ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

山东蓬莱石家金矿床早白垩世镁铁质–长英质脉岩地球化学特征及其成因

石启慧, 章永梅, 顾雪祥, 冯李强, 王佳琳, 张英帅

石启慧, 章永梅, 顾雪祥, 等. 山东蓬莱石家金矿床早白垩世镁铁质–长英质脉岩地球化学特征及其成因[J]. 西北地质, 2023, 56(1): 99-116. DOI: 10.12401/j.nwg.2022015
引用本文: 石启慧, 章永梅, 顾雪祥, 等. 山东蓬莱石家金矿床早白垩世镁铁质–长英质脉岩地球化学特征及其成因[J]. 西北地质, 2023, 56(1): 99-116. DOI: 10.12401/j.nwg.2022015
SHI Qihui, ZHANG Yongmei, GU Xuexiang, et al. Geochemical Characteristics and Petrogenesis of the Early Cretaceous Mafic–Felsic Dykes in the Shijia Gold Deposit, Penglai, Shandong Province[J]. Northwestern Geology, 2023, 56(1): 99-116. DOI: 10.12401/j.nwg.2022015
Citation: SHI Qihui, ZHANG Yongmei, GU Xuexiang, et al. Geochemical Characteristics and Petrogenesis of the Early Cretaceous Mafic–Felsic Dykes in the Shijia Gold Deposit, Penglai, Shandong Province[J]. Northwestern Geology, 2023, 56(1): 99-116. DOI: 10.12401/j.nwg.2022015

山东蓬莱石家金矿床早白垩世镁铁质–长英质脉岩地球化学特征及其成因

基金项目: 国家自然科学基金重点项目“新疆西天山北缘晚古生代斑岩–矽卡岩型铜钼铁多金属成矿与岩浆–热液作用过程”(42130804)资助。
详细信息
    作者简介:

    石启慧(1996−),女,硕士研究生,从事矿床学及矿床地球化学研究。E-mail:3001220101@email.cugb.edu.cn

    通讯作者:

    章永梅(1984−),女,副教授,博士生导师,从事矿床学及矿床地球化学研究。E-mail:zhangyongmei@cugb.edu.cn

  • 中图分类号: P581

Geochemical Characteristics and Petrogenesis of the Early Cretaceous Mafic–Felsic Dykes in the Shijia Gold Deposit, Penglai, Shandong Province

  • 摘要:

    石家金矿床位于胶东金矿集区的蓬莱–栖霞金矿带北段,矿区广泛出露的早白垩世镁铁质–长英质脉岩与金矿体空间关系密切。脉岩岩石类型多样,主要包括煌斑岩、辉绿岩和花岗斑岩。各类脉岩的岩石地球化学特征研究表明,煌斑岩与辉绿岩具有低Si、低Fe和高Mg的特征,富集轻稀土和大离子亲石元素(如Ba、Sr、Pb),亏损高场强元素(如Nb、Ta、Zr、Hf、Ti),起源于富集岩石圈地幔的部分熔融,与岛弧火山岩类似。花岗斑岩具有高Si、高K、高Al的特点,富集轻稀土和大离子亲石元素(Th、U、Rb、Ba、Pb),亏损高场强元素(Ta、Nb、Ti、Zr、Hf),属高钾钙碱性系列过铝质岩石,是在软流圈上涌、幔源岩浆底侵背景下由杂砂岩部分熔融所形成的。虽然有学者认为这些脉岩可以作为有效的找矿标志,但年代学研究显示脉岩与金矿化无直接的成因联系。

    Abstract:

    The Shijia gold deposit is situated in the north of the Penglai–Qixia gold belt in the Jiaodong Peninsula. Different types of early Cretaceous mafic–felsic dykes, mainly including lamprophyre, diabase, and granite porphyry dykes, are closed associated with gold mineralization in space at Shijia. Based on the study of geochemical characteristics of vein rocks, it is concluded that lamprophyre and diabase dykes are characterized by low contents of SiO2, TFe2O3 and high MgO, they are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; Such as Ba, Sr, and Pb), but depleted in high field strength elements (HFSEs; Such as Nb, Ta, Zr, Hf, and Ti). It is considered that lamprophyre and diabase dykes with arc–like trace element patterns are originated from partial melting of the enriched lithospheric mantle. Granite porphyry dykes are peraluminous, high potassium calc–alkaline rocks which are characterized by high concentrations of SiO2, K2O and Al2O3, with enrichment in LREEs and LILEs (Th, U, Rb, Ba, and Pb) and depletion in HFSEs (Ta, Nb, Ti, Zr, and Hf). They were formed by partial melting of greywacks under the background of asthenosphere upwelling and mantle–derived magma underplating. Although some researchers suggest that these dykes can be used as effective ore prospecting indicators, chronological studies show that there is no direct genetic relationship between the dykes and gold mineralization.

  • 胶东半岛在大地构造位置上处于华北克拉通东南缘。自中生代以来,该地区经历了古特提斯洋的闭合、古太平洋板块的俯冲以及华北克拉通大规模的伸展减薄,不仅导致了多期构造岩浆活动,也形成了中国乃至世界上最大的金矿集区之一——胶东金矿集区。伴随着强烈的金矿化,中生代的镁铁质–长英质脉岩,包括煌斑岩、辉绿岩、闪长岩、花岗斑岩、正长斑岩等,也广泛出露于胶东地区,并且与金矿体之间具有密切的时空联系。对于中生代的镁铁质脉岩,前人开展了一系列岩相学、岩石地球化学、年代学以及同位素地球化学等研究,探讨了岩浆源区性质、演化规律及形成的构造环境。在成岩时代上,这些镁铁质脉岩主要形成于早白垩世(130~120 Ma)与晚白垩世(<110 Ma)2个时期;在地球化学性质上,早白垩世脉岩与岛弧火山岩类似,晚白垩世脉岩则与洋岛玄武岩相似;在岩石成因上,早白垩世脉岩被认为与富集岩石圈地幔部分熔融有关,而晚白垩世脉岩则源于软流圈地幔的部分熔融(Ma et al.,2014a2014b2016Dai et al.,2016郑永飞等,2018Wang et al.,2020)。此外,镁铁质脉岩与胶东的金矿化之间的时空一致性也是学者们讨论的热点。部分研究者认为煌斑岩等镁铁质可能为成矿作用提供了成矿流体、金属、挥发分或起到了地球化学障的作用(如Li et al.,2012Yang et al.,2014Ma et al.,2017),而另外一些学者则认为金矿化与脉岩之间不存在成因联系,两者之间为同源关系(申玉科等,2005Deng et al.,2020)。相较于镁铁质脉岩,有关长英质脉岩的报道则较少。

    位于山东省蓬莱市的石家金矿床是一个赋存于早白垩世郭家岭花岗岩内的石英脉型金矿床。与胶东地区其他金矿床类似,该矿区内也分布着煌斑岩脉、辉绿岩脉以及花岗斑岩脉等诸多不同类型的脉岩,这些岩脉集中侵位于早白垩世(129~120 Ma)(Feng et al.,2020),常切割金矿体。目前,有关石家金矿区脉岩的岩石学和地球化学研究工作尚浅,对该地区镁铁质–长英质脉岩的形成机制还缺乏系统的认识。笔者通过岩石地球化学分析,同时结合胶东地区中生代以来的构造演化,分析石家金矿区镁铁质–长英质脉岩的岩石成因,并探讨脉岩与金矿化之间的关系。

    石家金矿床位于华北克拉通东南缘的胶北地体内。区域上出露的地层简单,以前寒武纪变质基底为主,主要包括新太古界胶东群和古元古界粉子山群。胶东群零星分布于矿区南部,主要由斜长角闪岩、黑云变粒岩以及磁铁石英等组成;粉子山群出露于矿区东部,沿肖古家断裂呈北北东向展布,岩性组合为黑云变粒岩、白云大理岩以及片岩等(图1a)。

    图  1  山东蓬莱石家地区区域地质图(a)和石家金矿区地质图(b)(据张英帅等,2021
    Figure  1.  (a) Regional geological map of the Shijia area in Penglai, Shandong and (b) geological map of the Shijia gold deposit

    区内断裂构造以一系列近平行展布的北北东、北东向断裂为主,并控制了区内地层、岩浆岩以及金矿床(点)的分布。这些断裂规模大小不一,宽数米至数十米,延伸数十米至数千米,走向10°~30°,倾向南东,倾角50°~85°,其中虎路线断裂和肖古家断裂是规模最大的2条断裂。此外,北西向的张扭性断裂以及东西向的走滑断层也有分布,这些断裂多形成于矿化之后,常造成金矿体的位错。

    区内岩浆活动以中生代为主,覆盖了整个石家金矿区(图1b)。主要包括晚侏罗世的玲珑二长花岗岩和早白垩世的郭家岭二长花岗岩,其中前者夹持于虎路线断裂与肖古家断裂之间,后者分布于虎路线断裂西侧。矿区南部小范围出露新太古代和古元古代的侵入岩,岩性主要为片麻状花岗闪长岩以及变辉长岩等。

    石家矿区内出露多种不同类型的脉岩,岩性主要包括煌斑岩、辉绿岩、花岗斑岩以及花岗伟晶岩等。这些脉岩的规模一般不大,宽度变化于10 cm~1 m,延伸几十至数百米,主要侵位于郭家岭花岗岩之中,并且错断金矿体。根据野外的穿插关系以及锆石U-Pb同位素年代学数据,脉岩与金矿体的形成顺序为:花岗伟晶岩(129.7 Ma)–金矿体–煌斑岩(129.3 Ma)–辉绿岩(128.3 Ma)–花岗斑岩(120.0 Ma)(Feng et al.,2020)。

    煌斑岩:岩脉宽为0.5~1 m,呈北北东向脉状产出,切割金矿体(图2a)。深绿色,煌斑结构,块状构造(图2b)。岩石类型为云煌岩。斑晶由斜长石、黑云母以及角闪石组成,占矿物总量的70%以上。基质主要为细粒的黑云母、斜长石(图2c图2d)。斜长石斑晶含量约45%,粒度为0.1~0.3 mm,见聚片双晶和卡式双晶。黑云母斑晶呈片状,粒度0.1~1 mm,含量约25%。角闪石呈长柱状,粒度为0.1~1 mm,含量约10%。岩石发生弱碳酸盐化,可见少量方解石。

