 060.108 810.001 080.030 320.003 31672236679666660465221380.161.00
    260.068 720.000 920.673 980.007 760.071 140.000 610.025 810.001 988901152354434515393339510.351.18
    270.154 240.004 010.884 750.020 230.041 610.000 60.013 850.001 13239320644112634278234071602.542.45
    280.118 810.001 845.639 650.079 760.344 330.003 660.112 310.013 861938121922121907182151252283040.091.02
    290.059 620.001 850.766 410.022 650.093 250.001 160.053 930.017 4159042578135757106233441370.031.01
    300.070 690.001 311.356 530.022 970.139 190.001 410.039 110.003 8594819870108408775751686800.251.04
    下载: 导出CSV
  • 陈丹玲, 孙勇, 刘良. 柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J]. 地学前缘, 2007. 14(01): 108-116.

    CHEN Danling, SUN Yong, LIU Liang. The metamorphic ages of the country rock of the Yukahe eclogites in the North Qaidam and its geological significance[J]. Earth Science Frontiesers(China University of Geosciences, Beijing: Peking University) , 2007, 14(1): 108- 116.

    高晓峰, 校培喜, 贾群子. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J]. 地质学报, 2011, 85(09): 1452-1463

    GAO Xiaofeng, XIAO Peixi, JIA Qunzi. Redetermination of the Tanjianshan Group: Geochronological and geochemical evidence of Basalts from the margin of the Qaidam Basin[J]. Acta Geologica Sinica, 2011, 85(09): 1452-1463.

    辜平阳, 计文化, 陈锐明, 等. 塔里木地块东南缘新太古代安南坝石英闪长片麻岩的成因及其对地壳演化的启示[J]. 地球科学, 2020, 45(09): 3268-3281

    GU Pingyang, JI Wenhua, CHEN Ruiming, et al. Petrogenesisi of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution[J]. Earth Science, 2020, 45(9): 3268-3281.

    郭安林, 张国伟, 强娟, 等. 青藏高原东北缘印支期宗务隆造山带[J]. 岩石学报, 2009.25(1): 1-12

    GUO Anlin, ZHANG Guowei, QIANG Juan, et al. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai-Tibet plateau[J]. Acta Petrologica Sinica, 2009, 25(1): 1-12.

    韩吟文, 马振东, 张宏飞等. 地球化学[M]. 北京: 地质出版社, 2004

    HAN Yinwen, MA Zhendong, ZHANG Hongfei, et al. Geochemistry[M]. Beijing: Geological Publishing House, 2004.

    江小强, 肖渊甫, 李建兵, 等. 柴北缘阿木尼克山滩间山群火山岩地球化学特征及地质意义[J]. 地质找矿论丛, 2020, 35(01): 73-84 doi: 10.6053/j.issn.1001-1412.2020.01.009

    JIANG Xiaoqiang, XIAO Yuanfu, LI Jianbing, et al. Geochemical characteristics and geological significance of Volcanic rocks in the Tanjianshan Formation of the Amunik mountains in the northern margin of the Qaidam Basin[J]. Contributions to Geology and Mineral Resources Research, 2020, 35(1): 73-84. doi: 10.6053/j.issn.1001-1412.2020.01.009

    赖绍聪, 邓晋福, 赵海玲. 柴达木北缘古生代蛇绿岩及其构造意义[J]. 现代地质, 1996, 10(01): 19-22+24-29.

    LAI SC, DENG JF and ZHAO HL. Paleozoic ophiolites and its tectonic significance on north margin of Qaidam basin[J]. Geoscience, 1996, 10(1): 18-28.

    蓝江波, 徐义刚, 杨启军, 等. 滇西高黎贡带~40Ma OIB型基性岩浆活动: 消减特提斯洋片与印度板块断离的产物?[J]. 岩石学报, 2007(06): 1334-1346 doi: 10.3969/j.issn.1000-0569.2007.06.010

    LAN JB, XU YG, YANG QJ, et al. ~40Ma OIB-type mafic magmatism in the Gaoligong belt: results of break-off between subducting Tethyan slab and Indian plate? [J]. Acta Petrologica Sinica, 2007, 23(6): 1334-1346. doi: 10.3969/j.issn.1000-0569.2007.06.010

    李峰, 吴志亮, 李保珠. 柴达木北缘滩间山群时代及其地质意义[J]. 大地构造与成矿学, 2007, 31(02): 226-233 doi: 10.3969/j.issn.1001-1552.2007.02.012

    LI Feng, WU Zhiliang, LI Baozhu. Recognition on Formation age of the Tanjianshan group on the Northern Margin of the Qaidam Basin and its Geological significance[J]. Geotectonica et Metallogenia, 2007, 31(2): 226-233. doi: 10.3969/j.issn.1001-1552.2007.02.012

