ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义

王汉辉, 唐利, 杨勃畅, 唐吉根, 张彦生, 郭俊, 冯嘉颖, 盛渊明

王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48-62. DOI: 10.12401/j.nwg.2022012
引用本文: 王汉辉, 唐利, 杨勃畅, 等. 东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义[J]. 西北地质, 2023, 56(1): 48-62. DOI: 10.12401/j.nwg.2022012
WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling[J]. Northwestern Geology, 2023, 56(1): 48-62. DOI: 10.12401/j.nwg.2022012
Citation: WANG Hanhui, TANG Li, YANG Bochang, et al. Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling[J]. Northwestern Geology, 2023, 56(1): 48-62. DOI: 10.12401/j.nwg.2022012

东秦岭黄水庵碳酸岩型Mo–REE矿床方解石地球化学特征和氟碳铈矿U–Th–Pb年龄及其意义

基金项目: 教育部拔尖青年教师创新能力培养项目“豫西祁雨沟斑岩型和爆破角砾岩型金矿成矿作用研究”(2652019047)资助成果。
详细信息
    作者简介:

    王汉辉(1999−),男,硕士研究生,矿产普查与勘探专业。E-mail:414810728@qq.com

    通讯作者:

    唐利(1990−),男,副教授,博士生导师,主要从事钼–金–稀土等关键金属矿床成因和成矿规律的研究和教学工作。E-mail:ltang@cugb.edu.cn

  • 中图分类号: P618;P597

Geochemical Characteristics of Calcite and Bastnäsite U–Th–Pb Age of the Huangshui’an Carbonatite–hosted Mo–REE Deposit, Eastern Qinling

  • 摘要:

    黄水庵矿床位于华北克拉通南缘熊耳山矿集区,是东秦岭钼矿带典型的碳酸岩型Mo–REE矿床之一。黄水庵矿床的Mo–REE矿体主要产于碳酸岩中,碳酸岩呈脉状和隐爆角砾岩体侵入太华群。笔者通过碳酸岩方解石微量元素、C–O同位素以及氟碳铈矿U–Th–Pb年龄的研究,探讨了碳酸岩岩浆的来源、成岩成矿年龄和构造地质背景,对东秦岭地区的构造演化和成矿作用提供约束。方解石的微量元素具有富集大离子亲石元素、亏损高场强元素的特征,稀土配分模式为轻稀土元素富集的右倾型(LREE/HREE=3.08~10.33)。方解石δ13 CV-PDB值为−4.11‰~−5.62‰、δ18OV-SMOW值为6.40‰~7.62‰,指示初始火成碳酸岩特征。氟碳铈矿U–Th–Pb定年的加权平均年龄为(213.5±2.9)Ma,代表了黄水庵REE矿化的时限。综合已有成岩成矿年龄和同位素研究结果,认为黄水庵矿床的成矿时代为晚三叠世,形成于秦岭造山带碰撞后的伸展背景。富Mo下地壳与富集地幔的部分熔融形成碳酸岩岩浆,其中地壳物质的再循环是形成碳酸岩型Mo–REE矿化的关键因素之一。

    Abstract:

    The Huangshui’an deposit, located in Xiong’ershan ore concentration area in the southern margin of the North China Craton, is one of the typical carbonatite–hosted Mo–REE deposit in the East Qinling Mo metallogenic belts. The Mo–REE ore bodies of the Huangshui’an deposit mainly are hosted in carbonatite which occur as veins and cryptoexplosive breccia intrusions in the Taihua Group. Based on the study of trace elements and C–O isotopic compostion of calcite, and bastnäsite U–Th–Pb dating, we discuss the origin of carbonatite, metallogenic age and tectonic setting, which provide constraints for tectonic evolution and mineralization in the East Qinling belt. The trace elements of calcite are characterized by enrichment of large ion lithophile elements and depletion of high field strength elements, and are enriched in LREE (LREE/HREE=3.08~10.33). The δ13 CV-PDB values of calcite ranging from −4.11‰ to −5.62‰ and δ18 OV-SMOW values ranging from 6.40‰ to 7.62‰ indicate the characteristics of primary mantle–derived carbonatite. The weighted average age of U–Th–Pb dating of bastnäsite is 213.5±2.9 Ma, representing the age of REE mineralization in the Huangshui'an deposit. Based on diagenetic and metallogenic age and available isotopic ages, we propose that the metallogenic age of the Huangshui’an deposit is Late Triassic. The Huangshui’an carbonatite–hosted deposit was formed in the post–collisional setting of the Qinling orogenic belt. The partial melting of Mo–fertile lower crust and enriched mantle formed the carbonatite magma, and the recycling of crustal material is one of the key factors for the formation of carbonatite–hosted Mo–REE mineralization.

  • 石炭系是准噶尔盆地周缘出露最广的古生代地层。乌鲁木齐市东南约20 km处的石人子沟和祁家沟地区(图1)是准噶尔盆地南缘石炭系发育最为典型的地区。该区缺失下石炭统,上石炭统主要出露柳树沟组(C2l)、祁家沟组(C2q)和奥尔吐组(C2ae)(新疆维吾尔自治区地质矿产局,1999)。祁家沟组和奥尔吐组富含海相化石,其中四射珊瑚最为常见。

    图  1  研究区交通及剖面位置图
    ①.祁家沟剖面;②.石人子沟剖面
    Figure  1.  Location of the study area and the sections

    柳树沟组为一套浅海相喷出岩,火山岩中有少量砂岩、粉砂岩和灰岩透镜体,含海相化石,与上覆祁家沟组为整合或不整合接触,未见下伏地层。祁家沟组为一套浅海相陆源碎屑岩和碳酸盐岩,夹少量的安山玢岩、凝灰质砂岩–粉砂岩,含大量珊瑚、腕足和䗴类化石,与上覆奥尔吐组整合接触。奥尔吐组为一套浅海相外陆架陆源细碎屑岩,夹少量薄层砂质灰岩、透镜状灰岩,含丰富的珊瑚、菊石及腕足类化石,与上覆石人沟组整合接触(新疆维吾尔自治区地质矿产局,1999)。

    研究区柳树沟组为一套火山碎屑岩沉积,化石稀少。晚石炭世四射珊瑚主要集中在祁家沟组和奥尔吐组。其中祁家沟组四射珊瑚最为丰富。王增吉(1989)对乌鲁木齐祁家沟剖面的四射珊瑚做过详细研究,描述四射珊瑚12属,24种和亚种。其中,祁家沟组9属,16种和亚种,分别是Amplexus qijiagouensisA. xinjiangensisA. qijaigouensis convexotabulatusRotipyllum monophylloides trangulatumMetriophyllum qijiagouenseM. minorBradyphyllum xinjiangenseZaphrentites urumqiensisLophophyllidium pendulum qijiagouenseL. irregulareL. urumuqienseCaninophyllum urumuqienseC. domheriC. tamugangenseBothrophyllum ellipticumCystilophophyllum minor曾彩林等(1983)描述祁家沟地区四射珊瑚5属,4种和1相似种。其中祁家沟组3属,2种和1相似种。分别是Cyathocarinia tuberculataLophocarinophyllum majorSochkineophyllum cf. artiense

