Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling
-
摘要:
黄水庵矿床位于华北克拉通南缘熊耳山矿集区,是东秦岭钼矿带典型的碳酸岩型Mo–REE矿床之一。黄水庵矿床的Mo–REE矿体主要产于碳酸岩中,碳酸岩呈脉状和隐爆角砾岩体侵入太华群。笔者通过碳酸岩方解石微量元素、C–O同位素以及氟碳铈矿U–Th–Pb年龄的研究,探讨了碳酸岩岩浆的来源、成岩成矿年龄和构造地质背景,对东秦岭地区的构造演化和成矿作用提供约束。方解石的微量元素具有富集大离子亲石元素、亏损高场强元素的特征,稀土配分模式为轻稀土元素富集的右倾型(LREE/HREE=3.08~10.33)。方解石δ13 CV-PDB值为−4.11‰~−5.62‰、δ18OV-SMOW值为6.40‰~7.62‰,指示初始火成碳酸岩特征。氟碳铈矿U–Th–Pb定年的加权平均年龄为(213.5±2.9)Ma,代表了黄水庵REE矿化的时限。综合已有成岩成矿年龄和同位素研究结果,认为黄水庵矿床的成矿时代为晚三叠世,形成于秦岭造山带碰撞后的伸展背景。富Mo下地壳与富集地幔的部分熔融形成碳酸岩岩浆,其中地壳物质的再循环是形成碳酸岩型Mo–REE矿化的关键因素之一。
-
关键词:
- 碳酸岩 /
- 方解石微量元素 /
- 碳氧同位素 /
- 氟碳铈矿U–Th–Pb定年 /
- 黄水庵矿床
Abstract:The Huangshui’an deposit, located in Xiong’ershan ore concentration area in the southern margin of the North China Craton, is one of the typical carbonatite–hosted Mo–REE deposit in the East Qinling Mo metallogenic belts. The Mo–REE ore bodies of the Huangshui’an deposit mainly are hosted in carbonatite which occur as veins and cryptoexplosive breccia intrusions in the Taihua Group. Based on the study of trace elements and C–O isotopic compostion of calcite, and bastnäsite U–Th–Pb dating, we discuss the origin of carbonatite, metallogenic age and tectonic setting, which provide constraints for tectonic evolution and mineralization in the East Qinling belt. The trace elements of calcite are characterized by enrichment of large ion lithophile elements and depletion of high field strength elements, and are enriched in LREE (LREE/HREE=3.08~10.33). The δ13 CV-PDB values of calcite ranging from −4.11‰ to −5.62‰ and δ18 OV-SMOW values ranging from 6.40‰ to 7.62‰ indicate the characteristics of primary mantle–derived carbonatite. The weighted average age of U–Th–Pb dating of bastnäsite is 213.5±2.9 Ma, representing the age of REE mineralization in the Huangshui'an deposit. Based on diagenetic and metallogenic age and available isotopic ages, we propose that the metallogenic age of the Huangshui’an deposit is Late Triassic. The Huangshui’an carbonatite–hosted deposit was formed in the post–collisional setting of the Qinling orogenic belt. The partial melting of Mo–fertile lower crust and enriched mantle formed the carbonatite magma, and the recycling of crustal material is one of the key factors for the formation of carbonatite–hosted Mo–REE mineralization.
-
班公湖–怒江成矿带包含班公湖–怒江缝合线中的蛇绿混杂岩带以及南北两侧的岩浆岩区(宋扬等,2014)。近年来,随着铁格隆南、多布杂、尕尔勤等大型、超大型斑岩Cu-Au矿床以及尕尔穷、嘎啦勒等大型矽卡岩Cu-Au矿床的发现和评价,班公湖–怒江成矿带成为了青藏高原继冈底斯和玉龙成矿带之后又一重要成矿带(唐菊兴,2019)。目前,已发现的矿床主要集中发育在班公湖–怒江成矿带西段。前人针对成矿带西段的构造–岩浆演化与成矿耦合关系开展了大量研究(潘桂棠等,2004,2007;曲晓明等,2006;Shi et al., 2007, 2008;李金祥等,2007;佘洪全等,2009;常青松,2011;陈华安等,2013; Zhu et al., 2016; Li et al., 2016),但对于成矿带北缘晚侏罗世岩浆岩的成因及其成矿潜力的研究还相对薄弱。白板地北部花岗闪长岩位于班公湖–怒江成矿带北缘改则县境内(图1)。地表可见花岗闪长岩与龙格组(P2l)碳酸盐岩呈侵入接触,接触带上发育好的石榴子石矽卡岩化,并发育有孔雀石和黄铜矿(图2),具有良好的找矿前景,但缺乏深入研究。笔者在野外地质调查基础上,针对白板地北部花岗闪长岩开展LA-ICP-MS锆石U-Pb定年和原位微量元素研究,以精确厘定其侵位年龄和成岩温度,以期为深入认识班公湖–怒江成矿带西段构造–岩浆演化过程提供新证据。
1. 区域地质背景
研究区主要出露上晚二叠世龙格组和中侏罗统雀莫错组沉积地层。其中,龙格组岩性自上而下分别为生物碎屑灰岩、亮晶灰岩、泥晶灰岩和生物碎屑灰岩的不等厚互层。雀莫错组岩性主要为浅灰–灰黄色总成变质砂岩、灰绿色薄层变质粉砂岩,夹少量灰绿色薄层粉砂质板岩。花岗闪长岩与龙格组碳酸盐岩呈侵入接触关系,其表面风化为黄白色,局部可见褐铁矿化,新鲜面为灰白色,呈中粒花岗结构,块状构造。岩石主要由石英(25%~30%)、钾长石(30%~35%)、斜长石(40%~45%)、角闪石(5%~10%)、黑云母(0~5%)以及少量锆石和磷灰石等副矿物。接触带附近花岗闪长岩中发育少量绿泥石–绿帘石脉和黄铁矿细脉。矽卡岩主要呈透镜状发育于花岗闪长岩与龙格组碳酸盐岩接触带上,主要矿物组成包括石榴子石、辉石、绿帘石和绿泥石。黄铜矿和孔雀石呈脉状,浸染状发育于石榴子石与辉石颗粒之间,规模宽约1 m,长度大于2 m。拣块样分析结果表明,矽卡的Cu、Mn、Pb、Zn品位分别为:8.75%、0.10%、0.021%和0.13%,呈现出较好的铜成矿潜力。