    李峰, 吴志亮, 李保珠, 等. 柴达木盆地北缘滩间山群新厘定[J]. 西北地质, 2006, 39(3): 83-90 doi: 10.3969/j.issn.1009-6248.2006.03.012

    LI Feng, WU Zhiliang, LI Baozhu, et al. Revision of the Tanjianshan Group on the Northern Margin of the Qaidam Basin[J]. Northwestern Geology, 2006, 39(3): 83-90. doi: 10.3969/j.issn.1009-6248.2006.03.012

    李怀坤, 陆松年, 赵风清, 等. 柴达木北缘新元古代重大地质事件年代格架[J]. 现代地质, 1999, 02: 3-5

    LI Huaikun, LU Songnian, ZHAO Fengqing, et al. Geochronological Framework of the Neoproterozoic Major Geological Events in the Northern Margin of the Qaidam Basin[J]. Geoscience, 1999, (2): 3-5.

    李治华, 李碧乐, 王斌, 等. 柴北缘苦水泉金矿英云闪长岩和细粒闪长岩年代学、地球化学和Hf同位素及地质意义[J]. 岩石学报, 2021, 37(06): 1653-1673 doi: 10.18654/1000-0569/2021.06.02

    LI ZH, LI BL, WANG B, et al. Geochronology, geochemistry, Hf isotope, and their geological significance of the tonalite and fine-grained diorite from Kushuiquan gold deposit, North Qaidam[J]. Acta Petrologica Sinica, 2021, 37(6): 1653-1673. doi: 10.18654/1000-0569/2021.06.02

    陆松年, 王惠初, 李怀坤, 等. 柴达木盆地北缘“达肯大坂群”的再厘定[J]. 地质通报, 2002, 21(1): 19-23 doi: 10.3969/j.issn.1671-2552.2002.01.004

    LU Songnian, WANG Huichu, LI Huaikun, et al. Redefinition of the“Dakendaban Group”on the Northern margin of the Qaidam basin[J]. Geological bulletin of China, 2002, 21(1): 19-23. doi: 10.3969/j.issn.1671-2552.2002.01.004

    路增龙, 张建新, 毛小红, 等. 柴北缘东段奥陶纪埃达克岩-富Nb玄武岩: 对大陆深俯冲之前大洋俯冲及地壳增生的启示[J]. 岩石学报, 2020, 36(10): 2995-3017 doi: 10.18654/1000-0569/2020.10.05

    LU Zenglong, ZHANG Jianxin, MAO Xiaohong, et al. Ordovician adakite-Nb-enriched basalt suite in the eastern North Qaidam Moutains: Implications for oceanic subduction and crustal accretion prior to deep continental subduction[J]. Acta Petrologica Sinica, 2020, 36(10): 2995-3017. doi: 10.18654/1000-0569/2020.10.05

    孟繁聪, 张建新, 杨经绥, 等. 柴北缘锡铁山榴辉岩的地球化学特征[J]. 岩石学报, 2003.19(03): 435-442 doi: 10.3969/j.issn.1000-0569.2003.03.007

    MENG FC, ZHANG JX, YANG JS, et al. Geochemical Characteristics of eclogites in Xitieshan area, North Qaidam of northwestern China[J]. Acta Geologica Sinica, 2003.19(3): 435-442. doi: 10.3969/j.issn.1000-0569.2003.03.007

    潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707 doi: 10.3969/j.issn.1671-2552.2002.11.002

    PAN Guitang, LI Xingzhen, WANG Liquan, et al. Preliminary division of tectonic units of the Qinghai-Tibet Plateau and its adjacent regions[J]. Geological bulletin of China, 2002, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002

    青海省地质矿产局. 青海省区域地质志. 中华人民共和国地质矿产部地质专报[M]. 北京: 地质出版社, 1991

    Qinghai Bureau of Geology and Mineral Resources. Regional Geology of Qinghai Province. Geological Memoirs of Ministry of Geology and Mineral Resources of People’s Republic of China [M]. Beijing: Geological Publishing House, 1991.

    邱士东, 辜平阳, 庞新愉, 等. 青海冷湖北片麻状石英闪长岩的MC-LA-ICP-MS锆石U-Pb年龄、地球化学特征及地质意义[J]. 地质论评, 2015, 61(04): 948-960

    QIU Shidong, GU Pingyang, PANG Xinyu, et al. Zircon MC-LA-ICP-MS U-Pb dating, Geochemistry and Geological Significance of Gneissic Quartz Diorite in Northern Lenghu, Qinghai[J]. Geological Review, 2015, 61(4): 948-960.