    图  2  石家金矿镁铁质-长英质脉岩宏观和微观特征
    a. 煌斑岩脉切割矿体;b. 深绿色煌斑岩;c~d. 煌斑岩,具煌斑结构;e. 辉绿岩脉切割矿体;f. 深灰绿色辉绿岩;g~h. 辉绿岩,辉石呈斑晶分布;i. 矿体被花岗斑岩所切穿;j. 灰白色花岗斑岩;k~l. 中细粒斑状花岗斑岩;Am.角闪石;Bt.黑云母;Chl.绿泥石;Kf.钾长石;Ms.白云母;Pl.斜长石;Px.辉石;Ser.绢云母
    Figure  2.  Macroscopic and microscopic characteristics of mafic-felsic dykes in the Shijia gold deposit

    辉绿岩:岩脉宽为10~30 cm,呈北北东向脉状产出,切割金矿体(图2e)。深灰绿色,辉绿结构,块状构造(图2f)。斑晶包括辉石、斜长石以及黑云母,基质主要为斜长石(图2g、图2h)。辉石斑晶多为柱状、粒状,粒度为0.1~1 mm,含量约为10%,绿泥石化。斜长石斑晶含量约为40%,针柱状,粒度为0.05~0.1 mm,见卡式双晶,斜消光。黑云母含量约为20%,片状,粒度为0.05~0.1 mm。

    花岗斑岩:岩脉宽约数米,北北东走向,切穿矿体(图2i)。灰白色,斑状结构,块状构造(图2g)。斑晶占30%,主要由石英、斜长石以及白云母组成,粒度为0.2~0.5 mm(图2k图2l)。石英为他形粒状,无色透明;斜长石呈自形板状,可见聚片双晶;白云母呈片状,具鲜艳、明亮的Ⅱ级黄绿–Ⅲ级红干涉色,发育一组极完全解理。基质主要为石英、斜长石等,粒度细小,一般在0.1 mm左右。副矿物为不透明的自形黄铁矿。

    用于岩石地球化学分析的样品采自石家金矿床井下不同中段的新鲜岩石,包括9件煌斑岩、10件辉绿岩以及10件花岗斑岩。其中,煌斑岩样品采自−395 m中段76线和−475 m中段36线,辉绿岩样品采自−395 m中段76线,花岗斑岩样品采自−435 m中段16线。

    主量元素含量分析在中国地质大学(北京)地质过程与矿产资源国家重点实验室矿床地球化学微区实验室完成,采用X射线荧光光谱法(XRF)分析,仪器为日本岛津公司生产的XRF-1800型X射线荧光光谱仪,分析精度优于1%。具体的分析步骤如下:①将粉末样品置于105 ℃的烘箱中烘烤2 h;②样品取出后在干燥器中冷却至室温,取0.7 g样品与7 g熔剂(67%无水次硼酸锂 + 33% 无水偏硼酸锂)于铂金坩埚中,充分混合后加入3~5滴脱模剂(LiBr 300 mg/ml);③将盛有样品的铂金坩埚置于高频熔融炉内,在1 050 ℃的条件下熔融6 min;④样品完全熔融后倒入模具中,快速冷却制成玻璃熔片;⑤在XRF上用校准曲线法进行测定。

    微量元素含量分析在核工业北京地质研究所分析测试中心采用等离子质谱法(ICP–MS)完成。仪器型号为PE NexION300D电感耦合等离子体质谱仪,分析精度优于5%。具体分析方法如下:①称取50 ± 0.3 mg样品置于Teflon坩埚中;②依次加入1 ml HCL、1 ml HNO3、3 ml HF以及数滴HClO4,拧紧盖子后置于170 ℃电热板上加热48 h;③待坩埚冷却至室温后,打开盖子置于170 ℃电热板上,继续加热至样品呈湿盐状;④依次加入2.5 ml超纯水和2.5 ml HNO3,拧紧盖子后置于170 ℃电热板上加热12 h;⑤将溶液转入聚四氟乙烯塑料瓶中,并用超纯水定容至50 ml;⑥在等离子体质谱仪上进行测试。

    煌斑岩的SiO2含量为43.9%~48.1%,Na2O和K2O含量分别为1.10%~1.99%、2.10%~2.56%(表1),样品在TAS图解上主要分布在玄武岩范围内(图3a),在SiO2–K2O判别图解上落于高钾钙碱性–碱性煌斑岩区域(图3b)。该煌斑岩具有较高的MgO含量(8.16%~11.14%)和Mg#值(69~74),TiO2TFe2O3及Al2O3含量较低,分别为0.66%~0.73%、7.44%~7.78%、10.82%~13.69%。在哈克图解上,TFe2O3、CaO及CaO/Al2O3与MgO表现出正相关性,而SiO2、TiO2、Al2O3及P2O5与MgO却呈现为不同程度的负相关性(图4a图4g)。