2. 样品采集及分析测试方法
分析样品采自白板地北部(图2)。在地表采集不同位置花岗闪长岩样品约10 kg并在室内开展样品初步处理和加工,过程中剔除遭受风化作用的样品。样品破碎筛选至80~100目,经重砂和磁选出锆石单矿物并在双目镜下初步挑选,然后将锆石清洗后固定在已刻槽的环氧树胶靶台上,抛光至锆石颗粒内部露出,并镜下对其进行透射光、反射光照相,最后对锆石靶用体积百分比为3%的HNO3清洗样品并镀金膜,镀膜后进行阴极发光(CL)照相。
在开展原位成分分析前,先详细研究锆石的形貌和内部结构,对解释锆石的U-Pb年龄、微区地球化学成分和同位素组成的至关重要。根据透射光、反射光及阴极发光照片,选取表面干净无裂缝、内部洁净没有包裹体、环带清晰的锆石颗粒17粒,分别对其进行微区U-Pb同位素、微量元素分析,锆石单颗粒LA-ICP-MS(激光剥蚀电感耦合等离子体质谱)、U-Pb同位素定年和微量元素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,激光剥蚀系统为美国安捷伦公司生产的GeoLas2005,激光器来自于德国ATL公司,ICP-MS型号为Agilent7500a。实验中采用He气作为剥蚀物质的载气。此次样品分析为了得到稳定的信号,测试时激光斑束直径32 μm,剥蚀深度约15 μm。锆石年龄校准采用国际标准锆石91500作为外标(Wiedenbeck et al.,1995,2004),用美国国家标准技术研究院研制人工合成硅酸盐玻璃标准参考物NIST SRM612作为内标。每分析5次未知锆石样品便进行标样分析,以确保分析条件的精度。实验获得的ICP-MS的同位素分析数据比值校正通过GLITTER软件进行计算,普通铅校正采用Andersen的ComPbCorr校正软件(Andersen et al.,2002),以扣除普通Pb的影响。加权平均年龄和谐和图绘制采用ISOPLOT(版本VER3.32版)3.0程序进行(Ludwig et al.,2003)。具体的实验原理和详细的测试方法可参考Yuan 等(2004)。
3. 分析结果
3.1 锆石形态
白板地北部花岗闪长岩锆石颗粒阴极发光照片显示,岩浆锆石的长轴为20~250 μm;锆石CL图像显示晶型主要以双锥状、长板状为主,除受后期人工挑选及制靶过程轻微破坏外,基本呈自形晶(图3)。按形状特点可分为两类,第一类总体锆石颗粒以长板状为主,最长的如13、15测点所在锆石,长约为200 μm,宽约为70 μm,长宽比约为3∶1,以灰黑色为主,典型的岩浆锆石振荡环带清晰,晶型粗大完整;第二类以短板状为主,最小的如2、9测点所在锆石,长约为50 μm,宽约为20 μm,长宽比约为1.5∶1,也以灰黑色为主,偶见灰白色,晶型较小但基本完好,也具有典型的岩浆锆石特征(吴元保等,2004)。尽管锆石形态不一,但均未见后期热液改造、二次捕获等迹象,代表此次岩浆活动为一次形成,因而其可以代表该花岗闪长岩体的成岩年龄(王立强等,2016)。
3.2 锆石微量元素特征
样品的锆石17个测点微量元素含量分析结果可见表1。花岗闪长岩锆石的稀土元素球粒陨石标准化配分模式(图4)显示,17个测试点的稀土元素配分模式都表现为一致的明显的重稀土(HREE)富集、轻稀土(LREE)亏损的左倾型。花岗闪长岩中锆石的稀土元素配分模式总体显示显著Ce正异常(δCe = 0.89~4.81)。所有测点均呈现较明显的Eu(δEu=0.26~0.65)负异常。文中测试所有样品稀土总量变化范围大,从最小的6.08×10−6,到最高的24.03×10−6,其锆石稀土元素总量一般低于50×10−6。在La-(Sm/La)N判别图解大部分测点均落在岩浆成因锆石区域附近,而远离热液锆石区域,表明本次分析的锆石均为岩浆锆石(图5)。
表 1 白板地矿区外围花岗闪长岩锆石微量元素(10–6)分析结果Table 1. The trace element (10–6) result of zircon from granodiorite in Baibandi area测点 Ti Y Nb Ta La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE δEu δCe 1 1.20 12.01 0.08 0.04 0.02 0.14 0.01 0.10 0.15 0.04 0.42 0.11 0.97 0.44 2.00 0.48 5.51 1.13 11.53 0.47 2.89 2 1.13 14.14 0.09 0.03 2.26 4.37 0.46 1.93 0.37 0.05 0.38 0.10 1.23 0.49 2.25 0.55 5.50 1.04 20.98 0.39 0.98 3 0.98 12.32 0.09 0.04 0.09 0.27 0.03 0.23 0.17 0.04 0.51 0.13 1.25 0.47 1.88 0.47 3.79 0.65 9.98 0.38 1.23 4 1.14 5.56 0.08 0.05 0.14 0.30 0.04 0.18 0.14 0.03 0.32 0.07 0.63 0.22 1.00 0.28 2.93 0.64 6.92 0.48 0.91 5 1.33 17.87 0.09 0.04 0.01 0.19 0.01 0.09 0.14 0.04 0.46 0.16 1.61 0.63 2.78 0.59 5.59 1.02 13.32 0.41 4.28 6 1.41 9.19 0.07 0.04 0.01 0.18 0.01 0.12 0.16 0.05 0.38 0.10 0.91 0.34 1.59 0.35 3.44 0.70 8.36 0.64 5.03 7 1.43 7.98 0.07 0.03 0.01 0.15 0.02 0.24 0.24 0.06 0.62 0.13 1.01 0.33 1.40 0.41 3.84 0.83 9.29 0.49 2.30 8 0.94 4.69 0.07 0.04 0.01 0.11 0.01 0.10 0.15 0.03 0.29 0.07 0.60 0.19 0.79 0.26 2.81 0.68 6.08 0.41 2.36 9 1.10 31.51 0.10 0.04 0.01 0.15 0.01 0.11 0.17 0.04 0.78 0.22 2.67 1.05 4.99 1.12 10.76 1.96 24.03 0.26 3.28 10 1.25 21.91 0.09 0.04 0.01 0.17 0.01 0.12 0.16 0.05 0.47 0.14 1.81 0.73 3.31 0.82 8.09 1.74 17.63 0.47 4.47 11 1.06 8.81 0.08 0.03 0.01 0.14 0.01 0.13 0.17 0.04 0.36 0.09 0.82 0.31 1.62 0.43 4.79 1.09 10.00 0.45 2.85 12 1.24 8.60 0.08 0.04 0.01 0.12 0.01 0.10 0.16 0.04 0.40 0.10 0.93 0.36 1.45 0.34 3.32 0.66 8.00 0.43 3.51 13 1.24 4.10 0.09 0.04 0.01 0.14 0.01 0.10 0.14 0.04 0.32 0.07 0.59 0.20 0.92 0.26 2.81 0.63 6.25 