    史仁灯, 杨经绥, 吴才来. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J]. 岩石矿物学杂志, 2003(03): 229-236 doi: 10.3969/j.issn.1000-6524.2003.03.004

    SHI Rendeng, YANG Jingsui, WU Cailai. The discovery of adakitic dacite in Early Palaeozoic island arc volcanic rocks on the northern margin of Qaidam basin and its geological significance[J]. Acta Petrologica et Mineralogica, 2003, 22(3): 229-236. doi: 10.3969/j.issn.1000-6524.2003.03.004

    史仁灯, 杨经绥, 吴才来, 等. 柴达木北缘超高压变质带中的岛弧火山岩[J]. 地质学报, 2004, 78(1): 52-64 doi: 10.3321/j.issn:0001-5717.2004.01.007

    SHI Rendeng, YANG Jingsui, WU Cailai, et al. Island arc volcanic rocks in the North Qaidam UHP metamorphic belt[J]. Acta Geologica Sinica, 2004, 78(1): 52-64. doi: 10.3321/j.issn:0001-5717.2004.01.007

    宋述光, 杨经绥. 柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体: 超高压变质作用的证据[J]. 地质学报, 2001, (02): 180-185 doi: 10.3321/j.issn:0001-5717.2001.02.006

    SONG Shuguang, YANg Jingsui. Sanidine + Quartz Inclusions in Dulan Eclogites: Evidence for UHP Metamorphism on the North Margin of the Qaidam Basin, N W China[J]. Acta Geologica Sinica, 2001, (2): 180-185. doi: 10.3321/j.issn:0001-5717.2001.02.006

    宋述光, 王梦珏, 王潮, 等. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学: 地球科学, 2015, 45(07): 916-940

    SONG Shuguang, WANG Mengjue, WANG Chao. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: Aperspective[J]. Science China: Earth Science, 2015, 45(7): 916-940.

    孙华山, 赵立军, 吴冠斌, 等. 锡铁山块状硫化物铅锌矿床成矿构造环境及矿区南部找矿潜力: 来自滩间山群火山岩岩石化学、地球化学证据[J]. 岩石学报, 2012, 28(02): 652-664

    SUN Huashan, ZHAO Lijun, WU Guanbin, et al. Metallogenic tectonic setting and ore-finding potential of Xitieshan massive sulfide lead-zinc deposit: Evidence from lithochemistry and geochemistry of ore-hosted volcanic strata, Tanjianshan Group[J]. Acta Petrologica Sinica, 2012, 28(02): 652-664.

    王惠初, 陆松年, 莫宣学, 等. 柴达木盆地北缘早古生代碰撞造山系统[J]. 地质通报, 2005, 24(7): 603-612 doi: 10.3969/j.issn.1671-2552.2005.07.003

    WANG Huichu, LU Songnian, MO Xuanxue, et al. An Early Paleozoic collisional orogen on the northern margin of the Qaidam basin, northwestern China[J]. Geological Bulletin of China, 2005, 24(7): 603-612. doi: 10.3969/j.issn.1671-2552.2005.07.003

    王惠初, 陆松年, 袁桂邦, 等. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报, 2003, 22(07): 487-493 doi: 10.3969/j.issn.1671-2552.2003.07.005

    WANG Huichu, LU Songnian, YUAN Guibang, et al. Tectonic setting and age of the “Tanjianshan Group” on the northern margin of the Qaidam basin, Northwestern China[J]. Geological Bulletin of China, 2003, 22(7): 487-493. doi: 10.3969/j.issn.1671-2552.2003.07.005

    汪劲草, 韦龙云, 郝森, 等. 柴北缘滩间山群构造对南祁连加里东造山及超高压变质岩折返的启示[J]. 桂林理工大学学报, 2013, 33(04): 575-586 doi: 10.3969/j.issn.1674-9057.2013.04.001

    WANG Jincao, WEI Longyun, HAO Sen, et al. Structure Implication in Tanjianshan group on Southern Qilian Caledonian Orogeny and Exhumation of UHP Metamorphic Rocks in Northern Qaidam[J]. Journal of Guilin University of Technology, 2013, 33(4): 575-586. doi: 10.3969/j.issn.1674-9057.2013.04.001

    王侃. 柴北缘布赫特山滩间山群地质特征及构造环境分析[D]. 西安:长安大学, 2014

    WANG Kan. Geological Characteristics and Tectonic Environment Analysis of the Tanjianshan group in the Buhete mountain in the Northern Margin of the Qaidam Basin[D]. Xi’an: Chang’an University, 2014.