    笔者依托中国地质调查局西安地质调查中心“北方石炭纪—二叠纪关键地质问题专题调查”工作项目下设专题“天山–兴蒙构造带石炭纪—二叠纪地层对比研究”,于2018年对乌鲁木齐祁家沟和石人子沟地区祁家沟组和奥尔吐组珊瑚化石进行系统采集,鉴定四射珊瑚12属11种、1亚种。其中祁家沟组11属10种1亚种,分别为Cyathocarinia tuberculata Soshkina,Rotiphyllum cuneatum Wu,Metriophyllum minor Wang,Zaphrentites urumqiensis Wang,Lophophyllidium pendulum qijiagouense Wang,Fomichevella hoeli (Holtedahl),Arctophyllum intermedium Toula,Caninia cornucopiae Michelin in Gervais,Gshelia minor Zeng,Caninella magma Zeng和Pseudozaphrentoides mapingensis (Lee et Yü)。

    祁家沟组四射珊瑚按照形态可以分为3类。小型单体无鳞板珊瑚9属15种(包括亚种和相似种):Amplexus qijiagouensisA. xinjiangensisA. qijaigouensis convexotabulatusRotiphyllum cuneatumR. monophylloides trangulatumMetriophyllum qijiagouenseM. minorBradyphyllum xinjiangenseZaphrentites urumqiensisLophophyllidium pendulum qijiagouenseL. irregulareL. urumuqienseLophocarinophyllum majorCyathocarinia tuberculata Sochkineophyllum cf. artiense。发育鳞板的单体珊瑚8属10种和亚种,分别是Caninophyllum urumuqienseC. domheriC. tamugangenseBothrophyllum ellipticumCystilophophyllum minor Arctophyllum intermediumCaninia cornucopiaeGshelia minorCaninella magma Pseudozaphrentoides mapingensis 。丛状复体珊瑚1属1种Fomichevella hoeli。在已知的18个四射珊瑚属中,小型单体无鳞板珊瑚9属,占50%;单体有鳞板珊瑚8属,约占44%;丛状复体珊瑚仅1属,约占6%。在已知的26个种中,小型单体无鳞板珊瑚15种,约占58%;单体有鳞板珊瑚10种,约占38%;丛状复体珊瑚约占5%。从属和种两级分类单元来看,小型单体无鳞板珊瑚都是祁家沟组四射珊瑚动物群的主体,显示较凉水体珊瑚组合特征。这可能与研究区晚石炭世所处的中、高纬度古地理位置有关。研究区晚石炭世位于安加拉植物群的分布范围,植物区系特征显示中纬度温带气候区。研究区祁家沟组(特别是下部)四射珊瑚个体极为丰富,常密集成层保存,数量以发育鳞板的单体珊瑚为主,表明这个珊瑚群生活在适于其生长的正常浅海环境中。这个珊瑚群中几乎不含复体四射珊瑚,可疑的丛状复体珊瑚仅1属1种Fomichevella hoeli,表明其生活在不适宜于复体珊瑚繁盛的环境中。另外,这个珊瑚群分异度低,几乎不含土著分子。丰富而分异度低且缺乏地方性分子是温带生物群的主要特征(殷鸿福,1989)。因此推断祁家沟组四射珊瑚群生活于温带气候条件下。

    Hill(1938~1941)最早对各类型珊瑚的古生态特征进行了研究,划分出了3个主要的生态群类型:Cyathoxonia动物群,主要包含一些小型单体无鳞板珊瑚,结构简单,分异度较低。②Caniniid–Clisiophyllid动物群,主要包含大型双带型或三带型鳞板珊瑚,分异度相对较高,结构也更为复杂。③复体造礁类珊瑚,主要包含块状复体类型,能容忍较高水动能环境。这3种类群代表的水动能由低到高。Sando(1980)在美国西部落基山脉和大盆地地区密西西比纪(早石炭世)地层中划分出8种岩相带类型,从深水盆地到河流入海口岩相带依次为A~H;除A和G外,珊瑚可在其他的6个相带中产出,其中B、D、E 等3个岩相带中珊瑚丰度最高;小型单体无鳞板珊瑚多出现在较深水的B相带,而D和E相带则更多产出大型单体或复体类珊瑚。Somerville 等(2007)根据爱尔兰、大不列颠及西班牙西南部早石炭世维宪晚期珊瑚群的组成、保存状况和保存方向、沉积之上相、沉积微相、薄片下的组分及含量等特征综合研究提出了四射珊瑚组合的概念,即RCA(rugose coral associations),并识别出8个四射珊瑚组合(RCA1~RCA8)。其中RCA2位于正常浪基面之上的浅水陆架区,属中–高能的动荡环境,其中发育颗粒灰岩,珊瑚主要是中等丰度和分异度的单体珊瑚及不占优的丛状复体,与Hill(1938~1941)的Caniniid–Clisiophyllid动物群大致相当,珊瑚破损较严重,单体珊瑚鳞板带保存较差。RCA4位于正常浪基面上下的中等水动能浅水陆架区,水体偶尔变浅遭受暴露侵蚀,发育古喀斯特面,富含原地丛状和块状复体珊瑚以及具有较宽鳞板带的大型单体,丰度和分异度非常高,与Hill(1938~1941)的复体造礁珊瑚群(coral–reef)相当,其中复体珊瑚保存相对较好,而单体珊瑚存在磨损现象。RCA8位于正常浪基面下的低能中深斜坡环境,发育泥晶灰岩,光照弱,水体浑浊,珊瑚主要是一些小型单体无鳞板类型,分异度低,偶尔也可见一些具鳞板个体,相当于Hill(1938~1941)Cyathoxonia动物群。Somerville等(2007)认为RCA8是典型的深水斜坡–盆地分子,但也可以生活在鳞板珊瑚难以生存的水流不畅的浅水浑浊环境中。

    在祁家沟组可以识别出2种生态类型的四射珊瑚动物群,一种是Cyathoxonia动物群,以小型单体无鳞板类型为主,几乎不含或者很少含发育鳞板的珊瑚;另一种是Caniniid–Clisiophyllid动物群,以发育鳞板类型为主,偶含丛状复体珊瑚和小型单体无鳞板珊瑚。

    Cyathoxonia动物群产于祁家沟剖面祁家沟组中上部,以D18003观察点为代表,四射珊瑚全为单体无鳞板类型,包括MetriophyllumLophophyllidiumCyathocarinia等,还有MultithecoporaSyingopora 等少量横板珊瑚。Hill(1938~1941)认为Cyathoxonia动物群代表了深水、多泥、浑浊、安静的环境。Sando(1980)认为小型单体无鳞板珊瑚多出现在水深超过100 m的深水盆地。Somerville 等(2007)认为小型单体无鳞板类型珊瑚是典型的深水斜坡–盆地分子,但也可以生活在有鳞板珊瑚难以生存的水流不畅的浑浊浅水环境中。小型单体无鳞板四射珊瑚为主的群落总体上来说生活在不利于四射珊瑚生存的环境中,既可以是深水环境,也可以是浅水环境。王训练等(1996)认为古生代小型单体无鳞板四射珊瑚为主的群落至少可以出现在下列5种不同的环境中:①正常温暖无障壁海岸的大陆斜坡下部深水环境。②大陆边缘断陷盆地中的深水环境。③浅海冷水环境。④有大量碎屑沉积物涌入的温暖正常浅海环境。⑤生物危机阶段的正常浅海环境。