    表  1  石家金矿区三种脉岩主微量元素含量及特征值
    Table  1.  Contents and characteristic values of major and trace elements in three types of mafic–felsic dykes in Shijia gold deposit
    样品
    类型
    样品
    原号
    SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5LOITotalMg#LaCePr
    煌斑岩HBY-2a47.530.7112.277.730.1210.198.711.602.390.538.80100.5772.3197.30180.0020.60
    HBY-3a43.900.6610.827.770.1310.649.911.102.100.4513.88101.3573.0589.20164.0018.60
    HBY-445.550.7012.077.600.138.869.051.352.370.5211.96100.1569.79100.00181.0020.30
    HBY-646.480.6912.927.470.129.648.091.652.430.509.5199.4971.87103.00189.0021.40
    HBY-846.380.6611.487.780.1211.149.051.382.110.4610.12100.6873.9487.50162.0018.30
    HBY-946.570.6711.397.650.1210.529.071.402.290.489.7099.8573.1594.00172.0019.70
    HBY-1046.520.6912.657.480.128.698.331.512.560.5110.6899.7569.69105.00193.0021.40
    PM-1347.350.7113.697.440.118.168.461.942.230.518.3498.9568.50107.00193.0021.90
    PM-1648.070.7313.377.520.138.448.841.992.390.538.27100.2968.98108.00198.0022.30
    辉绿岩SCBY-248.980.8214.167.640.128.098.271.582.370.358.96101.3667.7250.0094.1010.60
    SCBY-348.530.7914.197.680.128.378.001.462.350.349.13100.9768.3547.9090.1010.40
    SCBY-449.860.8414.487.650.127.828.451.682.320.379.07102.6766.9650.3093.8011.00
    SCBY-549.210.8214.757.520.127.998.041.892.310.368.33101.3467.7751.1095.3010.90
    SCBY-648.860.8114.237.540.128.168.271.722.250.358.68100.9968.1849.4093.2010.40
    SCBY-747.070.7915.087.260.127.378.041.662.350.359.3599.4566.7851.6096.2011.10
    SCBY-849.190.8214.587.510.127.877.771.642.380.369.20101.4567.4950.4093.5010.90
    SCBY-949.630.8314.837.550.127.617.861.682.390.378.68101.5666.6353.0098.6011.20
    SCBY-1049.450.8415.077.600.127.147.621.632.510.389.43101.7965.0252.80100.0011.40
    SCBY-1148.700.8214.607.530.127.978.021.642.350.368.87100.9667.7251.1095.2010.90
    花岗
    斑岩
    SYBY-273.260.1815.361.400.040.471.692.174.030.072.72101.3839.7477.30124.0011.90
    SYBY-372.930.1815.631.250.040.461.592.384.070.072.57101.1742.2373.50120.0011.50
    SYBY-471.070.2016.041.660.050.562.382.963.040.093.41101.4640.02101.00160.0015.30
    SYBY-574.880.2115.861.630.030.630.911.894.010.092.47102.6043.1689.50143.0013.90
    SYBY-672.820.2116.551.800.020.460.892.384.050.092.29101.5633.3794.00154.0014.70
    SYBY-771.310.2015.871.580.040.651.552.163.850.082.6499.9344.8193.20150.0014.10
    SYBY-872.760.1815.551.500.040.391.442.454.090.072.70101.1734.1875.30122.0011.80
    SYBY-974.980.1915.331.480.040.501.082.174.110.072.51102.4539.9582.30135.0012.90
    SYBY-1070.930.1815.751.430.030.501.462.324.000.072.7099.3740.9779.80131.0012.60
    SYBY-1175.090.1815.161.430.030.420.981.904.290.072.43101.9837.0375.00123.0011.90
    样品
    类型
    样品
    原号
    NdSmEuGdTbDyHoErTmYbLuRbBaThUNb
    煌斑岩HBY-2a76.8011.103.3510.401.114.230.662.210.221.460.2244.502389.0017.002.466.30
    HBY-3a71.8010.303.309.811.014.080.622.040.211.420.2041.803043.0015.602.325.70
    HBY-475.9010.903.8810.901.134.440.692.270.241.590.2348.204086.0017.102.546.48
    HBY-680.4011.503.4210.801.144.560.692.240.211.590.2244.802514.0017.902.736.81
    HBY-867.509.943.239.361.043.960.602.000.201.390.2040.703136.0015.002.235.59
    HBY-974.4010.803.3810.201.084.300.652.180.221.410.2042.502618.0016.502.395.94
    HBY-1080.2011.403.9010.901.154.540.682.320.231.590.2349.903617.0018.502.796.88
    PM-1379.6011.303.6711.401.194.670.712.400.261.650.2548.203146.0018.302.787.51
    PM-1683.8011.503.9511.501.234.690.732.390.251.660.2544.003438.0018.402.677.39
    下载: 导出CSV 
    | 显示表格
    续表1
    样品
    类型
    样品
    原号
    NdSmEuGdTbDyHoErTmYbLuRbBaThUNb
    辉绿岩 SCBY-2 40.30 6.26 2.11 6.40 0.80 3.62 0.62 1.96 0.22 1.57 0.24 65.30 1387.00 6.18 1.03 6.39
    SCBY-3 39.90 6.03 2.01 6.19 0.78 3.56 0.64 1.92 0.22 1.54 0.23 68.70 1324.00 6.44 1.01 6.09
    SCBY-4 41.40 6.23 2.13 6.39 0.81 3.76 0.64 2.03 0.24 1.64 0.24 61.70 1411.00 6.78 1.08 6.36
    SCBY-5 40.20 6.18 2.06 6.37 0.77 3.71 0.62 1.96 0.24 1.68 0.24 53.70 1331.00 6.82 1.11 6.31
    SCBY-6 37.90 6.04 2.05 6.18 0.75 3.55 0.63 2.03 0.24 1.59 0.25 56.10 1382.00 6.56 1.03 6.21
    SCBY-7 43.00 6.35 2.23 6.74 0.81 3.76 0.64 2.10 0.24 1.58 0.24 67.40 1386.00 6.98 1.11 6.62
    SCBY-8 42.20 6.19 2.14 6.40 0.79 3.74 0.66 2.05 0.24 1.65 0.24 64.40 1371.00 6.81 1.10 6.41
    SCBY-9 40.80 6.19 2.07 6.33 0.79 3.56 0.64 2.11 0.24 1.63 0.24 62.00 1341.00 7.08 1.15 6.57
    SCBY-10 43.20 6.38 2.10 6.57 0.81 3.76 0.67 2.16 0.26 1.65 0.26 66.60 1261.00 7.31 1.23 6.79
    SCBY-11 41.60 6.07 2.14 6.29 0.79 3.53 0.65 2.01 0.24 1.58 0.24 65.70 1422.00 6.80 1.08 6.34
    花岗斑岩 SYBY-2 38.90 4.44 1.43 4.93 0.48 1.82 0.29 1.07 0.12 0.81 0.13 102.00 1550.00 21.50 3.52 7.63
    SYBY-3 37.50 4.39 1.45 5.02 0.50 1.93 0.30 1.09 0.12 0.88 0.13 105.00 1721.00 21.70 3.65 7.92
    SYBY-4 47.40 5.33 1.53 6.21 0.57 2.11 0.33 1.23 0.12 0.90 0.14 101.00 1078.00 22.90 3.69 7.84
    SYBY-5 46.40 5.01 1.65 5.76 0.54 2.04 0.31 1.18 0.13 0.91 0.14 121.00 1670.00 22.30 3.56 7.67
    SYBY-6 45.30 5.02 1.65 5.90 0.54 2.05 0.32 1.24 0.12 0.95 0.14 123.00 1762.00 23.20 3.27 8.10
    SYBY-7 44.10 4.93 1.64 5.77 0.53 2.00 0.31 1.10 0.12 0.87 0.13 104.00 1758.00 22.50 3.51 7.69
    SYBY-8 36.70 4.31 1.43 4.91 0.45 1.81 0.29 1.03 0.11 0.84 0.13 93.80 1563.00 20.90 3.17 7.39
    SYBY-9 40.60 4.67 1.45 5.47 0.50 1.91 0.30 1.12 0.11 0.84 0.12 102.00 1376.00 22.70 3.55 7.82
    SYBY-10 39.00 4.51 1.49 5.14 0.50 1.98 0.30 1.12 0.13 0.88 0.14 104.00 1659.00 22.20 3.66 7.81
    SYBY-11 38.60 4.36 1.45 5.07 0.48 1.97 0.29 1.09 0.12 0.87 0.14 107.00 1517.00 22.20 3.63 7.49
    样品
    类型
    样品
    原号
    Ta K Pb Sr P Zr Hf Ti Y V Cr Co Ni δEu (La/Yb)N ∑REE
    煌斑岩 HBY-2a 0.33 19824.00 24.30 3426.00 2321.00 154.00 3.66 4270.00 16.40 130.00 574.00 42.60 170.00 0.94 47.80 409.66
    HBY-3a 0.31 17409.00 17.90 1962.00 1973.00 140.00 3.37 3937.00 15.00 127.00 571.00 49.80 225.00 0.99 45.06 376.58
    HBY-4 0.33 19635.00 20.80 2353.00 2261.00 157.00 3.61 4200.00 16.50 135.00 467.00 50.30 170.00 1.08 45.11 413.46
    HBY-6 0.35 20150.00 26.40 2392.00 2196.00 163.00 3.70 4143.00 17.00 134.00 374.00 45.50 164.00 0.92 46.47 430.17
    HBY-8 0.29 17539.00 20.20 2320.00 2027.00 137.00 3.37 3936.00 14.70 124.00 527.00 44.60 207.00 1.01 45.15 367.21
    HBY-9 0.32 18998.00 23.00 3106.00 2076.00 148.00 3.46 4016.00 16.00 129.00 563.00 52.50 197.00 0.97 47.82 394.53
    HBY-10 0.38 21258.00 19.30 3365.00 2244.00 160.00 3.85 4164.00 16.60 131.00 333.00 52.60 163.00 1.05 47.37 436.54
    PM-13 0.38 18520.00 23.20 2193.00 2215.65 169.00 3.94 4282.00 17.50 145.00 355.00 44.80 157.00 0.98 46.52 439.00
    PM-16 0.38 19804.00 26.40 3184.00 2303.00 164.00 3.72 4374.00 17.70 142.00 332.00 44.50 138.00 1.04 46.67 450.25
    辉绿岩 SCBY-2 0.38 19673.00 15.80 802.00 1539.00 118.00 2.89 4920.00 14.90 149.00 373.00 47.20 130.00 1.01 22.84 218.80
    SCBY-3 0.37 19537.00 10.70 774.00 1489.00 126.00 3.02 4757.00 15.00 144.00 392.00 52.70 134.00 1.00 22.31 211.42
    SCBY-4 0.38 19262.00 14.40 794.00 1607.00 140.00 3.31 5060.00 15.60 147.00 364.00 51.50 116.00 1.02 22.00 220.61
    SCBY-5 0.36 19210.00 11.20 777.00 1562.00 139.00 3.33 4890.00 15.50 144.00 371.00 49.90 120.00 1.00 21.82 221.34
    SCBY-6 0.36 18671.00 11.90 830.00 1516.00 135.00 3.19 4842.00 15.50 146.00 437.00 52.60 134.00 1.02 22.29 214.19
    SCBY-7 0.36 19515.00 13.10 841.00 1542.00 140.00 3.23 4747.00 15.60 148.00 338.00 41.40 113.00 1.03 23.43 226.59
    SCBY-8 0.36 19775.00 12.70 795.00 1564.00 140.00 3.30 4935.00 15.70 147.00 387.00 47.00 124.00 1.03 21.91 221.10
    SCBY-9 0.37 19857.00 16.10 768.00 1636.00 142.00 3.31 4988.00 16.00 142.00 322.00 38.60 113.00 1.00 23.32 227.40
    SCBY-10 0.39 20811.00 12.60 788.00 1663.00 147.00 3.27 5056.00 16.20 147.00 315.00 355.00 119.00 0.98 22.95 232.01
    SCBY-11 0.38 19519.00 12.30 791.00 1552.00 136.00 3.34 4899.00 15.50 147.00 379.00 348.00 123.00 1.05 23.20 222.33
    下载: 导出CSV 
    | 显示表格
    续表1
    样品
    类型
    样品
    原号
    TaKPbSrPZrHfTiYVCrCoNiδEu(La/Yb)N∑REE
    花岗
    斑岩
    SYBY-20.6833462.0029.40203.00305.00117.003.471092.007.8716.904.4173.907.310.9368.28267.62
    SYBY-30.7133801.0053.20194.00300.00124.003.591093.008.1817.705.4882.908.300.9459.98258.31
    SYBY-40.6125241.0024.30231.00409.00131.003.671225.009.0121.205.9754.706.780.8180.77342.16
    SYBY-50.6033255.0040.20151.00389.00132.003.611255.008.4222.206.8256.005.900.9470.78310.46
    SYBY-60.6633604.0026.10194.00377.00139.003.821281.008.6420.605.8257.406.450.9270.83325.93
    SYBY-70.6531929.0025.60209.00349.00125.003.551203.008.2817.704.7764.506.860.9476.93318.80
    SYBY-80.6833944.0032.60161.00301.00113.003.331102.007.5416.604.8578.807.730.9564.30261.11
    SYBY-90.7034091.0031.50132.00319.00115.003.491139.007.6115.604.8179.608.000.8870.53287.29
    SYBY-100.7033184.0028.50188.00298.00122.003.621050.008.0117.506.0074.308.150.9464.90278.60
    SYBY-110.6935648.0030.70130.00291.00120.003.481067.007.9414.704.65119.008.140.9461.69264.34
     注:主量元素为%,微量元素为10−6
    下载: 导出CSV 
    | 显示表格
    图  3  石家金矿区镁铁质在TAS图解上长英质脉岩TAS图解
    底图a据Middlemost(1994);底图b据Rock(1987);底图c据Rickwood(1989);底图d据Maniar等(1989)
    Figure  3.  TAS diagrams of mafic–felsic dykes in the Shijia gold deposit
    图  4  石家金矿区镁铁质–长英质脉岩哈克图解
    分异结晶趋势据Guo等(2004);Ap.磷灰石;Cpx.单斜辉石;Pl.斜长石;Ol.橄榄石
    Figure  4.  Harker diagrams of mafic–felsic dykes in the Shijia gold deposit

    辉绿岩具有更高的SiO2含量(47.1%~49.9%),但其Na2O和K2O含量与煌斑岩相似,分别为1.46%~1.72%、2.25%~2.51%,其硅碱含量与玄武安山岩相当(表1图3a)。在SiO2–K2O图解中,样品点落在高钾钙碱性系列范围内(图3c)。相较于煌斑岩,辉绿岩TiO2含量略高,而MgO、Mg#值较低,TFe2O3则与煌斑岩相差不大。在哈克图解上,辉绿岩元素组成变化特征与煌斑岩相似,TFe2O3、CaO和CaO/ Al2O3与MgO呈现出正相关性,SiO2、TiO2、Al2O3、P2O5则与MgO呈现出负相关性(图4a图4g)。

    花岗斑岩具有高SiO2含量,为70.9%~75.1%,碱含量较高,Na2O和K2O分别为1.86%~1.96%和3.04%~4.29%(表1)。在TAS图解上,样品点均分布于花岗岩范围之内,属于亚碱性系列(图3a),在SiO2–K2O图解中,样品点落于高钾钙碱性系列范围内(图3c)。Al2O3含量为15.3%~16.6%,TFe2O3、MgO、CaO含量及Mg#值较低,分别为1.25%~1.80%、0.42%~0.65%、0.89%~2.38%和33~45。A/CNK和A/NK分别为1.28~1.74和1.84~2.13,属于过铝质系列岩石(图3d)。在哈克图解上,Al2O3、CaO和Na2O随SiO2含量升高而整体呈下降趋势,其余氧化物无明显的变化规律(图4j图4o)。在CIPW标准矿物计算中,标准刚玉分子含量为3.73%~6.83%,未见透辉石。

    煌斑岩的总稀土(ΣREE)为219×10−6~450×10−6表1),在稀土元素球粒陨石配分模式图上呈现为轻稀土富集、重稀土亏损的右倾型(图5a),无明显的Eu异常,δEu = 0.92~1.05。在微量元素蛛网图上表现出大离子亲石元素Ba、Pb、Sr富集,高场强元素Nb、Ta、Zr、Hf、Ti亏损的特征(图5b)。以上地球化学特征明显区别于MORB和OIB,而与岛弧相关的火山岩类似(Foley et al.,2000)。同时样品的相容元素含量较高,其Cr、Ni含量分别为332×10−6~574×10−6和138×10−6~225×10−6,在哈克图解中与MgO呈正相关(图4h图4i)。