    王立轩, 何世平, 庄玉军, 等. 青海小赛什腾山地区达肯大坂岩群中新解体出一套变火山岩系[J]. 西北地质, 2022, 55(1): 1-18 doi: 10.19751/j.cnki.61-1149/p.2022.01.001

    WANG Lixuan, HE Shiping, ZHUANG Yujun, et al. Discussion on Newly Disintegrated Metavolcanic Rock Series from the Dakendaban Group in Xiaosaishiteng Mountain Area, Qinghai Province[J]. Northwestern Geology, 2022, 55(1): 1-18. doi: 10.19751/j.cnki.61-1149/p.2022.01.001

    吴才来, 郜源红, 吴锁平, 等. 柴北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J]. 岩石学报, 2007, 23(8): 1861—1875 doi: 10.3969/j.issn.1000-0569.2007.08.008

    WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating of granites from the Da Qaidam area in the north margin of Qaidam basin, NW China[J]. Acta Petrologica Sinica, 2007, 23(8): 1861-1875. doi: 10.3969/j.issn.1000-0569.2007.08.008

    吴才来, 郜源红, 吴锁平, 等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学(D辑: 地球科学), 2008, 23(8): 930-949

    WU Cailai, GAO Yuanhong, WU Suoping, et al. Zircon SHRIMP U-Pb dating and geochemical characteristics of the western Qaidam granites[J]. Science in China Series D: Earth Sciences, 2008, 23(8): 930-949.

    吴才来, 郜源红, 李兆丽, 等. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架[J].中国科学:地球科学, 2014,44(10):2142-2165.

    WU Cailai, GAO Yuanhong, LI Zhaoli, et al. Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China[J]. Science China: Earth Sciences, 2014, 44(10):2142-2165.

    邬介人, 任秉琛, 张苺, 等. 青海锡铁山块状硫化物矿床的类型及地质特征[J]. 西北地质科学, 1987, 20(06): 1-81+83-88

    WU J R, REN B C, ZHANG M, et al. The genetic type and geological characteristics of the Xitieshan massive Sulphide deposit, Qinghai[J]. Northwest Geoscience, 1987, 20(6): 1-81+83-88.

    夏林圻, 李向民, 余吉远, 等. 祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 中国地质, 2016, 43(4): 1087-1138

    XIA Linqi, LI Xiangmin, YU Jiyuan, et al. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain[J]. Geology in China, 2016, 43(4): 1087-1138.

    解超明, 段梦龙, 于云鹏, 等. 西藏松多地区早侏罗世变质辉长岩的成因及其构造意义[J]. 岩石学报, 2019, 35(10): 3065-3082 doi: 10.18654/1000-0569/2019.10.07

    XIE Chaoming, DUAN Menglong, YU Yunpeng, et al. Genesisi and geological significance of Early Jurassic metamorphic gabbro in the Sumdo area. Tibet[J]. Acta Petrologica Sinica, 2019, 35(10): 3065-3082. doi: 10.18654/1000-0569/2019.10.07

    辛后田, 王惠初, 周世军. 柴北缘的大地构造演化及其地质事件群[J]. 地质调查与研究, 2006, 29(04): 311-320 doi: 10.3969/j.issn.1672-4135.2006.04.010

    XIN Houtian, WANG Huichu, ZHOU Shijun. Geological events and tectonic evolution of the north margin of the Qaidam Basin[J]. Geological Survey and Research, 2006, 29(04): 311-320. doi: 10.3969/j.issn.1672-4135.2006.04.010

    杨经绥, 许志琴, 李海兵, 等. 我国西部柴北缘地区发现榴辉岩[J]. 科学通报, 1998. (14): 1544-1549.

    YANG Jingsui, XU Zhiqin, LI Haibing, et al. Eclogite is found in the northern margin of China[J]. Science Bulletin, 1998, (14): 1554-1549.

    杨士杰. 柴北缘绿梁山复式花岗岩体及其中片麻岩、榴闪岩包裹体的成因与形成机制[D]. 西安: 西北大学, 2016

    YANG Shijie. The Genesisi and Formation Mechanism of Lvliangshan Composite Granite Body and Enclosed Gneiss and Garnet Amphibolite Lenses[D]. Xi’an: Northwest University, 2016.

    于胜尧. 都兰地区高压麻粒岩单元的构造热历史: 对柴北缘古生代碰撞造山作用的启示[D]. 北京: 中国地质科学院, 2011

    YU Shengyao. Tectonothermal History of High Pressure Granulite Unit in Dulan Area, the North Qaidam Mountains: Implications for Paleozoic collisional Orogeny[D]. Beijing: Chinese Academy of Geological Sciences, 2011.