0.61 2.88 14 0.89 4.32 0.05 0.03 0.27 0.55 0.06 0.32 0.12 0.03 0.28 0.06 0.49 0.20 0.88 0.23 2.34 0.45 6.28 0.41 0.97 15 1.09 11.60 0.09 0.04 0.02 0.16 0.01 0.11 0.16 0.04 0.49 0.12 1.01 0.42 1.87 0.48 4.89 0.93 10.70 0.39 2.29 16 1.16 27.24 0.08 0.03 0.01 0.13 0.01 0.13 0.16 0.04 0.62 0.22 2.53 0.89 4.10 0.89 8.77 1.60 20.09 0.35 3.10 17 1.25 10.00 0.08 0.04 0.01 0.20 0.01 0.14 0.17 0.05 0.41 0.09 0.94 0.32 1.50 0.40 3.99 0.86 9.08 0.58 3.41 图 5 岩浆锆石-热液锆石判别图解(Hoskin, 2005)Figure 5. La-(Sm/La)N diagram for zircon3.3 锆石U-Pb年龄
花岗闪长岩中17个锆石颗粒的U-Pb同位素测定结果显示(表2),锆石中Th含量为64.27×10−6~203.13×10−6,平均值为114.31×10−6,U含量为105.97×10−6~472.42×10−6,平均值为278.27×10−6。Th/U值为0.33~0.61,均大于0.1,变化范围相对较小,表明这些锆石存在于相对一致的U-Th-Pb封闭体系。这一特征与典型岩浆成因锆石(Th/U>0.1)的一致(Hoskin et al., 2003;陈澍民等,2023;代新宇等,2024;李平等,2024)。17个测点的Th/U值均在0.3以上,具有典型岩浆锆石特征(吴元保等,2004; 王新雨等,2023)。同时,17个测点的207Pb/206Pb 值非常接近典型的岩浆成因锆石值(207Pb/206Pb =
0.0459 ~0.0605 ),表明该花岗闪长岩中的锆石为同期岩浆结晶形成(Belousova, 2002)。17个测点的U-Pb同位素比值在误差范围内谐和度较高,集中在谐和线附近(图6)。在置信度为95%时的206Pb/238U加权平均值为(154.8±1.2)Ma(MSWD=1.7)。表 2 白板地矿区外围花岗闪长岩样品锆石U-Pb定年结果Table 2. The U-Pb results of zircon from granodiorite in Baibandi area测点号 含量(10−6) 同位素比值及误差 年龄(Ma)及误差 238U 232Th U/Th 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 1 138.54 366.17 2.64 0.0536 0.0022 0.1811 0.0075 0.0246 0.0002 156.64 1.51 2 148.67 397.41 2.67 0.0518 0.0020 0.1711 0.0062 0.0240 0.0002 153.01 1.50 3 130.68 295.38 2.26 0.0504 0.0024 0.1631 0.0075 0.0236 0.0003 150.12 1.80 4 203.13 472.42 2.33 0.0507 0.0018 0.1726 0.0061 0.0247 0.0002 157.14 1.44 5 68.52 144.69 2.11 0.0469 0.0027 0.1525 0.0084 0.0240 0.0004 152.62 2.28 6 64.27 105.97 1.65 0.0605 0.0036 0.1938 0.0109 0.0241 0.0004 153.25 2.42 7 107.75 184.78 1.71 0.0543 0.0028 0.1821 0.0096 0.0246 0.0004 156.69 2.44 8 165.62 400.21 2.42 0.0527 0.0022 0.1736 0.0066 0.0243 0.0003 154.55 1.91 9 107.27 314.87 2.94 0.0459 0.0022 0.1506 0.0071 0.0240 0.0003 152.73 1.86 10 144.11 333.98 2.32 0.0489 0.0021 0.1596 0.0067 0.0240 0.0003 152.82 1.68 11 118.63 294.75 2.48 0.0508 0.0023 0.1714 0.0074 0.0248 0.0003 158.00 1.84 12 80.83 216.32 2.68 0.0516 0.0028 0.1696 0.0090 0.0240 0.0003 152.90 1.99 13 125.69 343.74 2.73 0.0506 0.0020 0.1684 0.0067 0.0241 0.0003 153.82 1.69 14 83.72 257.36 3.07 0.0523 0.0024 0.1737 0.0075 0.0245 0.0003 155.85 1.77 15 88.07 238.58 2.71 0.0532 0.0026 0.1798 0.0084 0.0248 0.0003 157.90 2.10 16 73.90 206.91 2.80 0.0580 0.0027 0.1982 0.0095 0.0249 0.0004 158.38 2.27 17 93.93 157.44 1.68 0.0518 0.0026 0.1756 0.0093 0.0245 0.0004 156.32 2.29 4. 讨论
4.1 成岩时代
锆石U-Pb定年结果表明,白板地北部花岗闪长岩的侵位年龄为(154.8±1.2) Ma(MSWD=1.7),表明其侵位时间为晚侏罗世。区域上,晚侏罗世岩浆作用大量发育在班公湖–怒江成矿带西段,并伴随有矽卡岩型Fe-Cu矿床的发育。例如,位于缝合带北侧的弗野和材玛岩体(冯国胜等,2006;Guynn et al., 2006; 曲晓明 et al., 2009; Li et al., 2014;胡为正等,2014;Fan et al., 2015; Hao et al., 2016; Li et al., 2016;王立强等,2017)以及位于缝合带南缘的躬琼左波花岗岩以及革吉地区大面积出露的晚侏罗世花岗闪长岩(Cao et al., 2016)。以上晚侏罗世岩浆岩的成岩年龄集中在149~164 Ma之间,表明班公湖–怒江缝合带两侧晚侏罗世岩浆作用不仅规模巨大,且具有持续时间较长。前人通过对上述晚侏罗世岩浆岩的地球化学特征开展研究,提出班公湖–怒江缝合带南缘晚侏罗世岩浆作用主要与班公湖–怒江洋的北向俯冲有关,大量中酸性侵入体与二叠纪、三叠纪碳酸盐岩接触形成了以弗野、材玛和亚龙为代表的一系列矽卡岩型矽卡岩型Fe-Cu矿床。本次研究发现的白板地北部花岗闪长岩可能同样与班公湖–怒江洋南向俯冲密切相关,而且在岩体与龙格组大理岩接触部位发育有矽卡岩,指示其可能具有寻找矽卡岩型Fe-Cu矿床的潜力。
4.2 成岩温度
岩浆岩中的锆石由于较高的封闭温度体系,包含着关于深部地壳和花岗岩源区的重要信息(Belousova, 2002)。得益于单矿物微区高精度微量元素分析技术的发展,锆石中Ti含量近几年被用来作为单矿物微量元素温度计的指示元素(Watson et al., 2005, 2006)。众多学者总结了不同成因锆石的运用条件和范围。这一温度既可反映锆石结晶温度也代表了花岗岩将的上限温度,而锆石中的Ti的含量主要取决于SiO2的活度,目前较常用也得到众多实验验证的锆石Ti温度计的计算公式为:Log(Ti-in-zircon)=(5.77±0.072)−(