    祁家沟剖面祁家沟组中上部(D18003观察点)Cyathoxonia动物群中四射珊瑚保存完整(图2a~图2f),表明这些珊瑚生活在低能环境中。产出四射珊瑚的围岩为生物碎屑泥晶灰岩(图2a、图2b、图2g~图2j)。颗粒都为生物碎屑,含量约30%,主要是海百合碎屑(图2g~图2j),其次还有少量腕足壳体和介形虫。颗粒主要呈条状,次棱角状居多,少量次圆状,部分出现微弱重结晶,大小100 μm到2 mm不等,分选较差。基质主要是灰泥,含量70%左右。这种岩性特征相当于威尔逊(1981)碳酸盐岩标准微相类型中的SMF9,主要发育在正常浪基面之下的深水陆棚(FZ2)或外缓坡环境(Flügel,2006)。笔者认为,这种微相类型代表一种低能环境,不仅可以出现在正常浪基面或其下的深水陆棚(FZ2)或外缓坡环境,还可以出现在局限环境下的低能浅水环境中。祁家沟组与这个小型单体无鳞板珊瑚共生的还有横板珊瑚SyringoporaMultithecopora 。这2个属通常仅出现在极浅海水环境中。因此认为该组合生活在不利于四射珊瑚生存的障壁海低能浅水环境中。

    图  2  祁家沟剖面祁家沟组 D18003观察点珊瑚化石与岩性特征图
    a. 产小型单体无鳞板四射珊瑚的生物碎屑泥晶灰岩;b. 产丛状复体横版珊瑚(Syringopora sp.)的生物碎屑泥晶灰岩;c~f. 保存完好的小型单体无鳞板四射珊瑚(c~d. Metriophyllum sp.;e.Cyathocarinia tuberculata .;f. Lophophyllidium sp.);g~j. 生物碎屑泥晶灰岩
    Figure  2.  The coral fossils and lithologic characteristics of the observation site D18003 of the Qijiagou Formation in the Qijiagou section

    Caniniid–Clisiophyllid动物群主要产于祁家沟组近底部,在祁家沟剖面和石人子沟剖面上均有产出。在祁家沟剖面上以D18002观察点为代表。四射珊瑚均为单体珊瑚,除3个小型单体无鳞板个体Metriophyllum minorZaphrentites urumqiensisRotiphyllum cuneatum 的少量个体外,其余均为具鳞板类珊瑚, 以GsheliaCaninia为代表,均属于Cyathopsidae和Bothrophyllidae两科(图3)。已知的珊瑚属种分异度比较低,仅5属5种,但丰度很大,以发育鳞板带的中大型单体为主,单体珊瑚直径多在20~25 mm,鳞板带都比较窄,轴部构造不发育,缺少复体类型,特别是缺少造礁的块状复体珊瑚。表明这个珊瑚群生活在正常浪基面之上适于珊瑚生存的中–高能正常浅海环境中。

    图  3  祁家沟剖面祁家沟组D18002观察点珊瑚化石与岩性特征图
    a.含单体四射珊瑚的砂屑灰岩; b.磨损严重的Gshelia sp.;c.外壁轻微磨损的Caninia cornucopiae;d.外壁轻微磨损的Caninia?;e.外部鳞板带已完全磨损的Gshelia sp.;f、g.泥晶生物碎屑灰岩
    Figure  3.  The coral fossils and lithologic characteristics of the observation site D18002 of the Qijiagou Formation in the Qijiagou section

    Caniniid–Clisiophyllid动物群在石人子沟剖面以D18030观察点为代表。珊瑚以大型具鳞板类为主,分异度较低,仅计5属5种,包括Caninia cornucopiae Arctophyllum intermediumPseudozaphrentoides mapingensisCaninella magma ,含丛状复体珊瑚1属1种Fomichevella hoeli,均属于Cyathopsidae和Bothrophyllidae两科,未见小型无鳞板单体珊瑚。珊瑚外壁相对较薄,隔壁未加厚或加厚不明显,或仅在主部有较明显加厚,均无轴部构造。石人子沟剖面祁家沟组近底部四射珊瑚群面貌与祁家沟剖面总体上相同。它们均生活在正常浪基面之上适于珊瑚生存但不适合造礁的正常浅海环境中。石人子沟剖面祁家沟组近底部四射珊瑚群全由发育鳞板的类型组成,包括1属1种丛状复体珊瑚,四射珊瑚的个体稍大,鳞板带相对较宽,鳞板也更大。这些特征表明石人子沟剖面祁家沟组底部珊瑚群当时生活在海水更加动荡的正常浅海环境中。

    综上所述,研究区祁家沟组四射珊瑚组合均生活于正常浪基面之上的浅水环境中。其中祁家沟组中上部Cyathoxonia动物群生活在不利于四射珊瑚生存的较局限的低能浅水环境中,祁家沟组近底部Caniniid-Clisiophyllid动物群生活在正常浪基面之上适于珊瑚繁盛的中–高能正常浅海环境中。

    祁家沟组2个生态类型的四射珊瑚组合埋藏环境完全不同。如前所述,祁家沟组上部Cyathoxonia动物群生活在障壁后的浅水低能环境中。除个别小型单体无鳞板珊瑚个体破损外,大部分珊瑚个体无明显磨损,保存完整(图2)。其他生物碎屑如海百合茎、腕足类和介形虫主要呈条状和次棱角状,分选和磨圆都比较差。这些特征都显示出这个组合为原地埋藏。

    与此相反,祁家沟组近底部Caniniid–Clisiophyllid动物群中化石磨损和破损都十分明显(图4图5),丛状复体珊瑚Fomichevella呈片断保存。一些层位化石分布十分密集,成层保存(图4图6)。大部分珊瑚外壁几乎完全磨损,鳞板带被不同程度地损坏,一些个体整个鳞板带几乎完全被破坏,仅有加厚的隔壁内端的横板带被保存下来,绝大部分个体已经无法鉴定。鳞板的方向表明珊瑚个体保存方向杂乱无章,有些个体保存方向甚至完全相反,与四射珊瑚的原始生活状态完全不同。说明这些珊瑚化石经过一定距离的搬运,而且在搬运过程中发生过颗粒之间的碰撞和相互摩擦。

    图  4  石人子沟剖面祁家沟组下部四射珊瑚保存状态图
    a. 标本SRZG-18030-1-20;b. 标本SRZG-18030-1-08;c. 标本SRZG-18030-1-21
    Figure  4.  The preservation status of rugose corals in the lower part of the Qijiagou Formation in the Shirenzigou section
    图  5  祁家沟组下部四射珊瑚保存状态及其围岩特征图
    a. 标本QJG-18002-1-33;b. 标本QJG-18002-1-34-2;c. 标本QJG-18002-1-32;d. 标本QJG-18002-1-34-1;e. 标本SRZG-18030-1-19-1;f. 标本SRZG-18030-1-19-2
    Figure  5.  The preservation status and surrounding rock characteristics of rugose corals in the lower part of the Qijiagou Formation
    图  6  石人子沟剖面祁家沟组下部(D18030观察点)生物碎屑灰岩和砾屑灰岩图
    Figure  6.  The bioclastic limestones and calcirudytes of the observation site D18030 in the lower part of the Qijiagou Formation in the Shirenzigou section

    图5显示的祁家沟剖面和石人子沟剖面祁家沟组下部含Caniniid–Clisiophyllid动物群的(含)生物碎屑砂(粉)屑灰岩中没有被完全磨碎的珊瑚化石残骸,清楚表明在四射珊瑚化石搬运过程中大部分化石被完全粉碎,仅极少数珊瑚的横板带由于隔壁加厚而得以保存。粉屑灰岩应为正常浪基面以下的静水低能环境沉积,与珊瑚群的生存环境截然不同。