    张贵宾, 张立飞, 宋述光. 柴北缘超高压变质带: 从大洋到大陆的深俯冲过程[J]. 高校地质学报, 2012, 18(01): 28-40 doi: 10.3969/j.issn.1006-7493.2012.01.003

    ZHANG Guibin, ZHANG Lifei, SONG Shuguang. An Overview of the Tectonic Evolution of North Qaidam UHPM Belt: from Oceanic Subduction to Continental Collision[J]. Geological Journal of China University, 2012, 18(1): 28-40. doi: 10.3969/j.issn.1006-7493.2012.01.003

    张海祥, 张伯友, 牛贺才. 富铌玄武岩: 板片熔体交代的地幔楔橄榄岩部分熔融产物[J]. 地球科学进展, 2005, 20(11): 1234-1242 doi: 10.3321/j.issn:1001-8166.2005.11.010

    ZHANG Haixiang, ZHANG Boyou, NIU Hecai. Nb-Enriched Basalt: The Product of the Partial Melting of the Slab-derived melt metasomatized mantle peridotite[J]. Advances in Earth Science, 2005, 20(11): 1234-1242. doi: 10.3321/j.issn:1001-8166.2005.11.010

    张孝攀, 王权锋, 惠洁, 等. 柴北缘滩间山群火山岩岩石化学特征及构造环境[J]. 矿物岩石, 2015, 35(01): 18-26 doi: 10.19719/j.cnki.1001-6872.2015.01.004

    ZHANG Xiaopan, WANG Quanfeng, HUI Jie, et al. Chemical characteristics of volcanic rocks from the Tanjianshan Group on the northern margin of the Qaidam basin and its tectonic environment[J]. Journal of Mineralogy and Petrology, 2015, 35(1): 18-26. doi: 10.19719/j.cnki.1001-6872.2015.01.004

    张永, 徐兴旺. 新疆青河县科克辉长岩体: 氧化地幔楔部分熔融岩浆的记录[J]. 地质学报, 2019, 93(5): 1037-1054. DOI: 10.19762/j.cnki.dizhixuebao.2019046.

    ZHANG Yong, XU Xingwang. The Keke gabbro in Qinghe County of Xinjiang:records from partial melting magma of the oxidized mantle wedge[J]. Acta Geologica Sinica, 2019, 93(5):1037-1054. doi: 10.19762/j.cnki.dizhixuebao.2019046

    赵风清, 郭进京, 李怀坤. 青海锡铁山地区滩间山群的地质特征及同位素年代学[J]. 地质通报, 2003, 22(1): 28-31 doi: 10.3969/j.issn.1671-2552.2003.01.005

    ZHAO Fengqing, GUO Jinjing, LI Huaikun. Geological characteristics and isotopic age of Tanjianshan Group along northern margin of Qaidam basin[J]. Geological Bulletin of China, 2003, 22(1): 28-31. doi: 10.3969/j.issn.1671-2552.2003.01.005

    周宾, 郑有业, 聂晓亮, 等. 柴北缘滩间山群玄武岩锆石定年及其地质意义 [J]. 东华理工大学学报(自然科学版), 2019, 42(03): 227-33+46.

    ZHOU Bin, ZHENG Youye, NIE Xiaoliang, et al. Zircon U-Pb dating for basaltic and esite of Tanjianshan group in the Lvliangshan region of Qaidam basin north margin and its geological significance[J]. Journal of East China University of Technology(Natural Science), 2019, 42(3): 227-233+246.

    周宾, 郑有业, 童海奎, 等. 柴北缘早古生代埃达克质花岗岩锆石定年及其地质意义[J]. 现代地质, 2014, 28(5): 875-883. doi: 10.3969/j.issn.1000-8527.2014.05.001

    ZHOU Bin, ZHENG Youye, TONG Haikui, et al. Zircon dating of early Paleozoic adakitic granite on the Northern Margin of Qaidam basin and its geological significance[J].Geoscience, 2014,28(5):875-883. doi: 10.3969/j.issn.1000-8527.2014.05.001

    周宾, 郑有业, 许荣科, 等. 青海柴达木山岩体LA-ICP-MS锆石U-Pb定年及Hf同位素特征[J]. 地质通报, 2013, 32(07): 1027-1034 doi: 10.3969/j.issn.1671-2552.2013.07.008

    ZHOU Bin, ZHENG Youye, XU Rongke, et al. LA-ICP-MS zircon U-Pb dating and Hf isotope geochemical characteristics of Qaidamshan instrusive body[J]. Geological Bulletin of China, 2013, 32(7): 1027-1034. doi: 10.3969/j.issn.1671-2552.2013.07.008

    周艳龙. 柴北缘赛什腾山一带滩涧山群地质地球化学特征及构造演化[D]. 西安: 长安大学, 2021

    ZHOU Yanlong. Geological and Geochemical Characteristics and Tectonic Evolution of Tanjianshan Group in the Saishiteng mountain, Northern Margin of Qaidam Basin[D]. Xi’an: Chang’an University, 2021.