4800 ±86)/T(K)-$\log \alpha_{\mathrm{SiO}_ 2}+\log \alpha_{\mathrm{TiO} _2} $。其中,$\alpha_{\mathrm{SiO} _2} \approx 1 $, $ \alpha_{\mathrm{TiO}_ 2} $在典型岩浆温度范围内,地壳岩石一般为0.6,通过这一公式计算结果可信度可达90%。通过对矿区含矿斑岩的锆石Ti含量温度计算结果分析认为绝大部分锆石的结晶温度低于700 ℃。本中估算的锆石结晶温度为600.3~799.3 ℃(表3),均值为697 ℃,与典型花岗岩的结晶温度相近(周金胜等,2013),表明估算结果相对可靠。表 3 锆石Ti含量温度计算结果Table 3. Ti LA-ICP-MS zircon data and TTi-in-zircon thermometry calculation results点号 1 2 3 4 5 6 7 8 9 T(℃) 600.3 609.0 607.5 617.0 638.3 665.4 695.3 690.0 698.2 点号 10 11 12 13 14 15 16 17 T(℃) 718.0 723.3 743.4 764.3 752.9 761.3 776.2 799.3 5. 结论
(1)笔者研究的白板地斑岩铜矿床外围花岗闪长岩,露头出露面积不大,花岗闪长岩锆石为典型的岩浆成因锆石,锆石LA-ICP-MS U-Pb谐和年龄为(154.8±1.2) Ma(MSWD=1.7)。
(2)白板地北部花岗闪长岩锆石稀土元素–微量元素地球化学特征显示其相对富集重稀土。锆石Ti温度计估算结果表明其结晶温度平均值为697 ℃。
-
图 1 秦岭造山带构造构架图(A)与熊耳山矿集区地质简图(B)(修改自Tang et al.,2021)
Figure 1. (A) Tectonic framework of the Qinling Orogen and (B) geological map of the Xiong’ershan area showing important ore deposits
图 2 黄水庵矿床地质图(A)与a–b勘探线地质剖面图(B)(修改自曹晶等,2014)
Figure 2. (A) Geological map of the Huangshui’an Mo deposit and (B) the geological profile of exploration line a–b in this deposit
图 5 黄水庵碳酸岩中方解石C–O同位素图解(底图据Keller et al.,1995)
Figure 5. C–O isotopic diagram of carbonatites from the Huangshui’an carbonatite
表 1 黄水庵Mo–REE矿床方解石微量元素及稀土元素组成(10−6)
Table 1 Trace element and REE content (10−6) from the Huangshui’an Mo–REE deposit
样品号 HAS-9 HAS-10 HAS-11 HAS-12 HAS-13 HAS-14 18HAS-20 19HAS-13 Li 0.150 0.210 0.238 0.130 0.097 0.103 0.009 0.039 Be 0.648 0.646 0.021 1.490 0.155 0.274 0.100 0.124 Sc 3.230 3.340 0.315 3.050 0.970 2.030 1.310 2.710 V 1.390 1.060 0.369 1.250 0.307 0.376 0.576 0.350 Cr 1.65 1.47 1.32 1.63 1.38 1.70 1.28 1.58 Co 1.13 1.05 1.12 1.14 1.02 1.10 1.12 1.15 Ni 22.5 20.1 21.7 18.3 21.6 19.8 21.4 23.7 Cu 0.977 0.696 0.318 0.322 0.331 0.190 0.373 0.114 Zn 19.20 4.30 1.84 3.48 2.26 2.65 3.08 2.55 Ga 2.04 2.01 3.25 2.25 1.58 1.63 2.77 1.13 Rb 0.319 0.201 0.062 0.189 0.053 0.035 0.035 0.028 Sr 5997 5960 7546 5913 6040 5787 7890 5297 Y 193 193 167 193 137 169 171 148 Mo 14.3 18.90 22.00 1.89 0.64 1.36 0.17 0.09 Cd 0.643 0.488 0.303 0.533 0.366 0.259 0.660 0.421 Sb 0.067 0.024 0.066 0.036 0.023 0.016 0.014 0.111 Cs 0.031 0.014 0.022 0.023 0.027 0.022 0.021 0.016 Ba 923 772 236 806 789 788 1587 691 La 91.3 87.6 253 108 84.8 82.4 183 43.6 Ce 218 206 484 246 184 185 375 99.9 Pr 31.1 29.0 53.5 35.2 25.0 23.8 47.5 14.1 Nd 126 119 200 145 96.3 99.5 177 60.8 Sm 25.9 24.7 28.6 28.6 18.4 19.1 29.5 14.1 Eu 7.61 7.49 7.78 8.05 5.88 5.88 7.88 4.71 Gd 23.3 22.1 28.1 25.1 17.4 17.8 26.7 12.5 Tb 4.08 4.1 4.04 4.40 2.99 3.35 4.23 2.55 Dy 24.3 22.5 22.2 25.1 17.4 19.6 21.6 16.5 Ho 5.94 5.51 5.02 5.95 4.11 5.05 4.95 4.28 Er 19.5 19.3 17.0 20.9 14.7 17.2 17.3 15.6 Tm 3.69 3.49 2.84 3.81 2.61 3.26 2.97 2.88 Yb 25.6 25.0 18.1 24.6 16.8 21.4 19.4 20.0 Lu 3.51 3.46 2.12 3.49 2.45 2.95 2.59 2.66 W 4.770 0.836 0.514 0.590 0.426 0.346 0.548 0.247 Pb 86.0 85.7 43.0 45.5 46.0 41.8 53.0 43.1 Bi 0.164 0.203 0.029 0.038 0.012 0.011 0.033 0.016 Th 0.381 0.367 0.057 0.475 0.156 0.096 0.739 0.071 U 1.340 2.340 0.137 1.320 0.883 0.222 0.449 0.822 Nb 3.690 5.80 0.049 2.840 0.758 0.042 0.094 0.478 Ta 0.055 0.056 0.053 0.050 0.035 0.053 0.046 0.040 Zr 0.339 0.097 0.123 0.076 0.037 0.085 0.033 0.065 Hf 0.222 0.245 0.239 0.247 0.161 0.180 0.213 0.168 表 2 黄水庵Mo–REE矿床的方解石C–O同位素组成