    图4展示的是石人子沟剖面祁家沟组下部富含四射珊瑚化石的生物颗粒灰岩。生物颗粒主要为发育鳞板带的四射珊瑚。珊瑚破损严重,大小不等,形态不规则,无磨圆。鳞板带显示珊瑚排列方向杂乱无章,显示出快速堆积的特征。基质一般都很细,灰泥质,含量少。各种大小的沉积颗粒沉积于同一环境中,显示出快速沉积、分选差的重力流沉积的特征(图6)。这个珊瑚化石群的保存状态和岩相特征表明其形成于静水环境中。其中的珊瑚和其它粗颗粒在经过短距离搬运后便迅速沉积。推测产出这个珊瑚群埋藏的层位岩性为重力流沉积,形成环境为正常浪基面甚至风暴浪基面之下的静水低能环境。

    祁家沟剖面祁家沟组 Caniniid–Clisiophyllid动物群(D18002观察点)的围岩主要为颗粒灰岩(图3a),包括砾屑灰岩和砂屑灰岩等,镜下可见泥晶生物碎屑灰岩。泥晶生物碎屑灰岩(图3f、图3g)中生物碎屑杂乱分布,含粗枝藻类、管孔藻类、棘皮类及苔藓虫类,破碎严重,分选磨圆差。个别棘皮类出现泥晶包边现象,颗粒含量占40%~60%,颗粒围绕珊瑚呈现出明显的定向排列特征。此微相相当于威尔逊(1981)标准微相中的SMF5,形成于台缘斜坡下部的低能静水环境。珊瑚的埋藏环境与生活环境差别明显,说明珊瑚是经过搬运后埋藏在台缘斜坡下部的低能静水环境。

    祁家沟剖面祁家沟组Caniniid–Clisiophyllid动物群(D18030观察点)保存于海百合碎屑密集分布的泥晶生物碎屑灰岩(图7)中,碎屑普遍较大,最大可达3 mm,散乱排布,无分选,磨圆较差,主要呈棱角状–次棱角状。另外还可见少量藻类碎片,颗粒含量可达80%以上,海百合碎屑占比40%~80%,基质为灰泥,含量较少。相当于威尔逊标准微相中的SMF12–CRIN。此标准微相中海百合碎屑的聚集存在2种形式。一种是原地形成的,出现在开阔陆棚海(FZ2)、前陡坡(FZ4)和丘(FZ5);另一种是异地形成的,出现在深水陆棚边缘(FZ3)和前陡坡(FZ4)。异地聚集常为碎屑流和浊流作用所致。这与珊瑚埋藏特征反映出来的情况一致。因此,推测该点珊瑚经短距离搬运埋藏在台缘斜坡下的低能静水环境。

    图  7  石人子沟剖面祁家沟组下部(D18030观察点)富含海百合碎屑的泥晶生物碎屑灰岩图
    Figure  7.  The micritic bioclastic limestones with abundant crinoids fragments of the observation site D18030 in the lower part of the Qijiagou Formation in the Shirenzigou section

    综上所述,祁家沟剖面祁家沟组下部Caniniid–Clisiophyllid动物群可能生活在温带气候条件下的与深水盆地相邻的碳酸盐台地边缘的高能浅水环境中,死后经过短距离搬运,迅速沉积在大陆斜坡中部的静水环境中。

    翟晓先(1987)李育慈等(1993)曹小兵等(2010)曾报道祁家沟剖面祁家沟组广泛发育近源风暴岩,认为祁家沟组一些层段形成于正常浪击面之下、风暴浪基面之上的环境中。这个部位既可沉积风暴流产生的高能沉积,也可以在风暴间歇期形成近乎静水的低能沉积。

    准噶尔地区在晚石炭世早期火山活动频繁,包括准噶尔盆地东北部的巴塔玛依内山组和准噶尔南缘柳树沟组发育火山沉积。祁家沟组下部也发育凝灰质砂岩、粉砂岩,说明在祁家沟组沉积早期,该区还伴随有微弱的火山作用。浅海火山喷发在研究区形成了上石炭统柳树沟组,并形成了一系列火山口,构成了环礁的火山岩基座(图8)。随着祁家沟组沉积开始,原来的火山口被海水几乎完全淹没。火山(口)岛周围适合珊瑚生长,于是大批珊瑚附着并迅速生长,逐渐发展成环礁。环礁外围面对海洋,海水能量较高,水体交换活跃,养料丰富,珊瑚生长速度快,珊瑚生长状况明显优于珊瑚礁内侧,形成了以发育具有鳞板带的单体珊瑚或者复体珊瑚为主的Caniniid–Clisiophyllid动物群,以祁家沟组近底部的珊瑚群为代表。环礁中间的洼地由于周围环礁的保护,受到海洋的作用不明显,海水能量较低,形成半封闭的礁湖(如果全封闭则形成潟湖)。礁湖内发育Cyathoxonia动物群,以祁家沟组近中上部的珊瑚群为代表。与祁家沟组中上部Cyathoxonia动物群共生的还有其他海相生物,说明这个环礁的潟湖没有完全封闭,是一个与外海保持比较充分沟通的低能浅水礁湖。这个Cyathoxonia动物群原地保存于礁湖沉积中(图8)。

    图  8  环礁与祁家沟组四射珊瑚生态分异示意图
    Figure  8.  The diagram of an atoll and the ecological differentiation of rugose corals in the Qijiagou Formation

    环礁礁坪上的Caniniid–Clisiophyllid动物群位于较陡的礁前斜坡边缘,受到海浪冲击破坏而破碎垮塌。在海浪和重力共同作用下,破碎的珊瑚沿着礁前斜坡以重力流方式下滑。在下滑过程中珊瑚个体之间及珊瑚个体与其他碎屑之间发生碰撞摩擦,使珊瑚骨骼进一步遭受破坏,外壁几乎被全部破坏,鳞板带被不同程度地破坏或者全部破坏。以重力流方式下滑的珊瑚个体在礁前斜坡角以重力流方式沉积下来,个体破碎严重,大小混杂,排列方向杂乱无章。一些被严重磨蚀的个体保存在深水沉积的灰泥中。

  • 图  1   秦岭造山带构造构架图(A)与熊耳山矿集区地质简图(B)(修改自Tang et al.,2021

    Figure  1.   (A) Tectonic framework of the Qinling Orogen and (B) geological map of the Xiong’ershan area showing important ore deposits

    图  2   黄水庵矿床地质图(A)与a–b勘探线地质剖面图(B)(修改自曹晶等,2014

    Figure  2.   (A) Geological map of the Huangshui’an Mo deposit and (B) the geological profile of exploration line a–b in this deposit

    图  3   黄水庵Mo–REE矿床的碳酸岩(A~C)与镜下矿物组成(D~F)

    Figure  3.   (A~C) Phorographs of carbonatite and (D~F) Photomicrographs of mineral composition in the Huangshui’an Mo–REE deposit

    图  4   黄水庵Mo–REE矿床方解石的稀土元素(A)与微量元素标准化分布模式(B)

    Figure  4.   (A) Normalized REE and (B) trace element patterns of calcites from the Huangshui’an Mo–REE deposit

    图  5   黄水庵碳酸岩中方解石C–O同位素图解(底图据Keller et al.,1995

    Figure  5.   C–O isotopic diagram of carbonatites from the Huangshui’an carbonatite

    图  6   黄水庵Mo–REE矿床氟碳铈矿背散射图像、测点位置和208Pb/232Th年龄

    Figure  6.   Backscattered-electron (BSE) images of bastnäsite that show location of analyzed spots and corresponding 208Pb/232Th ages in the Huangshui’an Mo–REE deposit

    图  7   黄水庵Mo–REE矿床的氟碳铈矿U–Th–Pb年龄

    Figure  7.   LA–ICP–MS U–Th–Pb ages of the bastnäsite from the Huangshui’an Mo–REE deposit