    朱小辉. 柴达木盆地北缘滩间山群火山岩地球化学及年代学研究[D]. 西安: 西北大学, 2011

    ZHU Xiaohui. Geochemical and zircon U-Pb dating studies of the volcanic of Tanjianshan Group in the North Qaidam[D]. Xi’an: Northwest University, 2011.

    朱小辉, 陈丹玲, 王超, 等. 柴达木盆地北缘新元古代-早古生代大洋的形成、发展和消亡[J]. 地质学报, 2015, 89(02): 234-251

    ZHU Xiaohui, Chen Danling, Wang Chao. The Initiation, Development and Termination of the Neoproterozoic-Early Paleozoic Ocean in the Northern Margin of Qaidam Basin[J]. Acta Geologica Sinica, 2015, 89(2): 234-251.

    庄儒新. 柴达木盆地北缘滩间山群火山岩岩石组合及形成环境[D]. 昆明: 昆明理工大学, 2006

    ZHUANG Ruxin. The Volcanic Rock Associations and Formation Environment of Tanjianshan group in the Northern Margin of Qaidam Basin[D]. Kunming: Kunming University of Science and Technology, 2006.

    庄玉军, 辜平阳, 高永伟, 等. 柴北缘赛什腾中二叠世辉长岩成因及其对宗务隆洋盆俯冲时限的制约[J]. 岩石矿物学杂志, 2020, 39(06): 718-734 doi: 10.3969/j.issn.1000-6524.2020.06.004

    ZHUANG Yujun, GU Pingyang, GAO Yongwei, et al. Petrogenesis of Middle Permian gabbro in Saishiteng Moutain of the northern Qaidam Basin and its constraint to the time of Zongwulong Ocean subduction[J]. Acta Petrologiaca Et Mineralogica, 2020, 39(6): 718-734. doi: 10.3969/j.issn.1000-6524.2020.06.004

    庄玉军, 辜平阳, 李培庆, 等. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学、年代学及Hf同位素特征[J]. 地质通报, 2019, 38(11): 1801-1812 doi: 10.12097/j.issn.1671-2552.2019.11.004

    ZHUANG Yujun, GU Pingyang, LI Peiqing, et al. Geochemistry, geochronology and Hf isotopic compositions of metagabbro dykes on the northestern margin of Oulongbuluke micro-block on the northern margin of Qaidam basin[J]. Geological Bulletin of China, 2019, 38(11): 1801-1812. doi: 10.12097/j.issn.1671-2552.2019.11.004

    Aguillón-Robles A, Calmus T, Benoit M, et al. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California?[J]. Geology, 2001, 29(6): 531-534. doi: 10.1130/0091-7613(2001)029<0531:LMAANE>2.0.CO;2

    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59-79.

    Becker H, Jochum KP and Carlson RW. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones[J]. Chemical Geology, 1999, 160(4): 291-308. doi: 10.1016/S0009-2541(99)00104-7

    Castillo PR. Adakite petrogenesis[J]. Lithos, 2012, 134-135: 304-316. doi: 10.1016/j.lithos.2011.09.013

    Chen D L, Liu L, Sun Y, et al. Geochemistry and zircon U -Pb dating and its implications of the Yukahe HP/UHP terrane, the North Qaidam, NW China [J]. Journal of Asian Earth Sciences, 2009, 35(3-4): 259 -272. doi: 10.1016/j.jseaes.2008.12.001

    Chen SS , Shi RD , Yi GD, et al. Middle Triassic volcanic rocks in the Northern Qiangtang (Central Tibet): Geochronology, petrogenesis, and tectonic implications[J]. Tectonophysics, 2016, 666:90-102.