Table 2 C–O isotope contents of calcite from the Huangshui’an Mo–REE deposit
样号 δ13 CV-PDB(‰) δ18 OV-PDB(‰) δ18 OV-SMOW(‰) HSA02 −5.18 −22.49 7.72 HSA03 −5.62 −23.00 7.19 HSA04 −4.11 −23.76 6.40 HSA14 −5.31 −23.07 7.12 19HSA-13 −5.14 −22.58 7.62 19HSA-14 −5.39 −22.62 7.58 表 3 东秦岭黄水庵Mo–REE矿床氟碳铈矿U–Th–Pb分析结果表
Table 3 Bastnäsite U–Th–Pb isotopic data from the Huangshui’an Mo–REE deposit, East Qinling
分析点 Th U Th/U 同位素比值 表面年龄(Ma) 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 208Pb/232Th ±1σ 19HSA-16-01 12 908 82.9 155.7 0.630 7 0.016 5 11.640 7 0.391 6 0.134 2 0.0032 217 2.5 19HSA-16-02 9 144 61.3 149.3 0.563 5 0.016 5 9.655 7 0.640 6 0.114 5 0.0056 225 2.6 19HSA-16-03 9 136 68.4 133.6 0.075 2 0.004 8 0.436 4 0.025 5 0.044 7 0.0010 216 2.5 19HSA-16-04 14 191 92.2 154.0 0.215 2 0.010 9 1.503 7 0.091 7 0.046 7 0.0010 218 2.4 19HSA-16-05 7 391 47.3 156.4 0.154 2 0.009 8 0.994 8 0.0783 0.045 0 0.0012 218 2.8 19HSA-16-06 8 723 55.1 158.3 0.251 7 0.019 4 2.133 1 0.201 2 0.054 0 0.0021 211 2.4 19HSA-16-07 7 222 53.8 134.2 0.210 6 0.013 3 1.994 9 0.178 2 0.058 8 0.0021 219 2.5 19HSA-16-08 11 312 53.2 212.5 0.259 2 0.018 6 3.398 8 0.479 4 0.071 3 0.0069 206 2.7 19HSA-16-09 7 420 50.6 146.5 0.372 4 0.011 6 3.505 8 0.128 3 0.069 0 0.0014 217 2.2 19HSA-16-10 6 284 105 59.7 0.263 0 0.012 3 2.359 5 0.217 4 0.053 4 0.0022 206 2.6 19HSA-16-11 5 586 55.1 101.4 0.138 4 0.013 4 1.132 4 0.174 7 0.046 5 0.0019 207 2.4 19HSA-16-12 17 925 85.4 209.9 0.149 4 0.010 9 1.416 4 0.138 2 0.054 9 0.0016 213 2.3 19HSA-16-13 3 139 64.2 48.9 0.248 0 0.012 5 1.594 1 0.092 2 0.046 0 0.0011 205 2.3 19HSA-16-14 19 660 109 179.6 0.076 5 0.004 5 0.437 7 0.026 3 0.042 4 0.0008 213 2.2 19HSA-16-15 12 267 97.5 125.8 0.129 1 0.005 8 0.749 4 0.037 0 0.041 7 0.0009 201 2.3 表 4 秦岭造山带碳酸岩型矿床的成矿时代
Table 4 Geochronological data for the carbonatite deposits in the Qinling orogenic belt
矿床 矿床类型 测试方法 年龄(Ma) 资料来源 黄水庵 碳酸岩型Mo–REE矿床 辉钼矿Re–Os 209.5±4.2 黄典豪等,2009 辉钼矿Re–Os 208.4±3.6 曹晶等,2014 氟碳铈矿U–Th–Pb 206.5±3.8 Zhang et al.,2019 氟碳铈矿U–Th–Pb 211.7±3.1 Feng et al.,2022 209.6±2.1 氟碳铈矿U–Th–Pb 213.5±2.9 本文 黄龙铺 碳酸岩型Mo–REE矿床 辉钼矿Re–Os 221.5±0.3 Stein,1997 辉钼矿Re–Os 222.0±7.0 Huang et al.,1995 辉钼矿Re–Os 225.0 ± 7.6 Song et al.,2015 独居石U–Th–Pb 208.9±4.6
213.6± 4.0Song et al.,2016 华阳川 碳酸岩型U–Nb–Pb–REE矿床 独居石U–Th–Pb 222.5±6.7 王佳营等,2020 晶质铀矿U–Th–Pb 221.9±5.1
137.1±2.0黄卉等,2020 榍石U–Pb 208.5±3.2 Zheng et al.,2020 辉钼矿Re–Os 196.8±2.4 Zheng et al.,2020 庙垭 碳酸岩型Nb-REE矿床 独居石U–Th–Pb 233.6±1.7 Xu et al.,2014 氟碳铈矿U–Th–Pb 205.8±3.6 Zhang et al.,2019 独居石U–Pb 231.0±2.3 Zhang et al.,2019 锆石U–Th–Pb 426.5±8.0 Ying et al.,2017 独居石U–Th–Pb 238.3±4.1 Ying et al.,2017 铌铁矿U–Pb 232.8±3.7 Ying et al.,2017 -
曹华文, 李光明, 张林奎, 等. 西藏山南列麦始新世花岗岩独居石U-Th-Pb年龄及地质意义[J]. 沉积与特提斯地质, 2020, 40(2): 31-42. CAO Huawen, LI Guangming, ZHANG Lingkui, et al. Monazite U-Th-Pb age of Liemai Eocene granites in the southern Tibet and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2), 31-42.
曹晶. 东秦岭黄水庵碳酸岩型钼矿床成矿作用研究[D]. 北京: 中国地质大学(北京), 2018 CAO Jing. Mineralization of the Huangshui’an carbonatite Mo deposit in East Qinling[D]. Beijing: China University of Geosciences (Beijing), 2018.