    表  1   黄水庵Mo–REE矿床方解石微量元素及稀土元素组成(10−6

    Table  1   Trace element and REE content (10−6) from the Huangshui’an Mo–REE deposit

    样品号HAS-9HAS-10HAS-11HAS-12HAS-13HAS-1418HAS-2019HAS-13
    Li0.1500.2100.2380.1300.0970.1030.0090.039
    Be0.6480.6460.0211.4900.1550.2740.1000.124
    Sc3.2303.3400.3153.0500.9702.0301.3102.710
    V1.3901.0600.3691.2500.3070.3760.5760.350
    Cr1.651.471.321.631.381.701.281.58
    Co1.131.051.121.141.021.101.121.15
    Ni22.520.121.718.321.619.821.423.7
    Cu0.9770.6960.3180.3220.3310.1900.3730.114
    Zn19.204.301.843.482.262.653.082.55
    Ga2.042.013.252.251.581.632.771.13
    Rb0.3190.2010.0620.1890.0530.0350.0350.028
    Sr59975960754659136040578778905297
    Y193193167193137169171148
    Mo14.318.9022.001.890.641.360.170.09
    Cd0.6430.4880.3030.5330.3660.2590.6600.421
    Sb0.0670.0240.0660.0360.0230.0160.0140.111
    Cs0.0310.0140.0220.0230.0270.0220.0210.016
    Ba9237722368067897881587691
    La91.387.625310884.882.418343.6
    Ce21820648424618418537599.9
    Pr31.129.053.535.225.023.847.514.1
    Nd12611920014596.399.517760.8
    Sm25.924.728.628.618.419.129.514.1
    Eu7.617.497.788.055.885.887.884.71
    Gd23.322.128.125.117.417.826.712.5
    Tb4.084.14.044.402.993.354.232.55
    Dy24.322.522.225.117.419.621.616.5
    Ho5.945.515.025.954.115.054.954.28
    Er19.519.317.020.914.717.217.315.6
    Tm3.693.492.843.812.613.262.972.88
    Yb25.625.018.124.616.821.419.420.0
    Lu3.513.462.123.492.452.952.592.66
    W4.7700.8360.5140.5900.4260.3460.5480.247
    Pb86.085.743.045.546.041.853.043.1
    Bi0.1640.2030.0290.0380.0120.0110.0330.016
    Th0.3810.3670.0570.4750.1560.0960.7390.071
    U1.3402.3400.1371.3200.8830.2220.4490.822
    Nb3.6905.800.0492.8400.7580.0420.0940.478
    Ta0.0550.0560.0530.0500.0350.0530.0460.040
    Zr0.3390.0970.1230.0760.0370.0850.0330.065
    Hf0.2220.2450.2390.2470.1610.1800.2130.168
    下载: 导出CSV

    表  2   黄水庵Mo–REE矿床的方解石C–O同位素组成

    Table  2   C–O isotope contents of calcite from the Huangshui’an Mo–REE deposit

    样号δ13 CV-PDB(‰)δ18 OV-PDB(‰)δ18 OV-SMOW(‰)
    HSA02−5.18−22.497.72
    HSA03−5.62−23.007.19
    HSA04−4.11−23.766.40
    HSA14−5.31−23.077.12
    19HSA-13−5.14−22.587.62
    19HSA-14−5.39−22.627.58
    下载: 导出CSV

    表  3   东秦岭黄水庵Mo–REE矿床氟碳铈矿U–Th–Pb分析结果表

    Table  3   Bastnäsite U–Th–Pb isotopic data from the Huangshui’an Mo–REE deposit, East Qinling

    分析点ThUTh/U同位素比值表面年龄(Ma)
    207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ208Pb/232Th±1σ
    19HSA-16-0112 90882.9155.70.630 70.016 511.640 70.391 60.134 20.00322172.5
    19HSA-16-029 14461.3149.30.563 50.016 59.655 70.640 60.114 50.00562252.6
    19HSA-16-039 13668.4133.60.075 20.004 80.436 40.025 50.044 70.00102162.5
    19HSA-16-0414 19192.2154.00.215 20.010 91.503 70.091 70.046 70.00102182.4
    19HSA-16-057 39147.3156.40.154 20.009 80.994 80.07830.045 00.00122182.8
    19HSA-16-068 72355.1158.30.251 70.019 42.133 10.201 20.054 00.00212112.4
    19HSA-16-077 22253.8134.20.210 60.013 31.994 90.178 20.058 80.00212192.5
    19HSA-16-0811 31253.2212.50.259 20.018 63.398 80.479 40.071 30.00692062.7
    19HSA-16-097 42050.6146.50.372 40.011 63.505 80.128 30.069 00.00142172.2
    19HSA-16-106 28410559.70.263 00.012 32.359 50.217 40.053 40.00222062.6
    19HSA-16-115 58655.1101.40.138 40.013 41.132 40.174 70.046 50.00192072.4
    19HSA-16-1217 92585.4209.90.149 40.010 91.416 40.138 20.054 90.00162132.3
    19HSA-16-133 13964.248.90.248 00.012 51.594 10.092 20.046 00.00112052.3
    19HSA-16-1419 660109179.60.076 50.004 50.437 70.026 30.042 40.00082132.2
    19HSA-16-1512 26797.5125.80.129 10.005 80.749 40.037 00.041 70.00092012.3
    下载: 导出CSV

    表  4   秦岭造山带碳酸岩型矿床的成矿时代

    Table  4   Geochronological data for the carbonatite deposits in the Qinling orogenic belt

    矿床矿床类型测试方法年龄(Ma)资料来源
    黄水庵 碳酸岩型Mo–REE矿床 辉钼矿Re–Os 209.5±4.2 黄典豪等,2009
    辉钼矿Re–Os 208.4±3.6 曹晶等,2014
    氟碳铈矿U–Th–Pb 206.5±3.8 Zhang et al.,2019
    氟碳铈矿U–Th–Pb 211.7±3.1 Feng et al.,2022
    209.6±2.1
    氟碳铈矿U–Th–Pb 213.5±2.9 本文
    黄龙铺 碳酸岩型Mo–REE矿床 辉钼矿Re–Os 221.5±0.3 Stein,1997
    辉钼矿Re–Os 222.0±7.0 Huang et al.,1995
    辉钼矿Re–Os 225.0 ± 7.6 Song et al.,2015
    独居石U–Th–Pb 208.9±4.6
    213.6± 4.0
    Song et al.,2016
    华阳川 碳酸岩型U–Nb–Pb–REE矿床 独居石U–Th–Pb 222.5±6.7 王佳营等,2020
    晶质铀矿U–Th–Pb 221.9±5.1
    137.1±2.0
    黄卉等,2020
    榍石U–Pb 208.5±3.2 Zheng et al.,2020
    辉钼矿Re–Os 196.8±2.4 Zheng et al.,2020
    庙垭 碳酸岩型Nb-REE矿床 独居石U–Th–Pb 233.6±1.7 Xu et al.,2014
    氟碳铈矿U–Th–Pb 205.8±3.6 Zhang et al.,2019
    独居石U–Pb 231.0±2.3 Zhang et al.,2019
    锆石U–Th–Pb 426.5±8.0 Ying et al.,2017
    独居石U–Th–Pb 238.3±4.1 Ying et al.,2017
    铌铁矿U–Pb 232.8±3.7 Ying et al.,2017
    下载: 导出CSV
  • 曹华文, 李光明, 张林奎, 等. 西藏山南列麦始新世花岗岩独居石U-Th-Pb年龄及地质意义[J]. 沉积与特提斯地质, 2020, 40(2): 31-42.