    Deniel C. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean)[J]. Chemical Geology, 1998, 144(3-4): 281-303. doi: 10.1016/S0009-2541(97)00139-3

    Ernst R. E. , Buchan K. L. , Hamilton M. A. , et al. Integrated paleomagnetism and U-Pb geochronology of mafic dikes of the eastern Anabar Shield Region, Siberia: Implications for Mesoproterozoic Paleolatitude of siberia and Comparison with Laurentia[J]. The Journal of Geology, 2000, 108: 381-401. doi: 10.1086/314413

    Escuder-Viruete J, Pérez-Estaún A, Weis D, et al. Geochemical characteristics of the Río Verde complex, central Hispaniola: Implications for the paleotectonic reconstruction of the Lower Cretaceous Caribbean island-arc[J]. Lithos, 2010, 114(1-2): 168-185. doi: 10.1016/j.lithos.2009.08.007

    Hajash A Jr. Rare earth element abundances and distribution patterns in hydrothermally altered basalts: Experimental results[J]. Contributions to Mineralogy and petrology, 1984, 85(4): 409-412. doi: 10.1007/BF01150297

    Irvine T. N. and BaragarW. R. A. A Guide to the Chemical Classification of the Common Volcanic Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548. doi: 10.1139/e71-055

    Kepezhinskas P, Defant MJ and Drummond MS. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60(7): 1217-1229. doi: 10.1016/0016-7037(96)00001-4

    Kepezhinskas P. , Mcdermott F. , Defant M. J. , et al. Trace element and SrNdPb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis [J]. Geochimica Et Cosmochimica Acta, 1997, 61(3): 577-600. doi: 10.1016/S0016-7037(96)00349-3

    Lassiter J C, DePaolo D J. Plumes/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotope constraints[J]. American Geophysical Union, 1997, 100: 335-355.

    Liang X. Q. , Fu J. G. , Wang C. , et al. Redefinition and Formation Age of the Tanjianshan Group in Xitieshan Region, Qinghai [J]. Acta Geologica Sinica-English Edition, 2014, 88(2): 394-409. doi: 10.1111/1755-6724.12204

    Liao FX, Chen NS, Santosh M, et al. Paleoproterozoic Nb–enriched meta-gabbros in the Quanji Massif, NW China: Implications for assembly of the Columbia supercontinent[J]. Geoscience Frontiers, 2018, 9(2): 577-590. doi: 10.1016/j.gsf.2017.05.007

    Liu CH, Zhao GC, Liu FL, Shi J, et al. 2.2 Ga magnesian andesites, Nb-enriched basalt-andesites, and adakitic rocks in the Lüliang Complex: Evidence for early Paleoproterozoic subduction in the North China Craton. Lithos[J]. 2014, 208-209: 104-117.

    Liu H C, Wang YJ, Cawood P A, et al. Episodic slab rollback and back-arc extension in the Yunnan-Burma region: Insights from Cretaceous Nb-enriched and oceanic-island basalt-like mafic rocks[J]. Geological Society of America Bulletin, 2017, 129(5-6): 698–714. doi: 10.1130/B31604.1

    Ludwig K R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel [J]. Berkeley Geochronology Center Special Publication. 2003, (4): 1–70.

    Mattinson CG, Wooden JL, Liou JG, et al. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China [J]. Mineralogy&Petrology, 2006, 88(1-2): 227 -241.

    Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355. doi: 10.2475/ajs.274.4.321

    Ormerod D S, Hawkesworth C J, Rogers N W, et al. Tectonic and magmatic transition in the western Great Basin, USA [J]. Nature, 1988, 333(6171-6172): 394~353.

    Pearce J A. and Noryy M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69: 33-47. doi: 10.1007/BF00375192

    Petrone CM, Ferrari L. Quaternary adakite—Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence?[J]. Contributions to Mineralogy and Petrology, 2008, 156(1): 73-86. doi: 10.1007/s00410-007-0274-9

    Pollock J C and Hibbard J P. Geochemistry and tectonic significance of the Stony Mountain gabbro, North Carolina: Implications for the Early Paleozoic evolution of Carolinia[J]. Gondwana Research, 2010, 17(2-3): 500-515. doi: 10.1016/j.gr.2009.09.009

    Sajona FG, Maury RC, Bellon H, et al. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines) [J]. Journal of petrology, 1996, 37(3): 693-726. doi: 10.1093/petrology/37.3.693

    Shaw J. E. , Baker J. A. , Menzies M. A. , et al. Petrogenesis of the Largest Intraplate Volcanic Field on the Arabian Plate (Jordan): a Mixed Lithosphere–Asthenosphere Source Activated by Lithospheric Extension[J]. Journal of Petrology, 2003, 44(9): 1657-1679. doi: 10.1093/petrology/egg052

    Shi R. D. , Yang J. S. , Wu C. L. , et al. Island arc volcanic rocks in the north Qaidam UHP belt, northern Tibet plateau: Evidence for ocean–continent subduction preceding continent–continent subduction [J]. Journal of Asian Earth Sciences, 2006, 28(2-3): 151-159. doi: 10.1016/j.jseaes.2005.09.019

    Song S G, Niu Y L, Su L, et al. Continental orogenesis from ocean subduction, continental collision/subduction, to orogen collapse, and recycling: The example of the North Qaidam UHPM belt, NW China [J]. Earth Science Reviews, 2014, 129(1): 59 -84.