    图  5  石家金矿区镁铁质-长英质脉岩稀土元素配分模式图(a)与微量元素蛛网图(b)
    球粒陨石REE标准值、原始地幔标准值、N–MORB、E–MORB以及OIB数值据Sun等(1989)
    Figure  5.  (a) REE distribution patterns and (b) trace element spiders of mafic–felsic dykes in Shijia gold deposit

    辉绿岩的ΣREE低于煌斑岩,为211×10−6~268×10−6表1),(La/Yb)N为22~23,在稀土元素配分模式图上也呈现为轻稀土富集、重稀土亏损的右倾型(图5a),无明显Eu异常,其δEu介于0.98~1.05。微量元素方面,辉绿岩Ba、Sr含量较低,但在微量元素蛛网图上呈现与煌斑岩相似的变化特征(图5b),即大离子亲石元素Ba、Pb、Sr富集,高场强元素Nb、Ta、Zr、Hf、Ti亏损,也区别于MORB和OIB,与岛弧火山岩类似。相容元素Cr、Ni含量低于煌斑岩,与MgO呈正相关线性关系(图4h图4I)。

    花岗斑岩的ΣREE为258×10−6~342×10−6,(La/Yb)N为60~81,轻重稀土之间分异明显,在球粒陨石标准化稀土元素配分图上呈现为轻稀土富集、重稀土亏损的右倾型曲线(图5a),具微弱Eu负异常(δEu = 0.81~0.95)。在原始地幔标准化蛛网图上(图5b),Th、U和大离子亲石元素Rb、Ba、Pb相对富集,Ta、Nb、Ti、P等高场强元素亏损,Sr含量较低。

    在哈克图解上(图4a图4i),煌斑岩和辉绿岩的MgO含量与SiO2、CaO、CaO/Al2O3、TiO2、Ni、Cr等之间呈现明显的线性趋势,表明岩浆在演化过程中经历了结晶分异作用,其中单斜辉石是最主要的分异相。单斜辉石的分离结晶造成了Al2O3、CaO、CaO/Al2O3、Ni、Cr与MgO含量之间的这种近连续的协变关系。MgO与Al2O3之间的负相关性以及无明显的Eu和Sr异常则表明未发生斜长石的分异。P2O5、TiO2与MgO之间无正相关性指示未发生磷灰石与Fe–Ti氧化物的分异,因此,蛛网图上P、Ti的亏损与结晶分异作用无关。

    地壳混染可以发生在岩浆上侵的过程中,也可由地壳物质通过俯冲进入岩浆源区引起(邱检生等,2001刘燊等,2005)。煌斑岩脉和辉绿岩脉的微量元素组成具有类似于大陆地壳Nb、Ta负异常、Pb正异常的特征,表明这2种岩浆可能受到了大陆地壳的混染。然而,煌斑岩与辉绿岩高Mg#值与高Cr、Ni含量的地球化学特征却表明岩浆在上升过程中受地壳物质混染的可能性不大。另外一些证据也表明岩浆在侵位过程中未受地壳的混染。幔源岩浆以低Lu/Yb值为特征(0.14~0.15)(Sun et al.,1989),而大陆地壳的Lu/Yb值则较高,为0.16~0.18。石家矿区煌斑岩与辉绿岩的Lu/Yb值分别为0.14~0.15和0.14~0.16,表明两者均未受地壳混染。相较于地幔,地壳具有较低的Nb/U值和Ce/Pb值(Hofmann,1988Rudnick et al.,2003),因而这两个比值可以用来评估岩浆侵位过程中地壳混染发生的可能性。在SiO2–Nb/U与SiO2–Ce/Pb图解中(图6a图6b),随着SiO2含量的变化,煌斑岩与辉绿岩的Nb/U与Ce/Pb比值并未发生变化,说明岩浆在侵位过程中未受地壳混染作用的影响。此外,前人对胶东地区白垩纪基性脉岩的Sr–Nd同位素研究也表明在岩浆上升过程中并未发生显著的地壳混染(Cai et al.,2013Ma et al.,2014a2014bLi et al.,2018)。因此认为,煌斑岩与辉绿岩的微量元素特征主要与地壳物质加入脉岩源区有关。

    图  6  石家金矿区基性脉岩SiO2–Nb/U图解(a)、SiO2–Ce/Pb图解(b)、Nb–Nb/U图解(c)与 Ce–Ce/Pb图解(d)
    MORB与OIB数据来源于Hofmann等(1988);上、下地壳数据来源于Rudnick等(2003)
    Figure  6.  (a) SiO2–Nb/U diagram of basic dykes in the Shijia gold deposit, (b) SiO2–Ce/Pb diagram,(c)Nb–Nb/U diagram and (d) Ce–Ce/Pb diagram

    在Nb–Nb/U和Ce–Ce/Pb图解中(图6c图6d),煌斑岩与辉绿岩的Nb/U和Ce/Pb比值明显低于MORB和OIB,而与上地壳相似。由于这2种镁铁质岩浆在侵位过程中未发生地壳混染,因此这两个特征值反映的是岩浆源区的特征,即煌斑岩与辉绿岩的母岩浆来源于受地壳物质影响的富集岩石圈地幔。这与前人所得出的胶东地区具有岛弧火山岩性质基性脉岩起源于富集岩石圈地幔部分熔融的结论一致(Cai et al.,2013Ma et al.,2014a2014bDai et al.,2011Yang et al.,2012Zhang et al.,2012)。对于该富集岩石圈地幔,其形成机制被认为与三叠纪时扬子克拉通向华北克拉通之下的俯冲–碰撞作用有关(张宏福等,2005Yang et al.,2012Wang et al.,2020),而晚侏罗世—早白垩世古太平洋板块的俯冲、回撤所引发的软流圈上涌、岩石圈地幔减薄则是导致这些三叠纪交代地幔物质部分熔融,形成早白垩世镁铁质岩浆作用的原因(赵子福等,2013Deng et al.,2017)。

    煌斑岩与辉绿岩富钾和富大离子亲石元素的特征表明其源区存在具有相应特征的矿物。角闪石和金云母是交代地幔中常见的含挥发分矿物,并且这2种矿物是岩石圈地幔中K和大离子亲石元素重要的储库(Foley et al.,1996Ionov et al.,1997)。Rb、Ba、Sr在金云母和角闪石中表现出不同的相容性,在熔融过程中会产生不同性质的熔体。与角闪石平衡的熔体具有较低的Rb/Sr值(< 0.1)和较高的Ba/Rb值(>20),含金云母的熔体则具有极低的Ba含量和Ba/Rb值(Furman et al.,1999)。石家金矿区煌斑岩Ba/Rb值为53.69~84.77,Rb/Sr值为0.01~0.02,辉绿岩的Ba/Rb值为18.93~24.79,Rb/Sr值为0.07~0.09,在Ba/Rb–Rb/Sr图解中(图7a),样品点主要落在角闪石区域内,表明角闪石是两者源区中主要的含挥发分矿物。

    图  7  Ba/Rb–Rb/Sr图解(a)(据Furman et al.,1999)与K/Yb–Dy/Yb图解(b)(据Duggen et al.,2005
    Figure  7.  (a) Ba/Rb–Rb/Sr diagram and (b) K/Yb–Dy/Yb diagram

    煌斑岩与辉绿岩的Dy/Yb值分别为2.79~3.05和2.18~2.38,在K/Yb–Dy/Yb图解中(图7b),样品点分布于尖晶石相二辉橄榄岩熔融曲线(Dy/Yb < 1.5)与石榴石相二辉橄榄岩熔融曲线(Dy/Yb >2.5)之间,表明煌斑岩和辉绿岩主要来源于尖晶石–石榴子石过渡带含角闪石岩石圈地幔的部分熔融,熔融深度大致为75~85 km(Robinson et al.,1998Klemme et al.,2000)。另外,煌斑岩与辉绿岩源区的K含量不相同,并且熔融程度也不相同,这可能是造成两者地球化学性质差异的原因。

    根据矿物学、地球化学特征以及源区性质,花岗岩可以划分为I、S、A和M等4种类型(Chappell et al.,19741992Collins et al.,1982Whalen et al.,1987)。其中I型花岗岩与火山岩的熔融有关,铝饱和指数A/CNK小于1.1,S型花岗岩则源于上地壳沉积岩的部分熔融,并表现出过铝质的特征,其A/CNK比值大于1.1(Chappell et al.,19742012)。A型花岗岩表现为碱性或过碱性(Na2O+K2O >8.0%),并且难熔元素(Zr+Nb+Ce+Y >350×10−6)、稀土含量、Ga/Al与Fe/Mg值高,而CaO、Ba和Sr的含量低(Collins et al.,1982White et al.,1983Whalen et al.,1987)。M型花岗岩则直接由俯冲洋壳或其上覆的地幔楔部分熔融形成(Whalen et al.,1987)。

    石家金矿区出露的花岗斑岩具有SiO2、Al2O3和K2O含量高、TFe2O3与TiO2含量低的特点,属于高钾钙碱性系列(图3c)。在Zr+Nb+Ce+Y–(Na2O+K2O)/CaO与Zr+Nb+Ce+Y–TFeO/MgO图解中(图8a、图8b),样品点主要分布于OGT区域内,属未分异的I型或S型花岗岩,在K2O–Na2O图解与ACF图解中,样品点主要落在S型花岗岩范围内(图8c图8d)。同时,该花岗斑岩具有高的A/CNK比值(1.28~1.74),并且镜下可见白云母等富铝矿物(图2l)。因此,笔者认为矿区出露的花岗斑岩在成因类型上属于富硅的高钾钙碱性S型花岗岩。

    图  8  石家金矿区花岗斑岩岩石成因类型判别图解
    a. Zr+Nb+Ce+Y–(Na2O+K2O)/CaO图解;b. Zr+Nb+Ce+Y–TFeO/MgO图解(Whalen et al.,1987);c. K2O–Na2O图解(Collins et al.,1982);D. A(Al2O3–Na2O–K2O)–C(CaO)–F(TFeO)图解(Chappell et al.,1992
    Figure  8.  Genetic type discrimination diagram of granite porphyry in the Shijia gold deposit