    CAO Huawen, LI Guangming, ZHANG Lingkui, et al. Monazite U-Th-Pb age of Liemai Eocene granites in the southern Tibet and its geological implications[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(2), 31-42.

    曹晶. 东秦岭黄水庵碳酸岩型钼矿床成矿作用研究[D]. 北京: 中国地质大学(北京), 2018

    CAO Jing. Mineralization of the Huangshui’an carbonatite Mo deposit in East Qinling[D]. Beijing: China University of Geosciences (Beijing), 2018.

    曹晶, 叶会寿, 李正远, 等. 东秦岭磨沟碱性岩体年代学、地球化学及岩石成因[J]. 岩石矿物学杂志, 2015, 34(05): 665-684 doi: 10.3969/j.issn.1000-6524.2015.05.006

    CAO Jing, YE Huishou, LI Zhengyuan, et al. Geochronology, geochemistry and petrogenesis of the Mogou alkalic pluton in the East Qinling orogenic belt [J]. Acta Petrologica et Mineralogica, 2015, 34(05): 665-684. doi: 10.3969/j.issn.1000-6524.2015.05.006

    曹晶, 叶会寿, 李洪英, 等. 河南嵩县黄水庵碳酸岩脉型钼(铅)矿床地质特征及辉钼矿Re-Os同位素年龄[J]. 矿床地质, 2014, 33(1): 53-69 doi: 10.3969/j.issn.0258-7106.2014.01.004

    CAO Jing, YE Huishou, LI Hongying, et al. Geological characteristics and molybdenite Re-Os isotopic dating of Huangshuian carbonatite vein-type Mo(Pb) deposit in Songxian County, Henan Province[J]. Mineral Deposits, 2014, 33(1): 53-69. doi: 10.3969/j.issn.0258-7106.2014.01.004

    曹晶, 叶会寿, 陈小丹, 等. 豫西雷门沟钼矿区花岗斑岩年代学、地球化学和Sr-Nd-Hf同位素研究[J]. 矿床地质, 2016, 35(4): 677-695 doi: 10.16111/j.0258-7106.2016.04.004

    CAO Jing, YE Huishou, CHEN Xiaodan, et al. Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of granite porphyry in Leimengou Mo deposit, western Henan Province[J]. Mineral Deposits, 2016, 35(4): 677-695. doi: 10.16111/j.0258-7106.2016.04.004

    付鑫宁, 唐利, 姚梅青, 等. 东秦岭黄水庵钼矿床的碳酸岩成因与地质意义: 来自痕量元素和Sr-Nd-Pb同位素的约束[J]. 成都理工大学学报(自然科学版), 2021, 48(5): 525-538

    FU Xinning, TANG Li, YAO Meiqing, et al. Genesis and geological significance of the carbonatite in the Huangshui'an Mo deposit in Eastern Qinling area of China: Constraints from trace elements and Sr-Nd-Pb isotopes[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(5): 525-538.

    黄典豪, 侯增谦, 杨志明, 等. 东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J]. 地质学报, 2009, 83(12): 1968-1984 doi: 10.3321/j.issn:0001-5717.2009.12.012

    HUANG Dianhao, HOU Zengqian, YANG Zhiming, et al. Geological and Geochemical Characteristics, Metallogenetic Mechanism and Tectonic Setting of Carbonatite Vein-Type Mo(Pb)Deposits in the East Qinling Molybdenum Ore Belt[J]. Acta Geologica Sinica, 2009, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012

    黄卉, 潘家永, 洪斌跃, 等. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义[J]. 矿床地质, 2020, 39(2): 351-368 doi: 10.16111/j.0258-7106.2020.02.009

    HUANG Hui, PAN Jiayong, HONG Binyue, et al. EPMA chemical U-Th-Pb dating of uraninite in Huayangchuan U-polymetallic deposit of Shaanxi Province and its geological significance[J]. Mineral Deposits, 2020, 39(2): 351-368. doi: 10.16111/j.0258-7106.2020.02.009

    胡乐, 李以科, 孙盛, 等. 内蒙古白云鄂博地区识别出新火成碳酸岩[J/OL]. 中国地质, 2021: 1-23.

    HU Le, LI Yike, SUN Sheng, et al. Identification of new igneous carbonatites in the Bayan Obo area, Inner Mongolia[J/OL], Geology in China, 2021: 1-23.

    李诺, 陈衍景, 张辉, 等. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 2007, 5: 186-198.

    LI Nuo, CHEN Yanjing, ZHANG Hui, et al. Molybdenum deposits in East Qinling[J]. Earth Science Frontiers, 2007, 5: 186-198.

    李永峰. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用[D]. 北京: 中国地质大学(北京), 2005

    LI Yongfeng. The Temporal-spatial Evolution of Mesozoic Granitoids in Xiong' ershan Area and Their Relationship to Molybdenum-gold Mineralization[D]. Beijing: China University of Geosciences (Beijing), 2005.

    梁涛, 白凤军, 罗照华, 等. 豫西熊耳山斑竹寺花岗斑岩岩体锆石U-Pb定年及地质意义[J]. 西北地质, 2014, 47(2): 41-50 doi: 10.3969/j.issn.1009-6248.2014.02.006

    LIANG Tao, BAI Fengjun, LUO Zhaohua, et al. LA-ICP-MS Zircon U-Pb Dating and Its Geological Implications of Banzhusi Granitic Porphyry in Xiongershan of Western Henan Province[J]. Northwestern Geology, 2014, 47(2): 41-50. doi: 10.3969/j.issn.1009-6248.2014.02.006

    卢欣祥, 罗照华, 黄凡, 等. 秦岭-大别山地区钼矿类型与矿化组合特征[J]. 中国地质, 2011, 38(6): 1518-1535 doi: 10.3969/j.issn.1000-3657.2011.06.012

    LU Xinxiang, LUO Zhaofan, HUANG Fan, et al. Mo deposit types and mineralization assemblage characteristics in QinlingDabie Mountain area[J]. Geology in China, 2011, 38(6): 1518-1535. doi: 10.3969/j.issn.1000-3657.2011.06.012

    卢欣祥, 尉向东, 肖庆辉, 等. 秦岭环斑花岗岩的年代学研究及其意义[J]. 高校地质学报, 1999, 5(4): 372 – 377

    LU Xinxiang, WEI Xiangdong, XIAO Qinghui, et al. Geochronological studies of rapakivi granites in Qingling and its geological implication[J]. Geological Journal of China Universities, 1999, 5(4): 372-377.

    罗涛, 赵赫, 张文, 等. 激光剥蚀电感耦合等离子体质谱非基体匹配氟碳铈矿U-Th-Pb定年[J]. 中国科学: 地球科学, 2021, 51(06): 874-883 doi: 10.1360/N072020-0267

    LUO Tao, ZHAO He, ZHANG Wen, et al. Non-matrix-matched analysis of U-Th-Pb geochronology of bastnasite by laser ablation inductively coupled plasma mass spectrometry[J]. Scientia Sinica (Terrae), 2021, 51(06): 874-883. doi: 10.1360/N072020-0267

    罗铮娴, 黄小龙, 王雪, 等. 华北克拉通崤山太华群TTG质片麻岩年代学与地球化学特征: 岩石成因机制探讨[J]. 大地构造与成矿学, 2018, 42(2): 332-347

    LUO Zhengxian, HUANG Xiaolong, WANG Xue, et al. Geochronology and Geochemistry of the TTG Gneisses from the Taihua Group in the Xiaoshan Area, North China Craton: Constraints on Petrogenesis[J]. Geotectonica et Metallogenia, 2018, 42(2): 332-347.

    毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, 21(1): 169-188

    MAO Jingwen, XIE Guiqing, ZHANG Zuoheng, et al. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 2005, 21(1): 169-188.

    毛帆, 裴先治, 李瑞保, 等. 扬子板块西北缘碧口微地块南华系碎屑锆石U-Pb年龄及其物源示踪[J]. 沉积与特提斯地质, 2021, 41(1): 41-57 doi: 10.19826/j.cnki.1009-3850.2020.10009

    MAO Fang, PEI Xianzhi, LI Ruibao, et al. The LA-ICP-MS U-Pb dating of detrital zircons from the Nanhua System in Bikou Terrane, northwestern margin of Yangtze Block[J]. Sedimentary Geology and Tethyan Geology, 2021, 41(1): 41-57. doi: 10.19826/j.cnki.1009-3850.2020.10009

    齐进英. 东秦岭太华群变质岩系及其形成条件[J]. 地质科学, 1992, 112: 94-107

    QI Jinying. Metamorphic rock series of Taihua Group and conditions for its formation in Eastern Qinling[J]. Chines Journal of Geology, 1992, 112: 94-107

    秦江锋. 秦岭造山带晚三叠世花岗岩类成因机制及深部动力学背景[D]. 西安: 西北大学, 2010

    QING Jiangfeng. Petrogenesis and Geodynamic Implications of the Late-Triassic Granitoids from the Qinling Orogenic Belt[D]. Xi’an: Northwest University, 2010.

    邱啸飞, 蔡应雄, 江拓, 等. 庙垭铌-稀土矿床的热液蚀变作用: 来自碳酸岩碳-氧同位素的制约[J]. 华南地质与矿产, 2017, 33(03): 275-281 doi: 10.3969/j.issn.1007-3701.2017.03.008

    QIU Xiaofei, CAI Yingxiong, JIANG Tuo, et al. Hydrothermal alteration for the Miaoya Nb-REE deposit: constraints from C-O isotope composition of the carbonatite[J]. Geology and Mineral Resources of South China, 2017, 33(03): 275-281. doi: 10.3969/j.issn.1007-3701.2017.03.008

    宋文磊, 许成, 刘琼, 等. 火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义[J]. 地质论评, 2012, 4: 726-744 doi: 10.3969/j.issn.0371-5736.2012.04.014

    SONG Wenlei, XU Chen, LIU Qiong, et al. Experimental Petrological Study of Carbonatite and Its Significances on the Earth Deep Carbon Cycle[J]. Geological Review, 2012, 4: 726-744. doi: 10.3969/j.issn.0371-5736.2012.04.014

    王佳营, 李志丹, 张祺, 等. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 2020, 94(10): 2946-2964 doi: 10.3969/j.issn.0001-5717.2020.10.011

    WANG JiaYing, LI Zhidan, ZHANG Qi, et al. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011

    姚书振, 周宗桂, 吕新彪, 等. 秦岭成矿带成矿特征和找矿方向[J]. 西北地质, 2006, 39(2): 156-178 doi: 10.3969/j.issn.1009-6248.2006.02.010

    YAO Shunzhen, ZHOU Zonggui, LV Xinbiao, et al. Mineralization Characteristics and Prospecting Potential in the Qinling Metallogenic Belt[J]. Northwestern Geology, 2006, 39(2): 156-178. doi: 10.3969/j.issn.1009-6248.2006.02.010

    张成立, 王涛, 王晓霞. 秦岭造山带早中生代花岗岩成因及其构造环境[J]. 高校地质学报, 2008, 3: 304-316 doi: 10.3969/j.issn.1006-7493.2008.03.003

    ZHANG Chengli, WANG Tao, WANG Xiaoxia. Origin and Tectonic Setting of the Early Mesozoic Granitoids in Qinling Orogenic Belt[J]. Geological Journal of China Universities, 2008, 3: 304-316. doi: 10.3969/j.issn.1006-7493.2008.03.003

    张传昱, 李文昌, 余海军, 等. 云南水头山铅锌矿床闪锌矿Rb-Sr定年及其地质意义[J]. 沉积与特提斯地质, 2022, 42(1): 122-132 doi: 10.19826/j.cnki.1009-3850.2022.01006

    ZHANG Chuanyu, LI Wenchang, YU Haijun, et al. Sphalerites Rb-Sr dating and geological significance of the Shuitoushan Pb-Zn deposit in Yunnan Province, SW China [J]. Sedimentary Geology and Tethyan Geology, 2022, 42(1): 122-132. doi: 10.19826/j.cnki.1009-3850.2022.01006

    张国伟, 郭安林, 董云鹏, 等. 关于秦岭造山带[J]. 地质力学学报, 2019, 25(5): 746-768 doi: 10.12090/j.issn.1006-6616.2019.25.05.064

    ZHANG Guowei, GUO Anlin, DONG Yunpeng, et al. Rethinking of the Qinling Orogen[J]. Journal of Geomechanics, 2019, 25(5): 746-768. doi: 10.12090/j.issn.1006-6616.2019.25.05.064

    张健, 李怀坤, 田辉. 华北克拉通南缘官道口群龙家园组凝灰岩SHRIMP锆石U-Pb年代学研究[J]. 华北地质, 2021, 44(04): 1-4

    ZHANG Jian, LI Huaikun, TIAN Hui. SHRIMP Zircon U-Pb dating of tuff from the Longjiayuan Formation of the Guandaokou Group, southern margin of North China Craton [J]. North China Geology, 2021, 44(04): 1-4.

    张元厚, 张世红, 韩以贵, 等. 华熊地块马超营断裂走滑特征及演化[J]. 吉林大学学报(地球科学版), 2006, 36(2): 169-176, 193.

    ZHANG Yuanhong, ZHANG Shihong, HAN Yigui, et al. Strik-Slip Features of the Machaoying Fault Zone and Its Evolution in the Huaxiong Terrane, Southern North China Craton[J]. Journal of Jilin Unviersity: Earth Science Edition, 2006, 36(2): 169-176+193.

    赵太平, 徐勇航, 翟明国. 华北陆块南部元古宙熊耳群火山岩的成因与构造环境: 事实与争议[J]. 高校地质学报, 2007, 2: 191-206 doi: 10.3969/j.issn.1006-7493.2007.02.005

    ZHAO Taiping, XU Yonghang, ZHAI Mingguo. Petrogenesis and Tectonic Setting of the Paleoproterozoic Xiong’er Group in the Southern Part of the North China Craton: a Review[J]. Geological Journal of China Universities, 2007, 2: 191-206. doi: 10.3969/j.issn.1006-7493.2007.02.005

    Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons: uranium-lead zircon dating of coesite-bearing eclogites. [J]. Geology, 1993, 21(4): 339-342. doi: 10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2

    Brooker R A, Kjarsgaard B A. Silicate–Carbonate Liquid Immiscibility and Phase Relations in the System SiO2–Na2O–Al2O3–CaO–CO2 at 0·1–2·5 GPa with Applications to Carbonatite Genesis [J]. Journal of Petrology, 2011, 52(7/8): 1281-1305.

    Chaussidon M and Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): an ion microprobe study[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2835-2846. doi: 10.1016/0016-7037(90)90018-G

    Chavagnac V, Jahn B M. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications[J]. Chemical Geology, 1996, 133(1): 29-51.