曹晶, 叶会寿, 李正远, 等. 东秦岭磨沟碱性岩体年代学、地球化学及岩石成因[J]. 岩石矿物学杂志, 2015, 34(05): 665-684 doi: 10.3969/j.issn.1000-6524.2015.05.006 CAO Jing, YE Huishou, LI Zhengyuan, et al. Geochronology, geochemistry and petrogenesis of the Mogou alkalic pluton in the East Qinling orogenic belt [J]. Acta Petrologica et Mineralogica, 2015, 34(05): 665-684. doi: 10.3969/j.issn.1000-6524.2015.05.006
曹晶, 叶会寿, 李洪英, 等. 河南嵩县黄水庵碳酸岩脉型钼(铅)矿床地质特征及辉钼矿Re-Os同位素年龄[J]. 矿床地质, 2014, 33(1): 53-69 doi: 10.3969/j.issn.0258-7106.2014.01.004 CAO Jing, YE Huishou, LI Hongying, et al. Geological characteristics and molybdenite Re-Os isotopic dating of Huangshuian carbonatite vein-type Mo(Pb) deposit in Songxian County, Henan Province[J]. Mineral Deposits, 2014, 33(1): 53-69. doi: 10.3969/j.issn.0258-7106.2014.01.004
曹晶, 叶会寿, 陈小丹, 等. 豫西雷门沟钼矿区花岗斑岩年代学、地球化学和Sr-Nd-Hf同位素研究[J]. 矿床地质, 2016, 35(4): 677-695 doi: 10.16111/j.0258-7106.2016.04.004 CAO Jing, YE Huishou, CHEN Xiaodan, et al. Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of granite porphyry in Leimengou Mo deposit, western Henan Province[J]. Mineral Deposits, 2016, 35(4): 677-695. doi: 10.16111/j.0258-7106.2016.04.004
付鑫宁, 唐利, 姚梅青, 等. 东秦岭黄水庵钼矿床的碳酸岩成因与地质意义: 来自痕量元素和Sr-Nd-Pb同位素的约束[J]. 成都理工大学学报(自然科学版), 2021, 48(5): 525-538 FU Xinning, TANG Li, YAO Meiqing, et al. Genesis and geological significance of the carbonatite in the Huangshui'an Mo deposit in Eastern Qinling area of China: Constraints from trace elements and Sr-Nd-Pb isotopes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(5): 525-538.
黄典豪, 侯增谦, 杨志明, 等. 东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J]. 地质学报, 2009, 83(12): 1968-1984 doi: 10.3321/j.issn:0001-5717.2009.12.012 HUANG Dianhao, HOU Zengqian, YANG Zhiming, et al. Geological and Geochemical Characteristics, Metallogenetic Mechanism and Tectonic Setting of Carbonatite Vein-Type Mo(Pb)Deposits in the East Qinling Molybdenum Ore Belt[J]. Acta Geologica Sinica, 2009, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012
黄卉, 潘家永, 洪斌跃, 等. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义[J]. 矿床地质, 2020, 39(2): 351-368 doi: 10.16111/j.0258-7106.2020.02.009 HUANG Hui, PAN Jiayong, HONG Binyue, et al. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shaanxi Province and its geological significance[J]. Mineral Deposits, 2020, 39(2): 351-368. doi: 10.16111/j.0258-7106.2020.02.009
胡乐, 李以科, 孙盛, 等. 内蒙古白云鄂博地区识别出新火成碳酸岩[J/OL]. 中国地质, 2021: 1-23. HU Le, LI Yike, SUN Sheng, et al. Identification of new igneous carbonatites in the Bayan Obo area, Inner Mongolia[J/OL], Geology in China, 2021: 1-23.
李诺, 陈衍景, 张辉, 等. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 2007, 5: 186-198. LI Nuo, CHEN Yanjing, ZHANG Hui, et al. Molybdenum deposits in East Qinling[J]. Earth Science Frontiers, 2007, 5: 186-198.
李永峰. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D]. 北京: 中国地质大学(北京), 2005 LI Yongfeng. The Temporal-spatial Evolution of Mesozoic Granitoids in Xiong' ershan Area and Their Relationship to Molybdenum-gold Mineralization[D]. Beijing: China University of Geosciences (Beijing), 2005.
梁涛, 白凤军, 罗照华, 等. 豫西熊耳山斑竹寺花岗斑岩岩体锆石U-Pb定年及地质意义[J]. 西北地质, 2014, 47(2): 41-50 doi: 10.3969/j.issn.1009-6248.2014.02.006 LIANG Tao, BAI Fengjun, LUO Zhaohua, et al. LA-ICP-MS Zircon U-Pb Dating and Its Geological Implications of Banzhusi Granitic Porphyry in Xiongershan of Western Henan Province[J]. Northwestern Geology, 2014, 47(2): 41-50. doi: 10.3969/j.issn.1009-6248.2014.02.006
卢欣祥, 罗照华, 黄凡, 等. 秦岭-大别山地区钼矿类型与矿化组合特征[J]. 中国地质, 2011, 38(6): 1518-1535 doi: 10.3969/j.issn.1000-3657.2011.06.012 LU Xinxiang, LUO Zhaofan, HUANG Fan, et al. Mo deposit types and mineralization assemblage characteristics in QinlingDabie Mountain area[J]. Geology in China, 2011, 38(6): 1518-1535. doi: 10.3969/j.issn.1000-3657.2011.06.012
卢欣祥, 尉向东, 肖庆辉, 等. 秦岭环斑花岗岩的年代学研究及其意义[J]. 高校地质学报, 1999, 5(4): 372 – 377 LU Xinxiang, WEI Xiangdong, XIAO Qinghui, et al. Geochronological studies of rapakivi granites in Qingling and its geological implication[J]. Geological Journal of China Universities, 1999, 5(4): 372-377.
罗涛, 赵赫, 张文, 等. 激光剥蚀电感耦合等离子体质谱非基体匹配氟碳铈矿U-Th-Pb定年[J]. 中国科学: 地球科学, 2021, 51(06): 874-883 doi: 10.1360/N072020-0267 LUO Tao, ZHAO He, ZHANG Wen, et al. Non-matrix-matched analysis of U-Th-Pb geochronology of bastnasite by laser ablation inductively coupled plasma mass spectrometry[J]. Scientia Sinica (Terrae), 2021, 51(06): 874-883. doi: 10.1360/N072020-0267
罗铮娴, 黄小龙, 王雪, 等. 华北克拉通崤山太华群TTG质片麻岩年代学与地球化学特征: 岩石成因机制探讨[J]. 大地构造与成矿学, 2018, 42(2): 332-347 LUO Zhengxian, HUANG Xiaolong, WANG Xue, et al. Geochronology and Geochemistry of the TTG Gneisses from the Taihua Group in the Xiaoshan Area, North China Craton: Constraints on Petrogenesis[J]. Geotectonica et Metallogenia, 2018, 42(2): 332-347.
毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, 21(1): 169-188 MAO Jingwen, XIE Guiqing, ZHANG Zuoheng, et al. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 2005, 21(1): 169-188.