    贫铝岩浆的结晶分异作用或者与变质泥岩和变质杂砂岩有关的地壳物质部分熔融是2种主要形成过铝质岩浆的机制(White et al.,1988Patiño Douce,19951999Syvester,1998)。在哈克图解中,主量元素Al2O3、CaO以及Na2O的含量随着SiO2的增加而呈下降趋势(图4j图4o),而在稀土及微量元素方面,矿区花岗斑岩亏损Eu、Nb、Ta、Sr、Ti、P等元素(图5e图5f),以上特征表明其在形成过程中经历了一定程度的结晶分异作用。在SiO2–La/Nb图解中,数据点的分布也显示了结晶分异作用的存在(图9a)。

    图  9  石家金矿区花岗斑岩结晶分异趋势图解(底图据Eby,1990Janousek et al.,2004
    AF.碱性长石;Allan.褐帘石;Am.角闪石;Ap.磷灰石;Bt.黑云母;Cpx.单斜辉石;Grt.石榴子石;Hb.普通角闪石;Kf.钾长石;Mon.独居石;Opx.斜方辉石;PlAn15.斜长石(An=15);PlAn50.(An=50);Sph.榍石;Zr.锆石
    Figure  9.  Diagram of crystallization differentiation trend of granite porphyry in the Shijia gold deposit

    通常认为,Eu、Sr的亏损与斜长石的结晶分异有关, Nb、Ta、Ti、P的亏损则由榍石、金红石、磷灰石以及钛铁矿的结晶分异导致(Foley et al.,2000)。在Sr–Rb/Sr、Sr–Ba以及Sr–Rb图解上,数据点的变化趋势反映花岗斑岩在形成过程中经历了斜长石的分异(图9b~图9d);δEu–Ba图解则指示斜长石与碱性长石的结晶对Eu和Ba元素的控制(图9e);La–(La/Yb)N图解反映了磷灰石的分异对稀土元素的影响(图9f)。此外,La/Nb值随SiO2含量的增加呈下降趋势,表明在岩浆上升过程中发生了一定程度的地壳混染(图9a)。

    强过铝质花岗岩的CaO/Na2O值可以用来指示其源区性质,Al2O3/TiO2值则可以指示熔融时的温压条件。通常源岩为泥岩的强过铝质花岗岩的CaO/Na2O值一般小于0.3,而杂砂岩熔融形成的强过铝质花岗岩其CaO/Na2O值一般大于0.3。在高温条件下,石榴子石、铝硅酸盐以及斜长石等含铝矿物保持稳定,黑云母、钛铁矿等含钛矿物则会发生分解,形成的熔体具有较低的Al2O3/TiO2值,例如拉克兰S型花岗岩;在高压条件下,含钛的黑云母和钛铁矿是主要的难熔相,长石和石英则会减少,形成熔体具有较高的Al2O3/TiO2值,如喜马拉雅淡色花岗岩(Sylvester,1998)。石家金矿区花岗斑岩样品的CaO/Na2O值均大于0.3(图10a),表明其源岩为杂砂岩。在图10b~图10d中,样品点也均落在杂砂岩区域内或者附近,进一步表明了花岗斑岩的形成与杂砂岩的熔融有关。在图10a中,石家矿区花岗斑岩的Al2O3/TiO2值整体上介于拉克兰S型花岗岩与喜马拉雅淡色花岗岩之间。由于胶东地区在130~120 Ma正处于克拉通减薄时期,岩石圈发生大规模伸展,不同于喜马拉雅淡色花岗岩所形成的高压环境。据石家矿区锆石Ti温度计得出,岩石的结晶温度在610~735 ℃(未刊数据),因此,区内的花岗斑岩更可能是在高温条件下形成的。值得注意的是,在没有额外热源的情况下,大陆地壳很难达到黑云母脱水熔融所需的高温条件(Chen et al.,2014),由此推测石家矿区的花岗斑岩是在软流圈上涌、幔源岩浆底侵背景下由杂砂岩部分熔融形成的,胶东地区富铝的古元古代沉积变质岩系(荆山群与粉子山群)可能为其源岩。

    图  10  石家金矿区花岗斑岩源区判别图解(底图据Chen et al.,2014
    a. Al2O3/TiO2–CaO/Na2O图解;b. Rb/Sr–Rb/Ba图解;c. Al2O3+FeO+MgO+TiO2–Al2O3/(FeO+MgO+TiO2)图解;d. CaO+FeO+MgO+TiO2–CaO/(FeO+MgO+TiO2)图解;图d符号所代表内容与图c一致
    Figure  10.  Source discrimination diagram of granite porphyry in the Shijia gold deposit

    石家矿区镁铁质–长英质脉岩形成于华北克拉通大规模伸展减薄的时期(130~120 Ma)。古太平洋板块在早侏罗世时(~190 Ma)俯冲于华北克拉通之下,并于早白垩世早期发生板片回卷,引发软流圈的上涌(郑永飞等,2018Liu et al.,2019)。由于古太平板块的俯冲过程中,将大量的水携带至地幔楔之中(Yang et al.,2018Wang et al.,2020 ),降低了地幔橄榄岩的固相线温度,引发富集岩石圈地幔的部分熔融,从而形成了煌斑岩脉与辉绿岩等镁铁质脉岩。~121 Ma时,原本古老的大陆岩石圈地幔已被新生的岩石圈地幔所取代(Dai et al.,2016郑永飞等,2018),岩石圈厚度也由>200 km缩减为60~100 km(Ma et al.,2016)。伴随着岩石圈的减薄和软流圈的上涌,在高温的条件下,下地壳物质发生部分熔融,从而形成了长英质脉岩。

    胶东地区出露的脉岩不仅在侵位时间上与金矿化时代接近,并且在空间上也呈现出与金矿体相伴生的特点。这些镁铁质脉岩还具有与金矿床中硫化物相似的硫同位素组成(Deng et al.,2015)。因此,这些脉岩(特别是煌斑岩)被认为与金矿化存在直接或间接的成因联系,比如提供成矿流体和金属(Li et al.,2012Ma et al.,2017)、保证Au以离子态的形式存在(Li et al.,2016)或者充当不透水层(Li et al.,2015)。然而,相较于胶东巨大的黄金储量,这些脉岩的体量太小(Deng et al.,2020),脉岩与矿床中硫化物相似的δ34S值可能是因为两者具有相同的源区(Liu et al.,2021)。此外,煌斑岩中的Au含量会因为后期的热液蚀变而被高估(Müller et al.,2016Li et al.,2019),且高温高压实验证明煌斑岩不具备良好的携金能力(黄智龙等,1999)。就石家金矿床而言,尽管有学者将煌斑岩和辉绿岩作为胶东地区的找矿标志(刘辅臣等,19831984马晓东等,2016),但野外脉岩和矿体的切割关系及锆石U–Pb年代学研究均表明矿区出露的煌斑岩、辉绿岩以及花岗斑岩的侵位时代略晚于金矿化时代(Feng et al.,2020)。因此,这些脉岩不可能为金矿化提供成矿流体或成矿物质,也无法起到防止成矿流体丢失的不透水层的作用,两者之间紧密的时空联系更可能与共同的构造背景和相同的运移通道有关。

    (1)山东蓬莱石家金矿区成矿后的煌斑岩与辉绿岩岩石地球化学组成具有与岛弧火山岩类似的特征,其形成与尖晶石–石榴子石过渡带含角闪石岩石圈地幔的部分熔融有关。

    (2)侵位晚于镁铁质脉岩的花岗斑岩在成因类型上属于富硅的高钾钙碱性S型花岗岩,是在软流圈上涌、幔源岩浆底侵背景下由杂砂岩部分熔融形成的。

  • 图  1   山东蓬莱石家地区区域地质图(a)和石家金矿区地质图(b)(据张英帅等,2021

    Figure  1.   (a) Regional geological map of the Shijia area in Penglai, Shandong and (b) geological map of the Shijia gold deposit

    图  2   石家金矿镁铁质-长英质脉岩宏观和微观特征

    a. 煌斑岩脉切割矿体;b. 深绿色煌斑岩;c~d. 煌斑岩,具煌斑结构;e. 辉绿岩脉切割矿体;f. 深灰绿色辉绿岩;g~h. 辉绿岩,辉石呈斑晶分布;i. 矿体被花岗斑岩所切穿;j. 灰白色花岗斑岩;k~l. 中细粒斑状花岗斑岩;Am.角闪石;Bt.黑云母;Chl.绿泥石;Kf.钾长石;Ms.白云母;Pl.斜长石;Px.辉石;Ser.绢云母

    Figure  2.   Macroscopic and microscopic characteristics of mafic-felsic dykes in the Shijia gold deposit

    图  3   石家金矿区镁铁质在TAS图解上长英质脉岩TAS图解

    底图a据Middlemost(1994);底图b据Rock(1987);底图c据Rickwood(1989);底图d据Maniar等(1989)

    Figure  3.   TAS diagrams of mafic–felsic dykes in the Shijia gold deposit

    图  4   石家金矿区镁铁质–长英质脉岩哈克图解

    分异结晶趋势据Guo等(2004);Ap.磷灰石;Cpx.单斜辉石;Pl.斜长石;Ol.橄榄石

    Figure  4.   Harker diagrams of mafic–felsic dykes in the Shijia gold deposit

    图  5   石家金矿区镁铁质-长英质脉岩稀土元素配分模式图(a)与微量元素蛛网图(b)

    球粒陨石REE标准值、原始地幔标准值、N–MORB、E–MORB以及OIB数值据Sun等(1989)

    Figure  5.   (a) REE distribution patterns and (b) trace element spiders of mafic–felsic dykes in Shijia gold deposit

    图  6   石家金矿区基性脉岩SiO2–Nb/U图解(a)、SiO2–Ce/Pb图解(b)、Nb–Nb/U图解(c)与 Ce–Ce/Pb图解(d)

    MORB与OIB数据来源于Hofmann等(1988);上、下地壳数据来源于Rudnick等(2003)

    Figure  6.   (a) SiO2–Nb/U diagram of basic dykes in the Shijia gold deposit, (b) SiO2–Ce/Pb diagram,(c)Nb–Nb/U diagram and (d) Ce–Ce/Pb diagram

    图  7   Ba/Rb–Rb/Sr图解(a)(据Furman et al.,1999)与K/Yb–Dy/Yb图解(b)(据Duggen et al.,2005

    Figure  7.   (a) Ba/Rb–Rb/Sr diagram and (b) K/Yb–Dy/Yb diagram

    图  8   石家金矿区花岗斑岩岩石成因类型判别图解

    a. Zr+Nb+Ce+Y–(Na2O+K2O)/CaO图解;b. Zr+Nb+Ce+Y–TFeO/MgO图解(Whalen et al.,1987);c. K2O–Na2O图解(Collins et al.,1982);D. A(Al2O3–Na2O–K2O)–C(CaO)–F(TFeO)图解(Chappell et al.,1992