    Chen Y J, Santosh M. Triassic tectonics and mineral systems in the Qinling Orogen, central China[J]. Geological Journal, 2014, 49: 338-358.

    Dong Y P, Yang Z, Liu X M, et al. Mesozoic intracontinental orogeny in the Qinling Mountains, central China[J]. Gondwana Research, 2016, 30: 144-158.

    Feng Jiaying, Tang Li, Yang Bochang, et al. Bastnäsite U-Th-Pb age, sulfur isotope and trace elements of the Huangshui’an deposit: Implications for carbonatite-hosted Mo-Pb-REE mineralization in the Qinling Orogenic Belt, China[J]. Ore Geology Reviews, 2022, 143: 104790. doi: 10.1016/j.oregeorev.2022.104790

    Gao Shan, Luo Tingchuan, Zhang Benren, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959–1975. doi: 10.1016/S0016-7037(98)00121-5

    Gittins J, Jago B C. Differentiation of natrocarbonatite magma at Oldoinyo Lengai volcano, Tanzania[J]. Mineralogical Magazine, 1998, 62(6): 759-768. doi: 10.1180/002646198548142

    Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1): 215-230.

    Harlov D E, Wirth R, Hetherington C J. Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer[J]. Contributions to Mineralogy and Petrology, 2011, 162(2): 329-348. doi: 10.1007/s00410-010-0599-7

    Hou Zengqian, Liu Yan, Tian Shihong, et al. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments[J]. Scientific reports, 2015, 5: 2045-2322.

    Hou Zengqian, Tian Shihong, Yuan Zhongxin, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication[J]. Earth and Planetary Science Letters, 2006, 244(1-2): 234-250. doi: 10.1016/j.jpgl.2006.01.052

    Huang Dianhao, Wu Chengyu, Du Andao, et al. Re-Os Isotope Ages of Molybdenum Deposits in East Qinling and Their Significance[J]. Chinese Journal of Geochemistry, 1995, 4: 313-322.

    Kathryn M. Goodenough, Eimear A. Deady, Charles D. Beard, et al. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements[J]. Journal of Earth Science, 2021, 32(6): 1332-1358. doi: 10.1007/s12583-021-1500-5

    Keller J, Hoefs J. Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai [J]. Carbonatites Volcanism, 1995, 4: 113—123.

    Kynicky J, Smith M P, Xu Cheng. Diversity of Rare Earth Deposits: The Key Example of China[J]. Elements, 2012, 8(5): 361-367. doi: 10.2113/gselements.8.5.361

    Le Maitre R W. Igneous rocks: a classification and glossary of terms[M]. Cambridge: Cambridge University Press, 2002.

    Ling X X, Li Q L, Liu Y, et al. In situ SIMS Th-Pb dating of bastnaesite: constraint on the mineralization time of the Himalayan Mianning-Dechang rare earth element deposits[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(8): 1680-1687. doi: 10.1039/C6JA00093B

    Mao Jingwen, Zhang Zhaochong, Zhang Zuoheng, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 1999, 63(11/12): 1815-1818.

    Poitrasson F, Shepherd TJ, Chenery S. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics [Review][J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2000, 64(19): 3283-3297. doi: 10.1016/S0016-7037(00)00433-6

    Rasmussen B, Muhling J R. Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism[J]. Contributions to Mineralogy and Petrology, 2007, 154(6): 675-689. doi: 10.1007/s00410-007-0216-6

    Sal’nikova E B, Yakovleva S Z, Nikiforov A V, et al. Bastnaesite: A Promising U-Pb Geochronological Tool[J]. Doklady earth sciences, 2010, 430(1): 134-136. doi: 10.1134/S1028334X10010290

    Song Wenlei, Xu Cheng, Smith M P, et al. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China[J]. Scientific reports, 2016, 6(1): 37377. doi: 10.1038/srep37377

    Song Wenlei, Xu Cheng, Qi Liang, et al. Genesis of Si-rich carbonatites in Huanglongpu Mo deposit, Lesser Qinling orogen, China and significance for Mo mineralization[J]. Ore Geology Reviews, 2015, 64: 756-765. doi: 10.1016/j.oregeorev.2014.04.003

    Stein H J, Markey R J, Morgan J W, et al. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China[J]. Economic Geology, 1997, 92(7-8): 827-835. doi: 10.2113/gsecongeo.92.7-8.827

    Tang Li, Wagner T, Fusswinke T, et al. Magmatic-hydrothermal evolution of an unusual Mo-rich carbonatite: a case study using LA-ICP-MS fluid inclusion microanalysis and He–Ar isotopes from the Huangshui’an deposit, Qinling, China[J]. Mineralium Deposita, 2021, 56(6) : 1-18.

    Tang Li, Zhang Shouting, Yang Fan, et al. Triassic alkaline magmatism and mineralization in the Xiong'ershan area, East Qinling, China[J]. Geological Journal, 2019, 54(1): 143-156. doi: 10.1002/gj.3166

    Taylor H P, Frechen J, Degens, E T. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden[J]. Geochimica et Cosmochimica Acta, 1967, 31(3): 407-430. doi: 10.1016/0016-7037(67)90051-8

    Wallace M E, Green D H. An experimental determination of primary carbonatite magma composition[J]. Nature, 1988, 335: 343. doi: 10.1038/335343a0

    Wang, Zaicong, Becker H. Molybdenum partitioning behavior and content in the depleted mantle: Insights from Balmuccia and Baldissero mantle tectonites (Ivrea Zone, Italian Alps) [J]. Chemical Geology, 2018, 499: 138-150. doi: 10.1016/j.chemgeo.2018.09.023

    Wedepohl K H. The composition of the continental crust[J]. The Geochimica et Cosmochimica Acta, 1995, 59, 1217-1232. doi: 10.1016/0016-7037(95)00038-2

    Xu Cheng, Chakhmouradian A R, Taylor R N, et al. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks[J]. Geochimica et Cosmochimica Acta, 2014, 143: 189-206. doi: 10.1016/j.gca.2014.03.041

    Xu Cheng, Wang Linjun, Song Wenlei, et al. Carbonatites in China: A review for genesis and mineralization[J]. Geoscience Frontiers, 2010, 1(1): 105-114. doi: 10.1016/j.gsf.2010.09.001

    Yang Yueheng, Wu Fuyuan, Li Yang. In situ U-Pb dating of bastnaesite by LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1017-1023. doi: 10.1039/C4JA00001C

    Ying Yuancan, Chen Wei, Lu Jue, et al. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China[J]. Lithos, 2017, 290: 159-171

    Zhang Wei, Chen Wei Terry, Gao Jianfeng, et al. Two episodes of REE mineralization in the Qinling Orogenic Belt, Central China: in-situ U-Th-Pb dating of bastnäsite and monazite[J]. Mineralium Deposita, 2019, 54(8): 1265-1280. doi: 10.1007/s00126-019-00875-7

    Zheng Hui, Chen Huayong, Li Dengfeng, et al. 2020. Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: constraints from titanite U–Pb and molybdenite Re–Os dating[J]. Geoscience Frontiers, 2020, 11: 1581-1592. doi: 10.1016/j.gsf.2020.03.001

    Zheng Y F, Gao T S, Wu Y B, et al. Fluid flow during exhumation of deeply subducted continental crust: zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite[J]. Journal of Metamorphic Geology, 2007, 25(2): 267-283. doi: 10.1111/j.1525-1314.2007.00696.x

图(7)  /  表(4)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  56
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-06-30
  • 网络出版日期:  2022-08-30
  • 刊出日期:  2023-02-19

目录

/

返回文章
返回