毛帆, 裴先治, 李瑞保, 等. 扬子板块西北缘碧口微地块南华系碎屑锆石U-Pb年龄及其物源示踪[J]. 沉积与特提斯地质, 2021, 41(1): 41-57 doi: 10.19826/j.cnki.1009-3850.2020.10009 MAO Fang, PEI Xianzhi, LI Ruibao, et al. The LA-ICP-MS U-Pb dating of detrital zircons from the Nanhua System in Bikou Terrane, northwestern margin of Yangtze Block[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(1): 41-57. doi: 10.19826/j.cnki.1009-3850.2020.10009
齐进英. 东秦岭太华群变质岩系及其形成条件[J]. 地质科学, 1992, 112: 94-107 QI Jinying. Metamorphic rock series of Taihua Group and conditions for its formation in Eastern Qinling[J]. Chines Journal of Geology, 1992, 112: 94-107
秦江锋. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D]. 西安: 西北大学, 2010 QING Jiangfeng. Petrogenesis and Geodynamic Implications of the Late-Triassic Granitoids from the Qinling Orogenic Belt[D]. Xi’an: Northwest University, 2010.
邱啸飞, 蔡应雄, 江拓, 等. 庙垭铌-稀土矿床的热液蚀变作用: 来自碳酸岩碳-氧同位素的制约[J]. 华南地质与矿产, 2017, 33(03): 275-281 doi: 10.3969/j.issn.1007-3701.2017.03.008 QIU Xiaofei, CAI Yingxiong, JIANG Tuo, et al. Hydrothermal alteration for the Miaoya Nb-REE deposit: constraints from C-O isotope composition of the carbonatite[J]. Geology and Mineral Resources of South China, 2017, 33(03): 275-281. doi: 10.3969/j.issn.1007-3701.2017.03.008
宋文磊, 许成, 刘琼, 等. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义[J]. 地质论评, 2012, 4: 726-744 doi: 10.3969/j.issn.0371-5736.2012.04.014 SONG Wenlei, XU Chen, LIU Qiong, et al. Experimental Petrological Study of Carbonatite and Its Significances on the Earth Deep Carbon Cycle[J]. Geological Review, 2012, 4: 726-744. doi: 10.3969/j.issn.0371-5736.2012.04.014
王佳营, 李志丹, 张祺, 等. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 2020, 94(10): 2946-2964 doi: 10.3969/j.issn.0001-5717.2020.10.011 WANG JiaYing, LI Zhidan, ZHANG Qi, et al. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011
姚书振, 周宗桂, 吕新彪, 等. 秦岭成矿带成矿特征和找矿方向[J]. 西北地质, 2006, 39(2): 156-178 doi: 10.3969/j.issn.1009-6248.2006.02.010 YAO Shunzhen, ZHOU Zonggui, LV Xinbiao, et al. Mineralization Characteristics and Prospecting Potential in the Qinling Metallogenic Belt[J]. Northwestern Geology, 2006, 39(2): 156-178. doi: 10.3969/j.issn.1009-6248.2006.02.010
张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 3: 304-316 doi: 10.3969/j.issn.1006-7493.2008.03.003 ZHANG Chengli, WANG Tao, WANG Xiaoxia. Origin and Tectonic Setting of the Early Mesozoic Granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 2008, 3: 304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003
张传昱, 李文昌, 余海军, 等. 云南水头山铅锌矿床闪锌矿Rb-Sr定年及其地质意义[J]. 沉积与特提斯地质, 2022, 42(1): 122-132 doi: 10.19826/j.cnki.1009-3850.2022.01006 ZHANG Chuanyu, LI Wenchang, YU Haijun, et al. Sphalerites Rb-Sr dating and geological significance of the Shuitoushan Pb-Zn deposit in Yunnan Province, SW China [J]. Sedimentary Geology and Tethyan Geology, 2022, 42(1): 122-132. doi: 10.19826/j.cnki.1009-3850.2022.01006
张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25(5): 746-768 doi: 10.12090/j.issn.1006-6616.2019.25.05.064 ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. Rethinking of the Qinling Orogen[J]. Journal of Geomechanics, 2019, 25(5): 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064
张健, 李怀坤, 田辉. 华北克拉通南缘官道口群龙家园组凝灰岩SHRIMP锆石U-Pb年代学研究[J]. 华北地质, 2021, 44(04): 1-4 ZHANG Jian, LI Huaikun, TIAN Hui. SHRIMP Zircon U-Pb dating of tuff from the Longjiayuan Formation of the Guandaokou Group, southern margin of North China Craton [J]. North China Geology, 2021, 44(04): 1-4.
张元厚, 张世红, 韩以贵, 等. 华熊地块马超营断裂走滑特征及演化[J]. 吉林大学学报(地球科学版), 2006, 36(2): 169-176, 193. ZHANG Yuanhong, ZHANG Shihong, HAN Yigui, et al. Strik-Slip Features of the Machaoying Fault Zone and Its Evolution in the Huaxiong Terrane, Southern North China Craton[J]. Journal of Jilin Unviersity: Earth Science Edition, 2006, 36(2): 169-176+193.
赵太平, 徐勇航, 翟明国. 华北陆块南部元古宙熊耳群火山岩的成因与构造环境: 事实与争议[J]. 高校地质学报, 2007, 2: 191-206 doi: 10.3969/j.issn.1006-7493.2007.02.005 ZHAO Taiping, XU Yonghang, ZHAI Mingguo. Petrogenesis and Tectonic Setting of the Paleoproterozoic Xiong’er Group in the Southern Part of the North China Craton: a Review[J]. Geological Journal of China Universities, 2007, 2: 191-206. doi: 10.3969/j.issn.1006-7493.2007.02.005
Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons: uranium-lead zircon dating of coesite-bearing eclogites. [J]. Geology, 1993, 21(4): 339-342. doi: 10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2
Brooker R A, Kjarsgaard B A. Silicate–Carbonate Liquid Immiscibility and Phase Relations in the System SiO2–Na2O–Al2O3–CaO–CO2 at 0·1–2·5 GPa with Applications to Carbonatite Genesis [J]. Journal of Petrology, 2011, 52(7/8): 1281-1305.
Chaussidon M and Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): an ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2835-2846. doi: 10.1016/0016-7037(90)90018-G
Chavagnac V, Jahn B M. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications[J]. Chemical Geology, 1996, 133(1): 29-51.
Chen Y J, Santosh M. Triassic tectonics and mineral systems in the Qinling Orogen, central China[J]. Geological Journal, 2014, 49: 338-358.
Dong Y P, Yang Z, Liu X M, et al. Mesozoic intracontinental orogeny in the Qinling Mountains, central China[J]. Gondwana Research, 2016, 30: 144-158.