    Figure  8.   Genetic type discrimination diagram of granite porphyry in the Shijia gold deposit

    图  9   石家金矿区花岗斑岩结晶分异趋势图解(底图据Eby,1990Janousek et al.,2004

    AF.碱性长石;Allan.褐帘石;Am.角闪石;Ap.磷灰石;Bt.黑云母;Cpx.单斜辉石;Grt.石榴子石;Hb.普通角闪石;Kf.钾长石;Mon.独居石;Opx.斜方辉石;PlAn15.斜长石(An=15);PlAn50.(An=50);Sph.榍石;Zr.锆石

    Figure  9.   Diagram of crystallization differentiation trend of granite porphyry in the Shijia gold deposit

    图  10   石家金矿区花岗斑岩源区判别图解(底图据Chen et al.,2014

    a. Al2O3/TiO2–CaO/Na2O图解;b. Rb/Sr–Rb/Ba图解;c. Al2O3+FeO+MgO+TiO2–Al2O3/(FeO+MgO+TiO2)图解;d. CaO+FeO+MgO+TiO2–CaO/(FeO+MgO+TiO2)图解;图d符号所代表内容与图c一致

    Figure  10.   Source discrimination diagram of granite porphyry in the Shijia gold deposit

    表  1   石家金矿区三种脉岩主微量元素含量及特征值

    Table  1   Contents and characteristic values of major and trace elements in three types of mafic–felsic dykes in Shijia gold deposit

    样品
    类型
    样品
    原号
    SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OP2O5LOITotalMg#LaCePr
    煌斑岩HBY-2a47.530.7112.277.730.1210.198.711.602.390.538.80100.5772.3197.30180.0020.60
    HBY-3a43.900.6610.827.770.1310.649.911.102.100.4513.88101.3573.0589.20164.0018.60
    HBY-445.550.7012.077.600.138.869.051.352.370.5211.96100.1569.79100.00181.0020.30
    HBY-646.480.6912.927.470.129.648.091.652.430.509.5199.4971.87103.00189.0021.40
    HBY-846.380.6611.487.780.1211.149.051.382.110.4610.12100.6873.9487.50162.0018.30
    HBY-946.570.6711.397.650.1210.529.071.402.290.489.7099.8573.1594.00172.0019.70
    HBY-1046.520.6912.657.480.128.698.331.512.560.5110.6899.7569.69105.00193.0021.40
    PM-1347.350.7113.697.440.118.168.461.942.230.518.3498.9568.50107.00193.0021.90
    PM-1648.070.7313.377.520.138.448.841.992.390.538.27100.2968.98108.00198.0022.30
    辉绿岩SCBY-248.980.8214.167.640.128.098.271.582.370.358.96101.3667.7250.0094.1010.60
    SCBY-348.530.7914.197.680.128.378.001.462.350.349.13100.9768.3547.9090.1010.40
    SCBY-449.860.8414.487.650.127.828.451.682.320.379.07102.6766.9650.3093.8011.00
    SCBY-549.210.8214.757.520.127.998.041.892.310.368.33101.3467.7751.1095.3010.90
    SCBY-648.860.8114.237.540.128.168.271.722.250.358.68100.9968.1849.4093.2010.40
    SCBY-747.070.7915.087.260.127.378.041.662.350.359.3599.4566.7851.6096.2011.10
    SCBY-849.190.8214.587.510.127.877.771.642.380.369.20101.4567.4950.4093.5010.90
    SCBY-949.630.8314.837.550.127.617.861.682.390.378.68101.5666.6353.0098.6011.20
    SCBY-1049.450.8415.077.600.127.147.621.632.510.389.43101.7965.0252.80100.0011.40
    SCBY-1148.700.8214.607.530.127.978.021.642.350.368.87100.9667.7251.1095.2010.90
    花岗
    斑岩
    SYBY-273.260.1815.361.400.040.471.692.174.030.072.72101.3839.7477.30124.0011.90
    SYBY-372.930.1815.631.250.040.461.592.384.070.072.57101.1742.2373.50120.0011.50
    SYBY-471.070.2016.041.660.050.562.382.963.040.093.41101.4640.02101.00160.0015.30
    SYBY-574.880.2115.861.630.030.630.911.894.010.092.47102.6043.1689.50143.0013.90
    SYBY-672.820.2116.551.800.020.460.892.384.050.092.29101.5633.3794.00154.0014.70
    SYBY-771.310.2015.871.580.040.651.552.163.850.082.6499.9344.8193.20150.0014.10
    SYBY-872.760.1815.551.500.040.391.442.454.090.072.70101.1734.1875.30122.0011.80
    SYBY-974.980.1915.331.480.040.501.082.174.110.072.51102.4539.9582.30135.0012.90
    SYBY-1070.930.1815.751.430.030.501.462.324.000.072.7099.3740.9779.80131.0012.60
    SYBY-1175.090.1815.161.430.030.420.981.904.290.072.43101.9837.0375.00123.0011.90
    样品
    类型
    样品
    原号
    NdSmEuGdTbDyHoErTmYbLuRbBaThUNb
    煌斑岩HBY-2a76.8011.103.3510.401.114.230.662.210.221.460.2244.502389.0017.002.466.30
    HBY-3a71.8010.303.309.811.014.080.622.040.211.420.2041.803043.0015.602.325.70
    HBY-475.9010.903.8810.901.134.440.692.270.241.590.2348.204086.0017.102.546.48
    HBY-680.4011.503.4210.801.144.560.692.240.211.590.2244.802514.0017.902.736.81
    HBY-867.509.943.239.361.043.960.602.000.201.390.2040.703136.0015.002.235.59
    HBY-974.4010.803.3810.201.084.300.652.180.221.410.2042.502618.0016.502.395.94
    HBY-1080.2011.403.9010.901.154.540.682.320.231.590.2349.903617.0018.502.796.88
    PM-1379.6011.303.6711.401.194.670.712.400.261.650.2548.203146.0018.302.787.51
    PM-1683.8011.503.9511.501.234.690.732.390.251.660.2544.003438.0018.402.677.39
    下载: 导出CSV
    续表1
    样品
    类型
    样品
    原号
    NdSmEuGdTbDyHoErTmYbLuRbBaThUNb
    辉绿岩 SCBY-2 40.30 6.26 2.11 6.40 0.80 3.62 0.62 1.96 0.22 1.57 0.24 65.30 1387.00 6.18 1.03 6.39
    SCBY-3 39.90 6.03 2.01 6.19 0.78 3.56 0.64 1.92 0.22 1.54 0.23 68.70 1324.00 6.44 1.01 6.09
    SCBY-4 41.40 6.23 2.13 6.39 0.81 3.76 0.64 2.03 0.24 1.64 0.24 61.70 1411.00 6.78 1.08 6.36
    SCBY-5 40.20 6.18 2.06 6.37 0.77 3.71 0.62 1.96 0.24 1.68 0.24 53.70 1331.00 6.82 1.11 6.31
    SCBY-6 37.90 6.04 2.05 6.18 0.75 3.55 0.63 2.03 0.24 1.59 0.25 56.10 1382.00 6.56 1.03 6.21
    SCBY-7 43.00 6.35 2.23 6.74 0.81 3.76 0.64 2.10 0.24 1.58 0.24 67.40 1386.00 6.98 1.11 6.62
    SCBY-8 42.20 6.19 2.14 6.40 0.79 3.74 0.66 2.05 0.24 1.65 0.24 64.40 1371.00 6.81 1.10 6.41
    SCBY-9 40.80 6.19 2.07 6.33 0.79 3.56 0.64 2.11 0.24 1.63 0.24 62.00 1341.00 7.08 1.15 6.57
    SCBY-10 43.20 6.38 2.10 6.57 0.81 3.76 0.67 2.16 0.26 1.65 0.26 66.60 1261.00 7.31 1.23 6.79
    SCBY-11 41.60 6.07 2.14 6.29 0.79 3.53 0.65 2.01 0.24 1.58 0.24 65.70 1422.00 6.80 1.08 6.34
    花岗斑岩 SYBY-2 38.90 4.44 1.43 4.93 0.48 1.82 0.29 1.07 0.12 0.81 0.13 102.00 1550.00 21.50 3.52 7.63
    SYBY-3 37.50 4.39 1.45 5.02 0.50 1.93 0.30 1.09 0.12 0.88 0.13 105.00 1721.00 21.70 3.65 7.92
    SYBY-4 47.40 5.33 1.53 6.21 0.57 2.11 0.33 1.23 0.12 0.90 0.14 101.00 1078.00 22.90 3.69 7.84
    SYBY-5 46.40 5.01 1.65 5.76 0.54 2.04 0.31 1.18 0.13 0.91 0.14 121.00 1670.00 22.30 3.56 7.67
    SYBY-6 45.30 5.02 1.65 5.90 0.54 2.05 0.32 1.24 0.12 0.95 0.14 123.00 1762.00 23.20 3.27 8.10
    SYBY-7 44.10 4.93 1.64 5.77 0.53 2.00 0.31 1.10 0.12 0.87 0.13 104.00 1758.00 22.50 3.51 7.69
    SYBY-8 36.70 4.31 1.43 4.91 0.45 1.81 0.29 1.03 0.11 0.84 0.13 93.80 1563.00 20.90 3.17 7.39
    SYBY-9 40.60 4.67 1.45 5.47 0.50 1.91 0.30 1.12 0.11 0.84 0.12 102.00 1376.00 22.70 3.55 7.82
    SYBY-10 39.00 4.51 1.49 5.14 0.50 1.98 0.30 1.12 0.13 0.88 0.14 104.00 1659.00 22.20 3.66 7.81
    SYBY-11 38.60 4.36 1.45 5.07 0.48 1.97 0.29 1.09 0.12 0.87 0.14 107.00 1517.00 22.20 3.63 7.49
    样品
    类型
    样品
    原号
    Ta K Pb Sr P Zr Hf Ti Y V Cr Co Ni δEu (La/Yb)N ∑REE
    煌斑岩 HBY-2a 0.33 19824.00 24.30 3426.00 2321.00 154.00 3.66 4270.00 16.40 130.00 574.00 42.60 170.00 0.94 47.80 409.66
    HBY-3a 0.31 17409.00 17.90 1962.00 1973.00 140.00 3.37 3937.00 15.00 127.00 571.00 49.80 225.00 0.99 45.06 376.58
    HBY-4 0.33 19635.00 20.80 2353.00 2261.00 157.00 3.61 4200.00 16.50 135.00 467.00 50.30 170.00 1.08 45.11 413.46
    HBY-6 0.35 20150.00 26.40 2392.00 2196.00 163.00 3.70 4143.00 17.00 134.00 374.00 45.50 164.00 0.92 46.47 430.17
    HBY-8 0.29 17539.00 20.20 2320.00 2027.00 137.00 3.37 3936.00 14.70 124.00 527.00 44.60 207.00 1.01 45.15 367.21
    HBY-9 0.32 18998.00 23.00 3106.00 2076.00 148.00 3.46 4016.00 16.00 129.00 563.00 52.50 197.00 0.97 47.82 394.53
    HBY-10 0.38 21258.00 19.30 3365.00 2244.00 160.00 3.85 4164.00 16.60 131.00 333.00 52.60 163.00 1.05 47.37 436.54
    PM-13 0.38 18520.00 23.20 2193.00 2215.65 169.00 3.94 4282.00 17.50 145.00 355.00 44.80 157.00 0.98 46.52 439.00
    PM-16 0.38 19804.00 26.40 3184.00 2303.00 164.00 3.72 4374.00 17.70 142.00 332.00 44.50 138.00 1.04 46.67 450.25
    辉绿岩 SCBY-2 0.38 19673.00 15.80 802.00 1539.00 118.00 2.89 4920.00 14.90 149.00 373.00 47.20 130.00 1.01 22.84 218.80
    SCBY-3 0.37 19537.00 10.70 774.00 1489.00 126.00 3.02 4757.00 15.00 144.00 392.00 52.70 134.00 1.00 22.31 211.42
    SCBY-4 0.38 19262.00 14.40 794.00 1607.00 140.00 3.31 5060.00 15.60 147.00 364.00 51.50 116.00 1.02 22.00 220.61
    SCBY-5 0.36 19210.00 11.20 777.00 1562.00 139.00 3.33 4890.00 15.50 144.00 371.00 49.90 120.00 1.00 21.82 221.34
    SCBY-6 0.36 18671.00 11.90 830.00 1516.00 135.00 3.19 4842.00 15.50 146.00 437.00 52.60 134.00 1.02 22.29 214.19
    SCBY-7 0.36 19515.00 13.10 841.00 1542.00 140.00 3.23 4747.00 15.60 148.00 338.00 41.40 113.00 1.03 23.43 226.59
    SCBY-8 0.36 19775.00 12.70 795.00 1564.00 140.00 3.30 4935.00 15.70 147.00 387.00 47.00 124.00 1.03 21.91 221.10
    SCBY-9 0.37 19857.00 16.10 768.00 1636.00 142.00 3.31 4988.00 16.00 142.00 322.00 38.60 113.00 1.00 23.32 227.40
    SCBY-10 0.39 20811.00 12.60 788.00 1663.00 147.00 3.27 5056.00 16.20 147.00 315.00 355.00 119.00 0.98 22.95 232.01
    SCBY-11 0.38 19519.00 12.30 791.00 1552.00 136.00 3.34 4899.00 15.50 147.00 379.00 348.00 123.00 1.05 23.20 222.33
    下载: 导出CSV
    续表1
    样品
    类型
    样品
    原号
    TaKPbSrPZrHfTiYVCrCoNiδEu(La/Yb)N∑REE
    花岗
    斑岩
    SYBY-20.6833462.0029.40203.00305.00117.003.471092.007.8716.904.4173.907.310.9368.28267.62
    SYBY-30.7133801.0053.20194.00300.00124.003.591093.008.1817.705.4882.908.300.9459.98258.31
    SYBY-40.6125241.0024.30231.00409.00131.003.671225.009.0121.205.9754.706.780.8180.77342.16
    SYBY-50.6033255.0040.20151.00389.00132.003.611255.008.4222.206.8256.005.900.9470.78310.46
    SYBY-60.6633604.0026.10194.00377.00139.003.821281.008.6420.605.8257.406.450.9270.83325.93
    SYBY-70.6531929.0025.60209.00349.00125.003.551203.008.2817.704.7764.506.860.9476.93318.80
    SYBY-80.6833944.0032.60161.00301.00113.003.331102.007.5416.604.8578.807.730.9564.30261.11
    SYBY-90.7034091.0031.50132.00319.00115.003.491139.007.6115.604.8179.608.000.8870.53287.29
    SYBY-100.7033184.0028.50188.00298.00122.003.621050.008.0117.506.0074.308.150.9464.90278.60
    SYBY-110.6935648.0030.70130.00291.00120.003.481067.007.9414.704.65119.008.140.9461.69264.34
     注:主量元素为%,微量元素为10−6
    下载: 导出CSV
  • 黄智龙, 朱成明, 肖化云, 等. 煌斑岩岩浆能携带金吗?—高温超高压实验的证据[J]. 科学通报. 1999, 44(12): 1331-1334