    Song SG, Zhang LF, Niu YL, et al. Evolution from oceanic subduction to continental collision: a case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data [J]. Journal of Petrol, 2006, 47(3): 435 -455. doi: 10.1093/petrology/egi080

    Sorbadere F, Schiano P, Métrich N, et al. Small-scale coexistence of island-arc-and enriched-MORB-type basalts in the central Vanuatu arc[J]. Contributions to Mineralogy and Petrology, 2013, 166(5): 1305-1321. doi: 10.1007/s00410-013-0928-8

    Sun HS , Li H , Evans N J , et al. Volcanism, mineralization and metamorphism at the Xitieshan Pb–Zn deposit, NW China: Insights from zircon geochronology and geochemistry[J]. Ore Geology Reviews, 2017, 88: 289-303. S016913681730080X.

    Sun SS and McDonough WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Sauders AD and Norry MJ. eds. Magmatism in the Ocean Basins[J]. Geological Society. Special Publication, 1989, 42(1): 3l3-345.

    Thorkelson DJ, Madsen JK, Sluggett CL. Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry[J]. Geology, 2011. 39(3): 267-270. doi: 10.1130/G31522.1

    Wang K, Plant T, Walker J D, et al. A mantle melting profile across the Basin and Range, SW USA[J]. Journal of Geophysical Research: Solid Earth, 2002.107(B1).

    Wang Q, Wyman DA, Zhao ZH, et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology, 2007, 236(1-2): 42-64. doi: 10.1016/j.chemgeo.2006.08.013

    Winchester J. A, , Floyd P. A. Geochemical discrimination of different magma series and their differentiation products using immobile elements [J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    Xiong Q, Zheng J P, Griffin W L, et al. Zircons in the Shenglikou ultrahigh-pressure garnet peridotite massif and its country rocks from the north qaidam terrane (western China): Meso - Neoproterozoic crust- mantle coupling and early Paleozoic convergent plate-margin processes [J]. Precambrian Research, 2011, 187(1-2), 33-57. doi: 10.1016/j.precamres.2011.02.003

    Zhang A, Wang Y, Fan W, et al. Earliest Neoproterozoic (ca. 1.0 Ga) arc–back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: geochronological and geochemical evidence from the metabasite[J]. Precambrian Research, 2012, 220: 217-233.

    Zhang C. , Zhang, LF. , Van Roermund, et al. Petrology and SHRIMP U–Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4): 752-767. doi: 10.1016/j.jseaes.2011.04.002

    Zhang GB, Song SG, Zhang LF, et al. The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology[J]. Lithos, 2008, 104(1- 4): 99-118.

    Zhang J X, Mattinson C G, Meng F C, et al. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP⁄UHP metamorphic terrane, Western China: evidence fromzircon U -Pb geochronology [J]. Geological Society of America Bulletin, 2008, 120(5-6): 732 -749. doi: 10.1130/B26093.1

    Zhang J X, Mattinson C G, Yu S Y, et al. U - Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during continental subduction [J]. Journal of Metamorphic Geology, 2010,28(9):955-978.

  • 期刊类型引用(5)

    1. 张炜. 柴北缘中酸性侵入岩成因及其构造意义. 资源信息与工程. 2024(02): 11-14 . 百度学术
    2. 庄玉军,辜平阳,王盼龙,高永伟,彭璇. 柴北缘欧龙布鲁克微陆块西段原“达肯大坂岩群”的沉积时代、源区及其对冈瓦纳大陆重建的制约. 岩石学报. 2024(11): 3609-3622 . 百度学术
    3. 徐盛林,邵兆刚,李冰,陈宣华,王振东,徐大兴,马英,丁伟翠,周鹏超,王叶. 柴达木盆地西部岩石圈电性结构研究. 地质通报. 2024(11): 1907-1920 . 百度学术
    4. 陈宁,曾忠诚,赵端昌,张若愚,李琦,赵江林,王天毅,刘向东. 阿尔金造山带南缘晚奥陶世碱性辉长岩成因及其大地构造意义. 西北地质. 2023(04): 91-102 . 本站查看
    5. 刘嘉情,钟世华,李三忠,丰成友,戴黎明,索艳慧,郭广慧,牛警徽,薛梓萌,黄宇. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体. 西北地质. 2023(06): 41-56 . 本站查看

    其他类型引用(0)

图(9)  /  表(2)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  32
  • PDF下载量:  47
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-05-14
  • 网络出版日期:  2022-08-30
  • 刊出日期:  2023-02-19

目录

/

返回文章
返回