Feng Jiaying, Tang Li, Yang Bochang, et al. Bastnäsite U-Th-Pb age, sulfur isotope and trace elements of the Huangshui’an deposit: Implications for carbonatite-hosted Mo-Pb-REE mineralization in the Qinling Orogenic Belt, China[J]. Ore Geology Reviews, 2022, 143: 104790. doi: 10.1016/j.oregeorev.2022.104790
Gao Shan, Luo Tingchuan, Zhang Benren, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959–1975. doi: 10.1016/S0016-7037(98)00121-5
Gittins J, Jago B C. Differentiation of natrocarbonatite magma at Oldoinyo Lengai volcano, Tanzania[J]. Mineralogical Magazine, 1998, 62(6): 759-768. doi: 10.1180/002646198548142
Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1): 215-230.
Harlov D E, Wirth R, Hetherington C J. Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer[J]. Contributions to Mineralogy and Petrology, 2011, 162(2): 329-348. doi: 10.1007/s00410-010-0599-7
Hou Zengqian, Liu Yan, Tian Shihong, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific reports, 2015, 5: 2045-2322.
Hou Zengqian, Tian Shihong, Yuan Zhongxin, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication[J]. Earth and Planetary Science Letters, 2006, 244(1-2): 234-250. doi: 10.1016/j.jpgl.2006.01.052
Huang Dianhao, Wu Chengyu, Du Andao, et al. Re-Os Isotope Ages of Molybdenum Deposits in East Qinling and Their Significance[J]. Chinese Journal of Geochemistry, 1995, 4: 313-322.
Kathryn M. Goodenough, Eimear A. Deady, Charles D. Beard, et al. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements[J]. Journal of Earth Science, 2021, 32(6): 1332-1358. doi: 10.1007/s12583-021-1500-5
Keller J, Hoefs J. Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai [J]. Carbonatites Volcanism, 1995, 4: 113—123.
Kynicky J, Smith M P, Xu Cheng. Diversity of Rare Earth Deposits: The Key Example of China[J]. Elements, 2012, 8(5): 361-367. doi: 10.2113/gselements.8.5.361
Le Maitre R W. Igneous rocks: a classification and glossary of terms[M]. Cambridge: Cambridge University Press, 2002.
Ling X X, Li Q L, Liu Y, et al. In situ SIMS Th-Pb dating of bastnaesite: constraint on the mineralization time of the Himalayan Mianning-Dechang rare earth element deposits[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(8): 1680-1687. doi: 10.1039/C6JA00093B
Mao Jingwen, Zhang Zhaochong, Zhang Zuoheng, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 1999, 63(11/12): 1815-1818.
Poitrasson F, Shepherd TJ, Chenery S. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics [Review][J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2000, 64(19): 3283-3297. doi: 10.1016/S0016-7037(00)00433-6
Rasmussen B, Muhling J R. Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism[J]. Contributions to Mineralogy and Petrology, 2007, 154(6): 675-689. doi: 10.1007/s00410-007-0216-6
Sal’nikova E B, Yakovleva S Z, Nikiforov A V, et al. Bastnaesite: A Promising U-Pb Geochronological Tool[J]. Doklady earth sciences, 2010, 430(1): 134-136. doi: 10.1134/S1028334X10010290
Song Wenlei, Xu Cheng, Smith M P, et al. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China[J]. Scientific reports, 2016, 6(1): 37377. doi: 10.1038/srep37377
Song Wenlei, Xu Cheng, Qi Liang, et al. Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization[J]. Ore Geology Reviews, 2015, 64: 756-765. doi: 10.1016/j.oregeorev.2014.04.003
Stein H J, Markey R J, Morgan J W, et al. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China[J]. Economic Geology, 1997, 92(7-8): 827-835. doi: 10.2113/gsecongeo.92.7-8.827
Tang Li, Wagner T, Fusswinke T, et al. Magmatic-hydrothermal evolution of an unusual Mo-rich carbonatite: a case study using LA-ICP-MS fluid inclusion microanalysis and He–Ar isotopes from the Huangshui’an deposit, Qinling, China[J]. Mineralium Deposita, 2021, 56(6) : 1-18.
Tang Li, Zhang Shouting, Yang Fan, et al. Triassic alkaline magmatism and mineralization in the Xiong'ershan area, East Qinling, China[J]. Geological Journal, 2019, 54(1): 143-156. doi: 10.1002/gj.3166
Taylor H P, Frechen J, Degens, E T. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden[J]. Geochimica et Cosmochimica Acta, 1967, 31(3): 407-430. doi: 10.1016/0016-7037(67)90051-8
Wallace M E, Green D H. An experimental determination of primary carbonatite magma composition[J]. Nature, 1988, 335: 343. doi: 10.1038/335343a0
Wang, Zaicong, Becker H. Molybdenum partitioning behavior and content in the depleted mantle: Insights from Balmuccia and Baldissero mantle tectonites (Ivrea Zone, Italian Alps) [J]. Chemical Geology, 2018, 499: 138-150. doi: 10.1016/j.chemgeo.2018.09.023
Wedepohl K H. The composition of the continental crust[J]. The Geochimica et Cosmochimica Acta, 1995, 59, 1217-1232. doi: 10.1016/0016-7037(95)00038-2
Xu Cheng, Chakhmouradian A R, Taylor R N, et al. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks[J]. Geochimica et Cosmochimica Acta, 2014, 143: 189-206. doi: 10.1016/j.gca.2014.03.041
Xu Cheng, Wang Linjun, Song Wenlei, et al. Carbonatites in China: A review for genesis and mineralization[J]. Geoscience Frontiers, 2010, 1(1): 105-114. doi: 10.1016/j.gsf.2010.09.001
Yang Yueheng, Wu Fuyuan, Li Yang. In situ U-Pb dating of bastnaesite by LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1017-1023. doi: 10.1039/C4JA00001C
Ying Yuancan, Chen Wei, Lu Jue, et al. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China[J]. Lithos, 2017, 290: 159-171
Zhang Wei, Chen Wei Terry, Gao Jianfeng, et al. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite[J]. Mineralium Deposita, 2019, 54(8): 1265-1280. doi: 10.1007/s00126-019-00875-7
Zheng Hui, Chen Huayong, Li Dengfeng, et al. 2020. Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: constraints from titanite U–Pb and molybdenite Re–Os dating[J]. Geoscience Frontiers, 2020, 11: 1581-1592. doi: 10.1016/j.gsf.2020.03.001
Zheng Y F, Gao T S, Wu Y B, et al. Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite[J]. Journal of Metamorphic Geology, 2007, 25(2): 267-283. doi: 10.1111/j.1525-1314.2007.00696.x