    HUANG Zhilong, ZHU Chengming, XIAO Huayun, et al. Can lamprophyre carry gold? -evidences from high temperature-high pressure experiment[J]. Chinese Science Bulletin, 1999, 44(12): 1331-1334.

    刘辅臣, 卢作祥, 范永香, 等. 玲珑金矿中基性脉岩与矿化关系探讨[J]. 地球科学, 1984, (4): 37-45

    LIU Fuchen, LU Zuoxiang, FAN Yongxiang, et al. On the Relation between Intermediate-basic Dykes and Mineralization in Linglong Gold Ore Field[J]. Earth Science, 1984, (4): 37-45.

    刘辅臣, 卢作祥, 范永香, 等. 玲珑金矿的重要预测标志——中基性脉岩[J]. 地质科技情报, 1983, (S1): 122-130

    LIU Fuchen, LU Zuoxiang, FAN Yongxiang, et al. An Important Prediction Indicator of Linglong Gold Deposit: Intermediate-basic Dykes[J]. Geological Science and Technology Information, 1983, (S1): 122-130.

    刘燊, 胡瑞忠, 赵军红, 等. 山东中生代基性脉岩的元素地球化学及其成因[J]. 地球化学, 2005, (04): 339-350 doi: 10.3321/j.issn:0379-1726.2005.04.004

    LIU Shen, HU Ruizhong, ZHAO Junhong, et al. Geochemistry and petrogenesis of the Mesozoic mafic dikes from Shandong Province[J]. Geochemical, 2005, (04): 339-350. doi: 10.3321/j.issn:0379-1726.2005.04.004

    马晓东, 孙斌, 宋英昕, 等. 胶东埠上金矿区煌斑岩与金矿的关系[J]. 地质与资源, 2016, 25(4): 327-335 doi: 10.3969/j.issn.1671-1947.2016.04.004

    MA Xiaodong, SUN Bin, SONG Yingxin, et al. Research on the Relationship between the Lamprophyre and Gold Minerlization in Bushang Gold Deposit, Eastern Shandong Province[J]. Geology and Resources, 2016, 25(4): 327-335. doi: 10.3969/j.issn.1671-1947.2016.04.004

    邱检生, 徐夕生, 罗清华. 鲁西富钾火山岩和煌斑岩的40Ar--39Ar定年及源区示踪[J]. 科学通报, 2001, 46(18): 1500-1508. doi: 10.3321/j.issn:0023-074X.2001.18.002
    申玉科, 邓军, 徐叶兵. 煌斑岩在玲珑金矿田形成过程中的地质意义[J]. 地质与勘探, 2005, 41(3): 45-49

    SHEN Yuke, DENG Jun, XU Yebin. Geological Significance of Lamprophyre during Gold Mineralization in the Linglong Ore Field[J]. Geology and Prospecting, 2005, 41(3): 45-49.

    张宏福, 周新华, 范蔚茗, 等. 华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理[J]. 岩石学报, 2005, 21(4): 1271-1280 doi: 10.3321/j.issn:1000-0569.2005.04.024

    ZHANG Hongfu, ZHOU Xinhua, FAN Weiming, et al. Nature, Composition, Enrichment Processes and its Mechanism of the Mesozoic Lithospheric Mantle Beneath the Southeastern North China Craton[J]. Acta Petrologica Sinica, 2005, 21(4): 1271-1280. doi: 10.3321/j.issn:1000-0569.2005.04.024

    张英帅, 顾雪祥, 章永梅等. 山东蓬莱石家金矿原生晕地球化学特征及深部找矿预测[J]. 现代地质, 2021, 35(1): 258-269

    ZHANG Yinshuai, Gu Xuexiang, ZHANG Yongmei et al. Geochemical Characteristics of Primary Halo and Deep Prospecting Prediction of Shijia Gold Deposit in Penglai, Shandong Province[J]. Geoscience, 2021, 35(1): 258-269.

    赵子福, 戴立群, 郑永飞. 大陆俯冲带壳幔相互作用的碰撞后镁铁质岩浆岩记录[J]. 科学通报, 2013, 58(23): 2310-2315 doi: 10.1360/972013-622

    ZHAO Zifu, DAI Liqun, ZHENG Yongfei. Postcollisional Mafic Magmatism Records the Crust-Mantle Interaction of Continental Subduction-Zone[J]. Chinese Science Bulletin, 2013, 58(23): 2310-2315. doi: 10.1360/972013-622

    郑永飞, 徐峥, 赵子福, 等. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学: 地球科学, 2018, 48(4): 379-414

    ZHENG Yongfei, XU Zheng, ZHAO Zifu, et al. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Science China Earth Sciences, 2018, 48(4): 379-414.

    Cai Y C, Fan H R, Santosh M, et al. Evolution of the Lithospheric Mantle Beneath the Southeastern North China Craton: Constraints from Mafic Dikes in the Jiaobei Terrain[J]. Gondwana Research, 2013, 24: 601-621. doi: 10.1016/j.gr.2012.11.013

    Chappell B W, Bryant C J, Wyborn D. Peraluminous I-type Granites[J]. Lithos, 2012, 153(15): 142-153.

    Chappell B W, White A J R. I-and S-type Granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1-2): 1-26. doi: 10.1017/S0263593300007720

    Chappell B W, White A J R. Two Contrasting Granite Types[J]. Pacific Geology, 1974, 8: 173-174.

    Chen Y X, Song S G, Niu Y L, et al. Melting of Continental Crust During Subduction Initiation: A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone[J]. Geochimica et Cosmochimica Acta, 2014, 132: 311-336. doi: 10.1016/j.gca.2014.02.011

    Collins W, Beams S, White A, et al. Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895

    Dai L Q, Zhao Z F, Zheng Y F, et al. Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction[J]. Earth and Planetary Science Letters, 2011, 308: 224-244.

    Dai L Q, Zheng Y F, Zhao Z F. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks[J]. Lithos, 2016, 240-243: 327-336. doi: 10.1016/j.lithos.2015.11.014

    Deng J, Liu X F, Wang Q F, et al. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking—Lithospheric Extension in the North China Craton, Eastern Asia[J]. Geological Society of America Bulletin, 2017, 129(11-12): 1379-1407. doi: 10.1130/B31609.1

    Deng J, Liu X F, Wang Q F, et al. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: Constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65: 674-686. doi: 10.1016/j.oregeorev.2014.04.018

    Deng J, Yang L Q, Groves D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Sciences Reviews, 2020, 208: 103274. doi: 10.1016/j.earscirev.2020.103274

    Duggen S, Hoernle K, VAN DEN BOGAARD P, et al. Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere[J]. Journal of Petrology, 2005, 46(6): 1155-1201. doi: 10.1093/petrology/egi013

    Eby G N. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis[J]. Lithos, 1990, 26(1): 115-134.

    Feng L Q, Gu X X, Zhang Y M, et al. Geology and Geochronology of the Shijia Gold Deposit, Jiaodong Peninsula, China[J]. Ore Geology Reviews, 2020, 120: 103432. doi: 10.1016/j.oregeorev.2020.103432

    Foley S F, Barth M G, Jenner G A. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 933-938. doi: 10.1016/S0016-7037(99)00355-5

    Foley S F, Jackson S E, Fryer B J, et al. Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lamprophyre from Newfoundland by LAM-ICP-MS[J]. Geochimica et Cosmochimica Acta, 1996, 60(4): 629-638. doi: 10.1016/0016-7037(95)00422-X

    Furman T, Graham D. Erosion of Lithospheric Mantle Beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province[J]. Developments in Geotectonics, 1999, 24: 237-262.

    Guo F, Fan W M, Wang Y J, et al. Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes Beneath Continental Collisional Belt[J]. Lithos, 2004, 78: 291-305. doi: 10.1016/j.lithos.2004.05.001

    Hofmann A W. Chemical Differentiation of the Earth: the Relationship between Mantle, Continental Crust, and Oceanic Crust[J]. Earth and Planetary Science Letters, 1988, 90: 297-314. doi: 10.1016/0012-821X(88)90132-X

    Ionov D A, Griffin W L, O’reilly S Y. Volatilebearing Minerals and Lithophile Trace Elements in the Upper Mantle[J]. Chemical Geology, 1997, 141(3-4): 153-184. doi: 10.1016/S0009-2541(97)00061-2

    Janousek V, Finger F, Roberts M, et al. Deciphering the Petrogenesis of Deeply Buried Graites: Whole-Rock Geochemical Constraints on the Origin of Largely Underpleted Granulites from the Moldanubian Zone of the Bohemian Massif[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 2004, 95(1-2): 141-159. doi: 10.1017/S0263593300000985

    Klemme S, O’neill H S C. The Near-Solidus Transition from Garnet lherzolite to Spinel lherzolite[J]. Contributions to Mineralogy and Petrology, 2000, 138: 237-248. doi: 10.1007/s004100050560

    Li H J, Wang Q F, Groves D I, et al. Alteration of Eocene lamprophyres in the Zhenyuan orogenic gold deposit, Yunnan Province, China: composition and evolution of ore fluids[J]. Ore Geology Reviews, 2019, 107: 1068-1083. doi: 10.1016/j.oregeorev.2019.03.032

    Li J W, Bi S J, Selby D, et al. Giant Mesozoic Gold Provinces Related to the Destruction of the North China Craton[J]. Earth and Planetary Science Letters, 2012, 349-350: 26-37. doi: 10.1016/j.jpgl.2012.06.058

    Li L, Li S R, Santosh M, et al. Dyke swarms and their role in the genesis of world-class gold deposits: Insights from the Jiaodong Peninsula, China[J]. Journal of Asian Earth Sciences, 2016, 130: 2-22. doi: 10.1016/j.jseaes.2016.06.015

    Li Q, Santosh M, Li SR, et al. Petrology, geochemistry and zircon U-Pb and Lu-Hf isotopes of the Cretaceous dykes in the central North China Craton: implications for magma genesis and gold metallogeny[J]. Ore Geology Reviews, 2015, 67: 57-77. doi: 10.1016/j.oregeorev.2014.11.015

    Li X Y, Li S Z, Suo Y H, et al. Early Cretaceous Diabases, Lamprophyres and Andesites-dacites in Western Shandong, North China Craton: Implications for Local Delamination and Paleo-Pacific Slab Rollback[J]. Journal of Asian Earth Sciences, 2018, 426-444.

    Liu J G, Cai R H, Pearson D G, et al. Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A review[J]. Earth-Science Reviews, 2019, 196: 102873. doi: 10.1016/j.earscirev.2019.05.017

    Liu X Y, Tan J, He H Y, et al. Origin of the Tudui–Shawang gold deposit, Jiaodong Peninsula, north China Craton: Constraints from fluid inclusion and H-O-He-Ar-S-Pb isotopic compositions[J]. Ore Geology Reviews, 2021, 133: 104-125.

    Ma L, Jiang S Y, Hofmann A W, et al. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton[J]? Geochimica et Cosmochimica Acta, 2014a, 124: 250-271.

    Ma L, Jiang S Y, Hofmann A W, et al. Rapid lithospheric thinning of the North China Craton: New evidence from cretaceous mafic dikes in the Jiaodong Peninsula[J]. Chemical Geology, 2016, 432: 1-15. doi: 10.1016/j.chemgeo.2016.03.027

    Ma L, Jiang S Y, Hou M L, et al. Geochemistry of Early Cretaceous Calc-alkaline Lamprophyres in the Jiaodong Peninsula: Implication for Lithospheric Evolution of the Eastern North China Craton[J]. Gondwana Research, 2014b, 25: 859-872.

    Ma W D, Fan H R, Liu X, et al. Geochronological Framework of the Xiadian Gold Deposit in the Jiaodong[J]. Ore Geology Reviews, 2017, 86: 196-211. doi: 10.1016/j.oregeorev.2017.02.016

    Maniar P D, Piccli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Middlemost E A K. Naming Materials in the Magma/Iigneous Rock System[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9

    Müller D, Groves D I, 2016. Indirect associations between lamprophyres and gold copper deposits. In: Potassic Igneous Rocks and Associated Gold-Copper Mineralization[J]. Springer, Switzerland, pp: 203-226.

    Patiño Douce A E. Experimental Generation of Hybrid Silicic Melts by Reaction of High Al Basalt with Metamorphic Rocks[J]. Journal of Geophysical Research. Part B: Solid Earth, 1995, 100(B8): 15623-15639. doi: 10.1029/94JB03376

    Patiño Douce A E. What Do Experiments Tell Us About the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas[J]. Geological Society, London, Special Publications, 1999, 168(1): 55-75.

    Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    Robinson J A C, Wood B J. The Depth of the Spinel to Garnet Transition at the Peridotite Solidus[J]. Earth and Planetary Science Letters, 1998, 164(1-2): 277-284. doi: 10.1016/S0012-821X(98)00213-1

    Rock N M S. The Nature and Origin of Lamprophyres: An Overview[M]. In: Fitton J G, Upton B G J. (Eds.), Alkaline Igneous Rocks. Geological Society Special Publications, London, 1987: 191–226.

    Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.

    Sun S S, Mcdonough W F. Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Composition and Process[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Sylvester, R J. Postcollisional Strongly Peraluminous Granites[J]. Lithos, 1998, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3

    Wang X, Wang Z C, Chen H, et al. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction[J]. Lithos, 2020, 368-369: 105593. doi: 10.1016/j.lithos.2020.105593

    Whalen J B, Currie K L, Chappell B W. A-type Granites: Geochemical Characteristics, Discriminatuon and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    White A J R, Chappell B W. Granitoid Types and their Distribution in the Lachlan Fold Belt, Southeastern Australia[J]. Geological Society of America Memoir, 1983, 159(12): 21-34.

    White A J R, Chappell B W. Some Supracrustal S-type Granites of the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1988, 79(2-3): 169-181. doi: 10.1017/S026359330001419X

    Yang D B, Xu W L, Pei F P, et al. Spatial Extent of the Influence of the Deeply Subducted South China Block on the Southeastern North China Block: Constraints from Sr-Nd-Pb Isotopes in Mesozoic Mafic Igneous Rocks[J]. Lithos, 2012, 136-139: 246-260. doi: 10.1016/j.lithos.2011.06.004

    Yang J F, Zhao L, Kaus B J P, et al. Slab-triggered wet upwellings produce large volumes of melt: Insights into the destruction of the North China Craton[J]. Tectonphysics, 2018, 746: 266-279. doi: 10.1016/j.tecto.2017.04.009

    Yang Q Y, Santosh M, Shen J F, et al. Juvenile vs. recycled crust in NE China: Zircon U-Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula[J]. Gondwana Research, 2014, 25(4): 1445-1468. doi: 10.1016/j.gr.2013.06.003

    Zhang H F. Destruction of Ancient Lower Crust Through Magma Underplating Beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf Isotopic Evidence from Granulite Xenoliths[J]. Gondwana Research, 2012, 21: 281-292. doi: 10.1016/j.gr.2011.05.013

  • 期刊类型引用(4)

    1. 韦星,计文化,王建田,段留安,周发侨,孔国栋,张昌帅. 胶东地区招平断裂带中–南段断裂与金矿成矿关系研究. 西北地质. 2025(02): 225-239 . 本站查看
    2. 刘晓敏,于森,李金涛,李丽,丁文彪,薄军委. 胶东石家金矿床成矿流体特征及矿床成因. 黄金. 2024(09): 74-80 . 百度学术
    3. 吴新斌,吴凡,毛友亮,李岩. 汉南杂岩高桥沟花岗斑岩体岩石地球化学特征及侵位机制时代归属探讨. 西北地质. 2023(04): 329-335 . 本站查看
    4. 冯李强,顾雪祥,章永梅,沈睿文,张英帅,王鹏飞,王大伟. 山东蓬莱石家金矿床载金黄铁矿热电性、晶胞参数及其找矿意义. 矿床地质. 2023(05): 877-891 . 百度学术

    其他类型引用(0)

图(10)  /  表(3)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  35
  • PDF下载量:  51
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-05-15
  • 修回日期:  2022-08-28
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2023-02-19

目录

/

返回文章
返回